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Abstract. Evaluation of right ventricular (RV) function is essential for
the diagnosis of cardiovascular diseases. However, to date, it heavily re-
lies on manual segmentation which is time-consuming and dependent on
the observer’s experience. This paper presents a multi-atlas based seg-
mentation method which labels the RV myocardium and blood pool by
ensembling opinions from multiple atlases. It only requires an initial in-
put in form of a few landmarks. Experimental results on a common data
set show that the method yields good segmentation results which closely
match manual segmentation. The method can provide accurate measure-
ment for clinically important indices used for RV function evaluation.
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1 Introduction

Evaluation of right ventricular (RV) function is important for the diagnosis
of cardiovascular diseases such as arrhythmogenic right ventricular displasia
(ARVD). The evaluation normally involves measurement of the ventricular mass
(VM), the end-diastolic blood pool volume (EDV) and end-systolic volume
(ESV) using cardiac MR. The right ventricular ejection fraction (EF) can then
derived from EDV and ESV. However, RV evaluation is still mainly performed
manually in practice, which is time-consuming and dependent on the observer’s
experience. Unlike left ventricle (LV) segmentation, computer-aided RV segmen-
tation is difficult due to the large variance of the RV shape and the very thin
wall thickness. The RV shape is highly variable across subjects, whereas the LV
is mostly of a regular circular shape. In addition, the RV wall is only 2-6 mm
thick at end-diastole [1], which is much thinner than the LV wall.

Recently, multi-atlas based segmentation has been demonstrated to signifi-
cantly improve segmentation accuracy compared to single atlas based segmen-
tation [2]. It registers the target image to each of the atlases and combines the
propagated labels from multiple atlases to form a consensus segmentation. It ac-
counts for the anatomical shape variability by using a number of atlases which
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represent different anatomical shapes and structures. It is robust because seg-
mentation errors associated with single atlas propagation can be averaged out
when combining multiple atlases. The consensus segmentation is less likely to
be affected, when an individual atlas does not match the target image quite well
or when registration errors occur for an individual atlas. Its performance can be
further improved by selecting a subset of atlases which look more similar to the
target image than the others [3–5], or by using weighted label fusion in which
the contribution of each atlas is locally weighted by its similarity to the target
image [6–9].

In this paper, we propose a multi-atlas based method for RV segmentation.
Atlas selection and local weighted label fusion is used to reduce computational
cost and to improve segmentation performance. To account for image-to-atlas
registration errors, a number of voxels in a local search region are considered
when evaluating the similarity and fusing the atlas labels. The method is eval-
uated on a common data set provided by the MICCAI 2012 RV Segmentation
Challenge.

2 Methods

2.1 Framework

Consider an image I = {I(x)|x ∈ Ω}, where x denotes the voxel and Ω ⊂ R3

denotes the lattice on which the image is defined. The goal of segmentation is
to estimate a label map L associated with the image I, in which each voxel
is assigned a discrete label representing its tissue class. In a multi-atlas based
segmentation method, we have a number of atlases {In|n = 1, · · · , N} with
corresponding label maps {Ln|n = 1, · · · , N} already known. We register the
target image I with each of the atlases and infer a label map from this atlas.
Combining the opinions from all the atlases, a fused label map is generated as
the segmentation.

2.2 Image Registration

The spatial transformation Φn from the target image I to an atlas image In
is estimated by image registration. Image registration amounts to an optimisa-
tion problem, where the similarity metric between the target image I and the
transformed atlas image In(Φn) is maximised.

Φn = arg max
Φn

f(I, In(Φn))

where f denotes the similarity metric. We use normalised mutual information
(NMI) as the similarity metric, which is widely used in the image registration
domain because it does not assume any explicit functional relationship between
two images and it is efficient to calculate [10]. The transformation Φn is initialised
by landmark registration. Five landmarks are used, respectively the two RV
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insertion points on the basal slice, a point on the anterolateral wall, a point
on the inferolateral wall and the RV apex. Then an affine transformation and
a non-rigid B-spline transformation are subsequently computed by optimising
the image similarity metric. Image registration was implemented in a multi-
resolution approach using the IRTK software package1 [11].

After the non-rigid transformation Φn is estimated, the atlas label map Ln
is propagated to the target space using shape-based interpolation [12,13].

L′n(x) = Ln(Φn(x)), x ∈ Ω

where L′n denotes the infered label map from the nth atlas. We perform image
registration between the target image and each of the atlas images so that finally
we have N infered label maps for the target image.

2.3 Local Label Fusion

Each propagated atlas label map L′n(x) has an opinion for the label estimate at
voxel x. The opinions from all the atlases are weighted and combined [6–9]. The
weight is given by the similarity between the target voxel intensity I(x) and the
atlas voxel intensity I ′n(x) = In(Φn(x)).

P (L(x) = l|L′n(x), I(x), I ′n(x)) =
1√

2πσi
e
− [I(x)−I′n(x)]2

2σ2
i · δl,L′n(x)

where σi denotes the parameter for the Gaussian distribution and δl1,l2 denotes
the Kronecker delta function. The more similar I(x) and I ′n(x) is, the higher
weight label L′n(x) will have.

Since the estimated spatial transformation may not be perfect and there
can be slight mis-alignment between the target image and the propagated atlas
images after registration, the atlas voxels adjacent to x are also allowed to have
an opinion on the label estimate at x. Their opinions are weighted not only by
intensity similarity but also by the distance to the target voxel x.

P (L(x) = l|L′n(x+∆x), I(x), I ′n(x+∆x))

=
1√

2πσi
e
− [I(x)−I′n(x+∆x)]2

2σ2
i · 1√

2πσd
e
−D(∆x)2

2σ2
d · δl,L′n(x+∆x) (1)

where ∆x denotes the coordinate offset, D(∆x) denotes the physical distance of
the offset and σd denotes the parameter for distance weighting. The offset ∆x
is drawn from a local search region S centred at x, for example, 3×3×3 voxels
around x.

We use Eq. (1) as the weighting function for label fusion in our method,
which considers the intensity similarity between the target image and the atlas

1 http://www.doc.ic.ac.uk/~dr/software/

http://www.doc.ic.ac.uk/~dr/software/
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and also accounts for potential registration errors. Combining the opinions from
all the atlases, the label estimate L̃ is given by the label with the highest vote.

L̃(x) = arg max
l

N∑
n=1

∑
∆x∈S

P (L(x) = l|L′n(x+∆x), I(x), I ′n(x+∆x)) (2)

2.4 Post-Processing

Local label fusion does not guarantee the smoothness of the label map. For
example, the blood pool labels may protrude out of the myocardial wall or
there may be some myocardial wall labels inside the blood pool (see Figure 1),
which is physiologically impossible. To generate a plausible label map, we fit the
estimated label map L̃ to a model. In this paper, the atlas that is most similar
to the target image in terms of NMI is selected as the model for simplicity2. The
target label map L̃ is registered to the model label map using label consistency
as the similarity metric [12]. The model label map is then warped to the target
space as the final segmentation.

3 Experiments and Results

The method was evaluated on the data set provided by the segmentation chal-
lenge organisers. Test set 1 consists of MR images of 16 subjects. Each image
was segmented using 16 atlases with known label maps from the training set. To
reduce computational cost, a subset of 10 atlases that were most similar to the
target image after affine registration were selected [3]. Non-rigid registration and
local label fusion were performed only on this subset. The parameters σi and σd
were determined by performing segmentation on 6 training images which were
randomly picked. The values that achieved the best segmentation accuracy were
selected. In our experiments, σi = 75 and σd = 0.5 mm.

The main computational cost is the non-rigid registration, which took about
2 minutes for each pair of images. Considering that 2 frames (ED and ES) needed
to be processed and there were a subset of 10 atlases, non-rigid registration would
take about 40 minutes for each test subject. Affine registration, atlas selection
and local label fusion took just a few minutes. Since we ran the registrations
parallel on a workstation server, it took us about 10 minutes to process a test
subject for both frames.

3.1 Visual Inspection

Figure 1 illustrates the segmentation on a test image at three different slice loca-
tions (basal, middle and apical). Local label fusion results in good segmentation

2 However, more sophisticated models such as an average atlas or an anatomical sur-
face model can be used as well for the purpose of post-smoothing and may provide
a better performance.
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(a) Basal slice (b) Label fusion (c) Post-processed

(d) Middle slice (e) Label fusion (f) Post-processed

(g) Apical slice (h) Label fusion (i) Post-processed

Fig. 1. An example of segmentation at three different slice locations. Top to bottom
rows: basal, middle and apical slices. Left to right columns: intensity image, fused label
map and post-processed label map. In the label map, the myocardial wall and the
blood pool are coloured as grey and white respectively.

Table 1. Dice metric (DM) and Hausdorff distance (HD, unit: mm) between the
computer-aided segmentation and manual delineation. The measurements are given
for both endocardium and epicardium respectively at end-diastole and end-systole.

End-diastole End-systole

Endo DM 0.86 ± 0.11 0.69 ± 0.25

HD 7.70 ± 3.74 11.16 ± 5.53

Epi DM 0.88 ± 0.08 0.77 ± 0.17

HD 7.93 ± 3.72 11.72 ± 5.44
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(a) ED (b) ES

Fig. 2. A subject image at ED and ES respectively. The RV is relatively small at ES.
The myocardium becomes very thick and it becomes difficult to discern the blood pool.
It can be more difficult to register the image at ES to an atlas image than at ED.

(a) EDV (b) ESV

(c) Ejection fraction (d) Ventricular mass

Fig. 3. Linear regression between measurements given by our segmentation and manual
measurements. The X-axis represents the manual measurement, whereas the Y-axis
represents the automated measurement.
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on the basal and middle slices, as shown in Figure 1(b) and (e), because the
blood pool and the myocardium are well defined in the corresponding inten-
sity images. However, the continuity and smoothness of the myocardial wall is
not guaranteed. For example, in Figure 1(e), there is no myocardial wall at the
bottom right of the label map. After post-processing and fitting to an anatom-
ical model, the anatomical topology is recovered, as shown in Figure 1(f). The
segmentation at the apical slice, Figure 1(h), is not satisfying due to the strong
bias field in the intensity image and the poor contrast of the myocardium. Again,
post-processing improves segmentation.

3.2 Quantitative Evaluation

The Dice overlap metric (DM) between the segmentation and manual labelling
was computed. In addition, the Hausdorff distance (HD) between the segmented
contours and manual contours was measured. Table 1 reports the measurements
for both the endocardium and epicardium respectively at end-diastole (ED) and
end-systole (ES) on test set 1 of 16 subjects. The average Dice metric at ED is
0.86 for endocardium and 0.88 for epicardium. It is better than the Dice metric
at ES, which is 0.69 for endocardium and 0.77 for epicardium. It may be due to
two reasons. First, when we use landmarks to initialise registration, we only pick
landmarks on the ED images to minimise human interaction. These landmarks
are then used to initialise the affine registrations for both ED and ES. As a
result, the ES image registration may be worse than the ED image registration,
subsequently resulting in worse label fusion. Second, some subjects have very
strong RV contraction. The RV is relatively small at ES, as illustrated in Figure
2. Therefore, image registration between the target image and the atlases can
be more difficult at ES than at ED.

The ED and ES volumes, ejection fraction and ED ventricular mass are
clinically important indices to assess the RV function. They were measured based
on our segmentation and compared to manual measurements. Figure 3 shows the
linear regression between the two. The correlation coefficient and coefficients for
linear regression (y = ax + b) are respectively: EDV (R = 0.992, a = 0.874,
b = 17.859), ESV (R = 0.982, a = 0.668, b = 12.125), EF (R = 0.916, a =
0.574, b = 0.288) and VM (R = 0.914, a = 0.821, b = 1.352). The automated
measurements are in a good correlation with the manual measurements.

4 Conclusions

In this paper, we proposed a multi-atlas based method for right ventricle segmen-
tation. The atlas label maps are registered to the target image and combined by
local label fusion, weighted by intensity similarity and distance. The fused label
map is then fit to a model to ensure that the anatomical topology is preserved.
The method was tested on a common data set and yielded accurate segmenta-
tion. The automated segmentation matches manual segmentation in terms of the
Dice metric and Hausdorff distance. Automated measurement of clinical indices
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also shows good correlation with manual measurement. The current method re-
quires a few landmarks to initialise image registration. Automatic detection of
the right ventricle and initialisation of the transformation would be our future
work so that the method can become fully automatic.
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