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The Laguerre method for the numerical inversion of Laplace trans-
forms is a well known approach to the approximation of probability
density functions (PDFs) and cumulative distribution functions
(CDFs) of first passage times in Markov chains. Results are presented
that relate the Laguerre generating functions and Laguerre coefficients
of a PDF with those of the corresponding complementary CDF. This
enables the ability to compute the PDF or CDF from the Laplace trans-
form of either at the cost of computing only one set of Laguerre
coefficients.

Introduction: The Laplace transform and its close relative, the Fourier
transform, are widely used in electronic and process control engineering
applications. They are usually applied to functions to simplify complex
time-domain calculations by manipulating these functions in the fre-
quency-domain. Numerical transform inversion methods are often
then applied to obtain the time-domain function from the derived
transform.

An important application of numerical Laplace transform inversion
arises in the calculation of first passage times in continuous-time
Markov chain-based performance models of transaction processing
and computer communication systems. Here the time-domain function
is computed by numerically inverting a derived Laplace transform of
a passage-time PDF or CDF [1]. The computational cost of this
process is determined by the number of Laplace transform evaluations
performed, since each evaluation involves the construction and solution
of a set of sparse complex linear equations the rank of which is given by
the number of states in the Markov chain (typically several million for
real-life applications). The Laguerre method is often the numerical
inversion method of choice in such applications for two reasons. First,
a finite number of Laplace transform evaluations suffices to compute
the value of the function for all values of the time variable t (whereas
for the other methods such as the Euler method, this burden is pro-
portional to the number of t-values computed). Secondly, since the
sojourn time in states is exponentially distributed, first passage time den-
sities are convolutions of exponential densities. Passage time distri-
butions are therefore short-tail distributions with semi-exponential
tails, a class of functions to which the Laguerre method is well-
suited [2].

The integration method is used for calculating the Laguerre coeffi-
cients when the Laplace transform f *(s) of the time-domain function f
(t) is known. It is based on the Laguerre series representation

f ðtÞ ¼
P1
n¼0

qnlnðtÞ; t � 0 ð1Þ

where ln (t) is the Laguerre function [1]. The Laguerre coefficients qn are
approximated by the trapezoidal rule [1] which gives
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The Laguerre generating function Q(z) is obtained from f�(s) using the
binary transformation z ¼ (2s2 1)/(2sþ 1) as follows:

QðzÞ ;
X1
0

qnz
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2ð1� zÞ

� �
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Cumulative distribution functions of first passage times are important
measures in performance evaluation studies. A passage-time CDF indi-
cates the probability with which one of a set of target states in the
Markov chain is reached within a certain time duration when starting
from a specified start state. From a CDF it is straightforward to derive
any number of moments of passage time as well as passage time percen-
tiles. As a route to the CDF, the complementary CDF (CCDF) F c(t) ;
12 F(t) is preferred since it has a smooth structure more suited to
numerical inversion (F c(t) is a non-negative decreasing function with
F c(t) ! 0 as t ! 1). Convergence of the Laguerre coefficients
depends on the smoothness of the function and this can be improved
by scaling and exponential dampening. It is also known that the

Laguerre coefficients of a CCDF will have an equal or faster conver-
gence rate than its PDF [3].

This Letter proves a relation between the generating functions of a
CCDF and PDF (correcting an error in [3]) and this development
leads to a recurrence relation involving the Laguerre coefficients of
PDFs and CCDFs. Numerical results are then presented for a passage-
time case study.

Relation between Q 0(z) and Q(z): For the purpose of relating the
Laguerre generating function of a CCDF with that of its corresponding
PDF, let the Laplace transform of the CCDF be represented as

FcðsÞ ¼
1

s
ð1� f �ðsÞÞ ð4Þ

Similarly to (1) and (3),
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Substituting (4) in the expression for Q0(z) in (5) yields
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This expression for obtaining the Laguerre generating function of a
CCDF from the generating function of the PDF corrects an error in
the one presented without proof in [3].

Relation between q0n and qn: Laguerre coefficients can be computed
either by the integration method as described above or by the
moments method if the moments of f (t) are known instead of the
Laplace transform of f (t). The former approach is considered here
since the Laplace transform of a passage time PDF can be obtained as
described in [1]. We proceed to derive a direct numerical relation
between the Laguerre coefficients of a PDF and CCDF when the inte-
gration method is used. Note that this result is distinct from the relation
between the PDF and CCDF coefficients derived in [2] in the context of
the moments method.

Consider (6) and substitute for Q0(z) with
P

q0nz
n and for Q(z) withP

qnz
n. This gives
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Multiplying both sides by (1þ z) and simplifying,

q00 þ ðq00 þ q01Þzþ ðq01 þ q02Þz
2 þ . . .
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Comparing coefficients with similar powers of z gives
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Hence the nth equation is,

qn ¼ �
1

2
ðq0n�1 þ q0nÞ þ qn�1 ð11Þ

Using (9) and (11) we can now relate the Laguerre coefficients of the
PDF with the Laguerre coefficients of the CCDF. This is a convenient
result especially for implementation purposes because only one set of
coefficients, either fqng or fq

0
ng, needs to be computed.
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Fig. 1 Numerical approximation and analytical CCDF and PDF of cycle
time
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Numerical results: Consider a bimodal cycle-time PDF composed of
two Erlang densities with shape and rate parameters n1 ¼ 3, l1 ¼ 1
and n2 ¼ 12, l2 ¼ 2:
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The corresponding Laplace transform is given by
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We calculate the cycle-time PDF f (t) and complementary CDF F c(t)
from their respective Laplace transforms using two different methods
for computing the Laguerre coefficients: the direct approach of (2) and
the indirect approach of (11), whereby the Laguerre coefficients of the
PDF (resp. CCDF) are derived from those of the CCDF (resp. PDF).
Figs 1a and b compare the corresponding numerical results with analyti-
cal curves for both cases; agreement is excellent. Fig. 2 shows the rela-
tive error between numerical and analytical results for various values of t
when calculating the CCDF (see Fig. 2a) and PDF (see Fig. 2b) using
both the direct approach and the indirect approach. The relative error
trends increase at large time arguments corresponding to very small

absolute values of f (t), due to aliasing (caused by approximating the
Laguerre coefficients using the trapezoidal rule) and finite precision
arithmetic errors.
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Fig. 2 Relative error of numerical calculation of CCDF and PDF when
Laguerre coefficients are computed directly using (2) and indirectly using (11)
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Conclusions: This Letter presents an efficient approach to approximat-
ing passage time densities and distributions in Markov chains using the
Laguerre method. Resulting expressions relate the Laguerre generating
functions of the PDF and CCDF and also the set of Laguerre coefficients
of the PDF and CCDF. The recurrence relation for the Laguerre coeffi-
cients is well suited for practical implementation, halving the compu-
tational burden when both PDF and CCDF are calculated.
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