
Understanding, Modelling, and Improving the Performance
of Web Applications in Multicore Virtualised Environments

Xi Chen, Chin Pang Ho, Rasha Osman, Peter G. Harrison, William J. Knottenbelt

Department of Computing, Imperial College London, United Kingdom, SW7 2AZ

{x.chen12, c.ho12, rosman, pgh, wjk}@imperial.ac.uk

ABSTRACT
As the computing industry enters the Cloud era, multicore
architectures and virtualisation technologies are replacing
traditional IT infrastructures. However, the complex rela-
tionship between applications and system resources in multi-
core virtualised environments is not well understood. Work-
loads such as web services and on-line financial applications
have the requirement of high performance but benchmark
analysis suggests that these applications do not optimally
benefit from a higher number of cores.

In this paper, we try to understand the scalability be-
haviour of network/CPU intensive applications running on
multicore architectures. We begin by benchmarking the Pet-
store web application, noting the systematic imbalance that
arises with respect to per-core workload. Having identi-
fied the reason for this phenomenon, we propose a queue-
ing model which, when appropriately parametrised, reflects
the trend in our benchmark results for up to 8 cores. Key
to our approach is providing a fine-grained model which in-
corporates the idiosyncrasies of the operating system and
the multiple CPU cores. Analysis of the model suggests
a straightforward way to mitigate the observed bottleneck,
which can be practically realised by the deployment of mul-
tiple virtual NICs within our VM. Next we make blind pre-
dictions to forecast performance with multiple virtual NICs.
The validation results show that the model is able to pre-
dict the expected performance with relative errors ranging
between 8 and 26%.

Categories and Subject Descriptors
C.4 [Computing Systems Organisation]: Performance
of Systems—Modeling Techniques; G.3 [Mathematics of
Computing]: Probability and Statistics

Keywords
Benchmarking, Performance Modelling, Multicore, Virtual-
isation, Web Applications

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ICPE’14, March 22–26, 2014, Dublin, Ireland.
Copyright 2014 ACM 978-1-4503-2733-6/14/03 ...$15.00.
http://dx.doi.org/10.1145/2568088.2568102.

1. INTRODUCTION
Cloud computing has received intensive attention from

academia and industry. Two major techniques which are
heavily used in this context are virtualisation and multi-
core architectures. Major cloud service providers, such as
Amazon or Microsoft, provide a variety of virtual machines
(VMs) that offer different levels of computing power. This
computing paradigm provides improved performance, re-
duced application design and deployment complexity, elastic
handling of dynamic workloads, and lower power consump-
tion compared to traditional IT infrastructures [10, 38, 37].

Applications running in cloud environments exhibit a high
degree of diversity; hence, strategies for allocating resources
to different applications and for virtual resource consoli-
dation increasingly depend on understanding the relation-
ship between the required performance of applications and
system resources [39]. To increase resource efficiency and
lower operating costs, cloud providers resort to consolidat-
ing resources, i.e. packing multiple applications into one
physical machine [8]. Understanding the performance of
these applications is important for cloud providers to max-
imise resource utilisation and augment system throughput
while maintaining individual application performance tar-
gets. Performance is also important to end users, because
they are keen to know their applications are provisioned with
sufficient resources to cope with varying workloads. Instead
of increasing or decreasing the same instances one by one
[17, 23], a combination of multiple instances might be more
efficient to deal with the burstiness of dynamic workloads
[48, 40, 29]. To handle the resource scaling problems, a
model that can appropriately express, analyse, and predict
the performance of applications running on multicore VM
instances is necessary.

There are at least three observations we can make in light
of present research. First, not all workloads/systems ben-
efit from multicore CPUs [13, 44] as they do not scale lin-
early with increasing hardware. Applications might achieve
different efficiency based on their concurrency level, inten-
sity of resource demands, and performance level objectives
[12]. Second, the effects of sharing resources on system per-
formance are inevitable but not well-understood. The in-
creased overhead and dynamics caused by the complex in-
teractions between the applications, workloads and virtu-
alisation layer introduce new challenges in system manage-
ment [22]. Third, modelling of low-level resources, such as
CPU cores, are not generally captured by models [16, 25] or
models are not comprehensive enough to support dynamic
resource allocation and consolidation [35, 43].

Many benchmarking studies suggest that each individual
core performs differently across the cores of one multipro-
cessor [24, 32, 21]. Veal et al. [45] and Hashemian et al. [21]
observe a CPU single core bottleneck and suggest methods
to distribute the bottleneck to achieve better performance.
However, most modelling work treats each core of a multi-
core processor equally by using M/M/k queues [7, 5], where
k represents the number of cores. To the best of our knowl-
edge, the problem of modelling the imbalance between cores
and the performance of applications in multicore virtualised
environment has not been adequately addressed.

This paper presents a simple performance model that cap-
tures the virtual software interrupt interference in network-
intensive web applications on multicore virtualised platforms.
We first conduct some benchmark experiments of a web
application running across multiple cores, and then intro-
duce a multi-class queueing model with closed form solution
to characterise aspects of the observed performance. Tar-
get metrics include utilisation, average response time and
throughput for a series of workloads. The key idea behind
the model is to characterise the imbalance of the utilisation
across all available cores, model the processing of software
interrupts, and correctly identify the system bottleneck. We
validate the model against direct measurements of response
time, throughput and utilisation based on a real system. We
take steps to alleviate the bottleneck, which turns out to in-
volve at a practical level the deployment of multiple virtual
NICs. Thereafter, we predict the performance of the system
with the same workload parameters after tuning the system
configuration for improved performance.

The rest of the paper is organised as follows. Section 2
provides context and background. Section 3 presents our
testbed setup and performance scaling results. Section 4 in-
troduces our performance model and validates it. Section 5
extends our model for new hardware configurations. Sec-
tion 6 surveys related work and Section 7 concludes.

2. BACKGROUND
In this section, we briefly recap multicore architectures,

then explain the basic steps involved in receiving/transmitti-
ng traffic from/to the network and finally discuss the over-
head introduced by virtualisation. We aim to understand
the most important properties of workloads and systems in
order to incorporate them in an analytical model.

Multicore & Scalability: To exploit the benefits of a
multicore architecture, applications need to be parallelised
[31, 33, 45]. Parallelism is mainly used by operating systems
at the process level to provide seamless multitasking [14].
We assume that the following two factors are inherent to
web applications which scale with the number of cores: (1)
the workload of a web application typically involves multiple
concurrent client requests on the server and hence, is heavily
parallel; (2) they can exploit the multithreading and asyn-
chronous request services provided by modern web servers
(such as Nginx). Each request is usually processed by a sep-
arate thread and threads can run simultaneously on different
CPUs. As a result, modern web servers can efficiently utilise
multiple CPU cores. However, scalability of web servers is
not in practice linear as other factors, such as sharing cache
between cores, communication overhead, call-stack depth,
synchronization between threads, or sequential work-flows
[29, 45, 8, 24] limit the performance.

CPU

Microprocessor

CPU
 0

CPU
 1

CPU
 N

...

Cache

Memory Subsystem

Secondary
Cache

Random
Access
Memory

Storage Subsystem

Hard Disk
Control Interface

Hard Drive

Communication Subsystem

Network
Interface Card

Modem

Bus
Interface
Unite

I/O
Bus

Memory
Bus

Outgoing
Packet

Incoming
Packet

Step 1

Step 2
Step 3

Step 4

Step 5

Figure 1: Context Switching Inside a Multicore Server

Linux Kernel Internals & Imbalance of Cores: Mod-
ern computer architectures are interrupt-driven. If a device,
such as a network interface card (NIC) or a hard disk, re-
quires CPU cycles, it triggers an interrupt which calls a cor-
responding handler function. As we look at web applica-
tions, we focus on interrupts generated by NICs. As packets
from the network arrive, the NIC stores these in an internal
packet queue and generates an interrupt to notify the CPU
to process the packet. By default, an interrupt is handled
by a single CPU (usually CPU 0). Figure 1 illustrates the
process of passing a packet from the network to the applica-
tion then sending a response back to the network (step 1 to
5). The NIC driver copies the packet to memory and gen-
erates a hardware interrupt to signal the kernel that a new
packet is readable. A previously registered interrupt handler
is called which generates a software interrupt to push the
packet down to the appropriate protocol stack layer or ap-
plication (step 2) [47]. By default, a NIC software interrupt
is handled by CPU 0 (core 0) which induces a non-negligible
load and, as processing rates increase, creates a major bot-
tleneck for web applications (interrupt storm) [45].

Virtualisation & Hypervisor Overhead: Since we fo-
cus on the performance modelling of web applications run-
ning in virtualised environments, the relationship between
performance cost and virtualisation overhead must be taken
into account. The virtualisation overhead greatly depends
on what guest workloads are doing on the host hardware
[15]. With technologies like VT-x/AMD-V and nested pag-
ing, CPU-intensive guest code runs at very close to 100% na-
tive speed while I/O might take considerably longer due to
virtualisation [15]. For example, Barham et al. [3] show that
the CPU-intensive SPECweb99 benchmark and the I/O-
intensive Open Source Database Benchmark suite (OSDB)
perform differently in native Linux and XenoLinux (based on
the Xen hypervisor). PostgreSQL in OSDB places consider-
able load on the disk resulting in many protection domain
transitions which is reflected in the substantial virtualisa-
tion overhead. SPECweb99 on the other hand, does not
require these transitions and hence performs 99.2% of the
performance of the bare machine.

Considering the aspect of virtualisation overhead is an
important factor for building accurate performance models.
However, we include it into parameters in this work and will
not further discuss it but rather leave this to future research.

Client
(Httperf)

Application
(Petstore)

VM
(Xen, Virtualbox)

Data
Collector (JMS)

Data
Extractor (JMX) DB

Performance
Evaluation (PT)

Performance
Model

Automatic
Control

Application
Data

Resource
Data

Real-time
Data

Historical
Data

Predictive
Results

Provisioning
Decisions

Figure 2: Testbed Architecture

3. BENCHMARKING
In this section, we conduct an initial benchmarking ex-

periment to study the impact of multiple cores and software
interrupt processing on a common HTTP-based web appli-
cation. Requests do not involve database access and hence,
no disk I/O is required during a response. Our application is
the Oracle Java Petstore 2.01 which uses GlassFish2 as the
HTTP server. We run the Petstore application on Virtual-
Box and Xen hypervisor, respectively. The Oracle Java Pet-
store 2.0 workload is used to expose the VM to high HTTP
request volumes which cause intensive CPU activity related
to processing of input and output network packets as well as
HTTP requests. Autobench3 was deployed to generate the
HTTP client workload.

Testbed Infrastructure. We set up two virtualised
platforms: Xen and Virtualbox, using the default config-
urations. The hypervisors are running on an IBM System X
3750 M4 with four Intel Xeon E5-4650 eight-core processors
at 2.70GHz to support multicore VM instances comprising
1 to 8 cores. The server has a dual-port 10 Gbps Ethernet
physical network interface card (pNIC), which can operate
as a virtual 1 Gbps Ethernet NIC (vNIC). The physical NIC
interrupt handling is distributed across the cores, providing
maximum interrupt handling performance. The machine is
equipped with 48 GB memory and connected to sockets with
DDR3-1333MHz channels. Other resources (e.g. disk and
network bandwidth) are over-provisioned.

Testbed Setup. The system used to collect the perfor-
mance data of our tests consists of several components as
shown in Figure 2. The data collector (Java Message Ser-
vice) extracts a set of application statistics, e.g. response
time and throughput. This is combined with the output
of the data extractor (Java Management Extension), which
provides hardware characteristics, i.e. utilisation of each core
of the VM, memory bandwidth, etc. The data collector can
either feed this data directly to the performance evaluator
or store it a database for future analysis. The performance
evaluator is based on the concept of Performance Trees [42,
11], which translate the application and system characteris-
tics into parameters that can be directly used by our perfor-
mance model. The performance model is then analysed and
performance indices of the system are derived and compared

1http://www.oracle.com/technetwork/java/index-
136650.html
2https://glassfish.java.net/
3http://www.xenoclast.org/autobench/

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

4 core

time in seconds

C
P

U
 u

ti
lis

a
ti
o
n
 (

%
)

Core 0

Core 1

Core 2

Core 3

SI of Core 0

(a) 4 Core

0 100 200 300 400 500 600
0

10

20

30

40

50

60

70

80

90

100

8 core

time in seconds

C
P

U
 u

ti
lis

a
ti
o
n
 (

%
)

Core 0

Core 1

Core 2

Core 3

Core 4

Core 5

Core 6

Core 7

SI of Core 0

(b) 8 Core

Figure 3: CPU Utilisation and Software Interrupt Generated on
CPU 0 of 4 Core and 8 Core VM Running the Petstore Applica-
tion on VirtualBox

0 200 400 600 800 1000 1200 1400
0

200

400

600

800

1000

1200

1400

1600

1800

Petstore Response Time

R
e

s
p

o
n

e
s
e

 T
im

e
 (

m
s
)

Request Rate (req/s)

1 core

2 core

4 core

8 core

(a) Response Time

0 200 400 600 800 1000 1200 1400
0

2000

4000

6000

8000

10000

12000

14000

Petstore Throughput

N
e

tw
o

rk
 I

/O
 (

b
y
te

s
/s

)

Request Rate (req/s)

1 core

2 core

4 core

8 core

(b) Throughput

Figure 4: Response Time and Throughput of 1 to 8 Core VMs
Running the Petstore Application on VirtualBox

to actual measurements. The automatic controller optimises
the resource configuration for specific performance targets.
The system is designed for both on-line and off-line perfor-
mance evaluation and resource demand estimation, which
can be applied in areas such as early stage deployment and
run-time management on cloud platforms. In this paper, we
do not employ the automatic controller in our experiments.

Benchmark. Each server VM is configured with one
vCPU with a number of virtual cores (from 1 core up to
8 cores for eight experiments) with 4 GB of memory and
one vNIC. To mitigate the effect of physical machine thread
switching and to override hypervisor scheduling, each vir-
tual core (vCore) was pinned to an individual physical core.
For each experiment, Autobench sends a fixed number of
HTTP requests to the server at a specific request rate. The
mean request rate incrementally increases for each exper-
iment by 10 req/sec from 50 (e0.02)4 to 1400 (e0.00071).
Figure 3 presents the vCore utilisation for the 4 and 8 core
VMs running on Virtualbox at increasing request rates for
a total duration of 600s. Figure 4 shows the corresponding
response time and throughput for the VM from 1, 2, 4 and
8 cores. The utilisation, response times, and throughput for
the Xen hypervisor are not shown; however, they exhibit
similar performance trends.

From Figure 3(a) and 3(b), we observe that the utilisation
of vCore 0 reaches 90% and 98% at 500 secs (correspond-
ing to 1200 req/sec) for 4 and 8 vCore servers respectively,
while the utilisation of the other vCores are under 80% and
60% for the same setup. Figure 4(a) shows that the sys-

4e0.02 refers to an exponential distribution with a mean in-
terarrival time of 0.02s, http://www.hpl.hp.com/research/
linux/httperf/httperf-man-0.9.txt

http://www.oracle.com/technetwork/java/index-136650.html
http://www.oracle.com/technetwork/java/index-136650.html
https://glassfish.java.net/
http://www.xenoclast.org/autobench/
http://www.hpl.hp.com/research/linux/httperf/httperf-man-0.9.txt
http://www.hpl.hp.com/research/linux/httperf/httperf-man-0.9.txt

...

a

b

b

p 1-p

out

out'
CPU
 0

CPU
 2

CPU
 n-1

CPU
 1

b

b

b

a

Figure 5: Modelling a Multicore Server Using A Network of
Queues

tem becomes overloaded at 400 req/s for a single vCore and
at 600 req/s for a dual core. The saturation points for 4
vCores (800 req/s) and 8 vCores (900 req/s) do not re-
flect the doubling of vCPU capacity. Figure 4 also shows
that for the single and dual core cases, the improvement
of system throughput asymptotically flattens with a higher
request rate and finally saturates around 4000+ bytes/sec
and 7000+ bytes/sec. However, the capacity of the VM
servers does not increase linearly when the number of vCores
changes from 4 to 8 vCores.

When investigating the imbalance of vCore utilisation and
lack of scalability across vCores, we have observed that the
software interrupt processing causes 90% of the vCore 0
utilisation, as shown in Figure 3. This saturates vCore 0
as network throughput increases and it becomes the bot-
tleneck of the system. This bottleneck has also been ob-
served in network-intensive web applications executing on
non-virtualised multicore servers [21].

In summary, Figures 3 and 4 show that, when using the de-
fault configurations of VirtualBox, the multicore VM server
exhibits poor performance scalability across the number of
cores for network intensive workloads. Additionally, the util-
isation of each vCore behaves differently across the cores and
as vCore 0 deals with software interrupts, it saturates and
becomes the bottleneck of the system.

4. PROPOSED MODEL
This section describes our proposed model for the perfor-

mance of a web application running in a multicore virtu-
alised environment. We first give the specification of the
model and then present an approximate analytical solution
followed by the description of our method to estimate the
model parameters. Finally, we validate our model with the
testbed from Section 3. Here we refer to vCore 0, . . .,
vCore n− 1 as CPU 0, . . ., CPU n− 1.

4.1 Model Specification
Consider a web application running on an n-core VM with

a single NIC (eth0), as in our set-up in Section 3.
Modelling Multiple Cores: We model the symmetric

multicore processor using a network of queues where each
queue (CPU 0, . . ., CPU n − 1) represents a single core
(Figure 5). The interrupts generated by eth0 are handled
by CPU 0. In a Linux system, one can see that CPU 0 serves
an order of magnitude more interrupts than any other core
in /proc/interrupts. We assume that two classes are served
under processor sharing (PS) queueing policy in CPU 0; the
other queues are M/M/1-PS with single class, which reflects

the scheduling policy in most operating systems (e.g. Linux
CPU time sharing policy).

When a request arrives from the network:

1. eth0 detects the associated packet and generates an
interrupt, which is represented by job class a for CPU 0
(see Figure 5).

2. The interrupt is processed and the packet is forwarded
to the application which reads the request. From the
model perspective, a class a job turns into a class b job,
which reflects that the interrupt triggers the scheduling
of a request process.

3. Jobs of class b are either scheduled to CPU 0 with
probability p or to one of the remaining CPUs with
probability 1 − p. Class a and b jobs are served at
service rate µ1 and µ2, respectively.

4. After a class b job has been processed, the response is
sent back to the client. Note that we naturally cap-
ture output NIC interrupts by including them into the
service time of class a jobs.

In our model, the arrival of jobs is a Poisson process with
arrival rate λ and job service times are exponentially dis-
tributed. The system has a maximum number of jobs that
it can process as shown in Figure 4, which is also very com-
mon for computer systems. For each experiment, an arrival
is dropped by the system if the total number of jobs in the
system has reached a specified maximum value N .

The preemptive multitasking scheme of an operating sys-
tem, such as Windows NT, Linux 2.6, Solaris 2.0 etc., utilises
the interrupt mechanism, which suspends the currently exe-
cuting process and invokes the kernel scheduler to reschedule
the interrupted process to another core. Otherwise, when a
class a job arrives, a class b job executing in CPU 0 could be
blocked. However, in a multicore architecture, the blocked
processes could experience a timely return to execution by a
completely fair scheduler, shortest remaining time scheduler,
or some other CPU load-balancing mechanism. To simplify
the model, class a and class b jobs are processed separately
with a processor sharing policy in CPU 0.

4.2 CPU 0
The proposed queueing model in Figure 5 abstracts the

process of serving web requests on a multicore architecture.
In this model, CPU 1 to CPU n−1 are modelled as standard
M/M/1-PS queues, the arrivals to which emanate at CPU 0
as class b jobs. An M/M/1-PS queue is one of the common
queue types in the literature [30]. The nontrivial part of the
model, however, is CPU 0. CPU 0 processes two classes of
jobs, a and b, and the number of jobs can be described as
a two dimensional Markov chain X = (i, j), where i is the
number of class a job and j is the number of class b job.
Figure 6 illustrates the state transitions corresponding to
the generator matrix of its stochastic process, Q.

One can compute the stationary distribution numerically
by solving the normalised left zero eigenvector of Q. How-
ever, as the capacity of the system, N , is a very large number
in the real system, the size of Q, is combinatorially large and
hence, computing the zero eigenvector becomes infeasible.
In the next section, we obtain the stationary distribution of
the Markov chain.

0, 0start 0, 1
µ2

0, 2
µ2

0, N

1, 0

λ (1− p)µ1

1, 1

λ (1− p)µ1

pµ1

µ2

pµ1

2, 0

λ (1− p)µ1

pµ1

N, 0

N − 1, 1

...

...

· · ·

pµ1

1, N − 1

pµ1

. .
.

· · ·

· · ·

...

Figure 6: State Transition Diagram for CPU 0

4.2.1 Two-class Markov Chain and its Stationary Dis-
tribution of CPU 0

The model specification given in Section 4.1 and the state
transition diagram of Figure 6 make the approximating as-
sumption that the total service rate for each class (a and b)
does not degrade as the population of the network increases,
remaining at the constant values µ1 and µ2. Therefore the
classes behave independently and the modelled behaviour
of CPU 0 is equivalent to a tandem pair of single-class PS
queues with rates µ1 (for class a) and µ2 (for class b) re-
spectively. The arrival rate at the first queue is λ and at
the second pλ (since we are considering only CPU 0). This
is a standard BCMP network [30] with a population con-
straint and so has the product-form given in equation (2)5.
Moreover, the result is a trivial application of the Reversed
Compound Agent Theorem (RCAT), see for example [19]
[20]. The normalising constant can be obtained as a dou-
ble sum of finite geometric series and gives the value of π0,0

shown in equation (1).
We therefore have the following product-form solution:

Proposition 1. Assuming that a steady state exists, let
the steady-state probability of state (i, j) in Figure 6 be de-
noted πi,j. Then,

π0,0 =
(α− 1)(α− β)(β − 1)

αN+2(β − 1) + βN+2(1− α) + α− β , (1)

and

πi,j = αiβjπ0,0, (2)

where

α :=
λ

µ1
and β :=

pλ

µ2
. (3)

5We thank a referee for pointing out that the result was first
derived in [41]

Proof. By the proceeding argument, the BCMP Theo-
rem yields,

πi,j = Cπ1(i)π2(j).

where C is a normalising constant. The marginal probabili-
ties are,

π1(k) = αkπ1(0), π2(k) = βkπ2(0) ∀k = 0, 1, . . . , N.

Therefore,

πi,j = Cπ1(i)π2(j) = Cαiβjπ1(0)π2(0) = αiβjπ0,0.

Normalizing, we have ∑
i,j

πi,j = 1

∑
i,j

αiβjπ0,0 = 1

π0,0

N∑
i=0

N−i∑
j=0

αiβj = 1

Since

N∑
i=0

N−i∑
j=0

αiβj =
αN+2(β − 1) + βN+2(1− α) + α− β

(α− 1)(α− β)(β − 1)
,

we obtain

π0,0 =
(α− 1)(α− β)(β − 1)

αN+2(β − 1) + βN+2(1− α) + α− β .

4.2.2 Average Sojourn Time
Proposition 1 provides the stationary distribution of the

Markov chain associated with CPU 0. With that informa-
tion, we can find the average number of jobs in the system.

Proposition 2. Let the random variable k denote the to-
tal number of jobs at CPU 0. Then,

E(k) =
g(α, β)− g(β, α) + (β − α)(2αβ − α− β)

[αN+2(β − 1) + βN+2(1− α) + α− β](α− 1)(β − 1)
,

(4)
where g(x, y) := xN+2(y − 1)2(xN −N − 1).

0 5 10 15 20 25 30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

n

analytical

numerical

Figure 7: Comparing Numerical and Analytical Solution of E(k)

The proof of Proposition 2 can be found in Appendix A.
Figure 7 plots the value of E(k) against N .

Consider again CPU 0 with two job classes a and b. Ar-
rivals will be blocked if the total number of jobs reaches
N . The probability function of the total number of jobs at
CPU 0 can be calculated as,

PN = P [na + nb = N] =

i+j=N∑
i,j

πi,j

Using Proposition 2, a job’s expected sojourn time E(T)
can be calculated from the long-term average effective arrival
rate λ and the average number of jobs E(k), using Little’s
Law for the system as follows:

E(T) =
E(k)

λ(1− PN)

4.2.3 Average Service Time and Utilisation

Proposition 3. Let Ts be the random variable denoting
the service time of a job γ entering service. The expected
service time is

E(Ts) =
1

µ1
n0
a +

1

µ1

λ

λ+ pµ1
(1− n0

a) +
1

µ2

pµ1

λ+ pµ1
(1− n0

a),

(5)
where

n0
a = π0,0

1− βN+1

1− β .

The proof of the proposition is provided in Appendix B.
With the result above, the utilisation of a single core can be
derived by the Utilisation Law,

U = λE(Ts)

4.3 Likelihood for Estimating Parameters
The stationary distribution π of the Markov process in

Figure 6 with generator matrix Q and the expected number
of jobs E(k) are given in Propositions 1 and 2. There are
three corresponding parameters, µ1, µ2, and p. We assume
that the average response time for a certain request arrival
rate λi can be estimated from real system measurements.
From our previous observations, for example, when a one
core system receives 100 req/sec, on average, 2.9% of the
CPU utilisation are spent for processing software interrupts
while for 200 req/sec, this amount increases to 7.2%. We
can obtain µ1 from utilisation law,

λ̄

µ1
= Ūsi (6)

where Ūsi denotes the average utilisation of software inter-
rupts (si) processed by CPU 0 during a monitoring window
of size t and λ̄ is the average λi during t. Then the reciprocal
of µ1 is the mean service time of CPU 0 handling si. Note
that by using the average utilisation for software interrupts
to calculate µ1, the service time for a class a job includes the
service time for all software interrupts involved to success-
fully process the corresponding class b job (see Section 4.1).
Here, we find µ1 to be 3301 req/sec. In the single core case,
p is 1. However, for multiple core cases, p can be obtained by
the inverse proportion of the utilisation as a load balancing
across multiple cores.

Let Ti be the average response time estimated for a cer-
tain arrival rate from the model and T ′i be the average time
from the real system measurements when the arrival rate is
λi, i = 1, . . . ,m. Since the estimated response time T ′ is the
mean of samples, it is approximately a normally distributed

random variable with mean T and variance
σ2
T
n

when the
number of samples n is very large [6]. Hence µ2 can be
estimated by maximising the log-likelihood function,

log

m∏
i=1

1√
2πσ2

i/ni

exp

[
(T ′i − Ti)2

2πσ2
i/ni

]
(7)

Maximising the log-likelihood function above is equivalent
to minimising the weighted sum of squared errors:

m∑
i=1

(T ′i − Ti)2

2πσ2
i/ni

(8)

Now the problem of finding the parameters becomes an op-
timisation problem,

µ2 = arg min
µ2

m∑
i=1

(T ′i − Ti)2

2πσ2
i/ni

(9)

The optimisation problem can be solved in different ways,
such as steepest descent and truncated Newton [6]. We car-
ried out the experiments in the single core case with λ vary-
ing from 10 req/s to 500 req/s. For each λ we sent requests
from 300 to 30 000 req/s and measured the mean response
time and the corresponding standard deviation.

4.4 Combined Model
In the previous section, we analysed the properties of

CPU 0, which gives us a better understanding of how its
performance is affected by interrupts. To build the entire
model, we will combine the previous results of CPU 0 and
the results of CPU 1 to CPU n− 1 given in [30].

For K jobs arriving in the system, we expect Kp of them
will stay in CPU 0 and K(1 − p) of them will be sent to
CPU 1, . . ., CPU n−1. Given request arrival rate λ, we ap-
proximate the arrival rate of jobs at CPU 1, . . ., CPU n− 1
as λ(1−p). We further assume that those jobs are uniformly
assigned to different cores and so for CPU i, the correspond-
ing (class b) job arrival rate is λi = λ(1− p)/(n− 1). Given
the service rate of class b jobs is µ2, the expected number of
jobs at these CPUs is λi/(µ2 − λi), ∀i = 1, . . . , n− 1.

CPU 0 CPU 1, . . ., CPU n-1
Arrival Rate λ λ(1− p)

pµ1(a→ b)
Service Rate µ1 (a) µ2

µ2 (b)
Mean Jobs Proposition 2 λi/(µ2 − λi)

Table 1: Summary of Key Model Parameters

Table 1 gives the brief summary of key model parameters.
Let ki denote the number of jobs in the queue of CPU i;
then by Little’s Law, the expected sojourn time of a request
in the whole system is,

E(Tsys) ≈ E(k0 + k1 + · · ·+ kn−1)

λ

=
E(k0) + E(k1) + · · ·+ E(kn−1)

λ
.

Values of µ2 (req/sec)
1 core 2 core 4 core 8 core
367 345 300 277

Table 2: Likelihood Estimation of the Mean Service Time for
Class b Job

4.5 Validation
We validate our model against real system measurements

of response time and throughput, focusing on benchmarks
running on the VirtualBox hypervisor and using the system
set-up of Section 3.

200 250 300 350 400 450
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g
.
R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

1 core 1 NIC

Measurement

Model

200 300 400 500 600 700
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g
.
R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

2 core 1 NIC

Measurement

Model

200 400 600 800 1000
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g
.
R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

4 core 1 NIC

Measurement

Model

200 400 600 800 1000 1200
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g
.
R

e
s
p
o
n
s
e
 T

im
e
 (

m
s
)

8 core 1 NIC

Measurement

Model

Figure 8: Response Time Validation

Prior to validation, we conducted baseline runs of the
benchmark in our test-bed system. For each run, we var-
ied the number of cores and collected information about
workload and response time for the parameter estimation
(see Section 4.3). The parameters we obtained for class b
decrease from 1 core to 8 cores as shown in Table 2. The
decreasing µ2 captures the fact that the web server scales
poorly on multiple cores because of (i) the virtualisation
overhead; (ii) the inherent problem of multicore, such as
context switching overhead. Figure 8 shows the validation
of response time.

5. SCALABILITY AND MODEL ENHANCE-
MENT

In this section, we first describe a set of complementary
techniques of system and hardware configurations aimed to
prevent the single core bottleneck discussed in Section 3. We
apply one of the techniques to increase parallelism and im-
prove performance for multicore web applications. Second,
we derive our model for performance under an improved con-
figuration. We then validate our model under the new con-
figurations and show that the results fit with the obtained
performance improvements.

5.1 Scalability Enhancement
Multiple network interfaces can provide high network band-

width and high availability [24, 21, 45]. Enforcing CPU affin-
ity for interrupts and network processing has been shown to
be beneficial for SMP systems [45] and the same benefits
should apply to virtualised multicore systems. Combining
multiple NICs and CPU affinity allows us to distribute the
software interrupts for different NICs to different cores and
hence mitigate load imbalance. In real systems, installing
multiple network interfaces might cause space and power is-
sues; however, in virtualised environments, this can be triv-
ially achieved by using virtual NICs. For our enhanced con-
figuration, we configure multiple vNICs as follows:

• Fix the number of web server threads to the number of
cores and assign each web server thread to a dedicated
core to avoid the context switching overhead between
two or more threads [21].

• Distribute the NIC interrupts to multiple cores by as-
signing multiple virtual NICs, i.e. vboxnet, to the VM.

5.2 Model Enhancement
Since we model the imbalance of multicore system by dis-

tinguishing two different types of queues, we can derive the
model for the new configuration by increasing the number
of leading two-class queues to match the number of cores
m which deal with NIC interrupts. Recall that our baseline
model assumes a single core (queue) handling NIC interrupts
(job a). Consider the situation when job a comes to m two-
class queues (equals to m CPU 0), in which m represents
the number of cores that handle NIC interrupts. Then, a
class a job transfers into a class b job and either returns to
the queue with probability p or proceeds to CPU m, . . .,
CPU n− 1 with probability 1− p.

5.3 Blind Prediction with Previous Parame-
ters and Model Limitations

We apply the model for the enhanced configurations with
the same parameters as shown in Table 2. The revalidation
results are shown in Figure 9. The results show that the per-
formance of the application improves with the new config-
urations, and exhibits better scalability. For example, with
4 cores and 1 NIC, the knee-bend in system performance
occurs at around 800 req/sec; using 2 NICs this increases to
around 1000 req/sec and for 4 NICs to around 1200 req/sec.

The summary of the error found in all validation results
of Figure 8 and Figure 9 are shown in Table 3. The aver-
age relative modelling error is around 15%. This shows a
tendency to decrease with an increasing number of NICs.
We see a relative error of e.g. 7.9% and 7.4%, for a 4 core
machine with 2 NICs and a 4 core machine with 4 NICs,
respectively. Since distributing the NIC interrupts in the
real system causes extra context switching overhead, the re-
sponse time of relatively low intensity workloads (i.e. 200
to 600 req/sec) is round 10-20% higher than that for the
default configuration.

We identify several factors that affect model accuracy:

1. The routing probability p: we use a simple load balanc-
ing policy as we discussed in Section 4.3, which cannot
represent the Linux kernel scheduling algorithm used
in our testbed, which is a completely fair scheduler.
More advanced scheduling policies like O2 [46] can also
not be described with this simple model.

1 NIC 2 NICs 4 NICs Overall

Num. of Core 1 2 4 8 2 4 8 4 8

Response Time 23.8 23.2 25.8 11.3 19.4 7.9 10.3 7.4 14.2 15.9
Throughput 14.1 12.9 13.4 16.5 14.5 11.9 15.6 10.6 16.7 14.02
Util. Core 0 to m-1 10.5 7.9 8.4 9.8 8.4 8.9 12.9 11.4 13.4 10.2
Util. Core m to N-1 - -9.4 -14.6 -23.7 - -10.4 - 16.7 - -17.8 -15.4

Table 3: Relative Error between Model and Measurements (%)

200 300 400 500 600 700
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g

.
R

e
s
p
o

n
s
e
 T

im
e

 (
m

s
)

2 core 2 NICs

Measurement

Model

200 400 600 800 1000 1200 1400
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g

.
R

e
s
p
o

n
s
e
 T

im
e

 (
m

s
)

4 core 2 NICs

Measurement

Model

200 400 600 800 1000 1200 1400
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g

.
R

e
s
p
o

n
s
e
 T

im
e

 (
m

s
)

8 core 2 NICs

Measurement

Model

200 400 600 800 1000 1200 1400
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

4 core 4 NICs

Measurement

Model

200 400 600 800 1000 1200 1400
10

0

10
1

10
2

10
3

Request Rate (/sec)

A
v
g

.
R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

8 core 4 NICs

Measurement

Model

Figure 9: Revalidation of Response Time with Multiple NICs

2. Interrupt priority : in general, NIC interrupts (job a)
have higher priority than system and user processes
(job b). In the single core case, job b is blocked when a
new job a arrives. However, in the multicore case, the
scheduler will assign it to another core. To simplify the
model, we do not consider priorities and interference
between job classes a and b.

3. Context switching overhead : an operating system ex-
ecutes a context switch by loading a new context, i.e.
registers, memory mappings, etc., in one CPU. Though
we try to reduce the context switching overhead by as-
signing each web server thread statically to a distinct
core, other context switches, such as register, task, and
stack, need to be considered.

4. Hypervisor overhead : our model implicitly considers
virtualisation overhead, e.g. via the decrease of ser-
vice rate with increasing number of cores. However,
how the overhead of processing requests at the differ-
ent virtualisation layers has yet to be accounted for.

6. RELATED WORK
Multicore Benchmarking. Veal and Foong [45] iden-

tified that scaling of web applications on multicore systems
requires distributing the affinity of NICs to different cores.
Harji et al. [18] examined in-memory and disk I/O static
web application performance on a quad-core system. Their
experiments reveal that “the implementation and tuning of
web servers is perhaps more important than server architec-
ture”. Hashemian et al. [21] characterised the performance
of dynamic and static network intensive Web applications
on a two quad-core system. The authors have shown that
achieving efficient scaling behaviour entails application spe-
cific configurations to achieve high utilisation on multiple
cores. In addition, the authors observed the CPU’s single
core bottleneck caused by the default configuration of the
NIC interface. We have now identified that the NIC inter-
rupt bottleneck is present in default virtual machine configu-
rations. Peternier et al. [31] profile the execution of parallel
multi-threaded benchmarks on multicore systems and use
the collected parallel profile to predict the wall time execu-
tion of the benchmarks for a target number of cores.

Virtual Machine Performance. Cherkasova and Gard-
ner [9] examined the performance of web applications on the
Xen VM monitor on a single processor system, identifying
the effect of network interrupts on physical CPU utilisa-
tion. Pu et al. [34] measured the performance of co-located
web applications on virtualised clouds. Most of the work
related to virtual network interfaces is concerned with op-
timising the packet delivery between the physical NIC and
the hosted virtual machines, e.g. [4, 36]. VM migration op-
timisation and performance has been studied using a variety
of approaches including analytical models [1, 28], regression-
based models [22, 27] and benchmarking [26].

Multicore Modelling. Most queueing network models
represent k-core processors as M/M/k queues. M/M/k mod-
els have also been used when modelling virtualised applica-
tions running on multicore architectures. Cerotti et al. [7]
benchmark and model the performance of virtualised appli-
cations on a multicore environment using an M/M/k queue.
Brosig et al. [5] model the overhead of virtualised applica-
tions using multi-server queueing Petri-nets similar to an
M/M/k queue with additional scheduling mechanisms for
overlapping resource usage. The authors assume that the
VM-specific CPU demands and the VM-specific overhead
in terms of induced CPU demand on Domain-0 are known.
Brosig et al. reported accurate prediction of server utilisa-
tion; however, large errors were present for response time
calculations for multiple guest VMs. Bardhan et al. [2] de-
veloped an approximate two-level single-class Queueing Net-
work model to predict the execution time of applications on
multicore systems. The model captures the memory con-
tention caused by multiple cores and incorporates it into an
application-level model.

7. CONCLUSION
This paper has presented a performance model for web

applications deployed in multicore virtualised environments.
The model is general enough to capture the performance of
web applications deployed on multicore VMs and can ac-
count for hardware idiosyncrasies such as CPU bottlenecks
and interrupt influences. We gave an approximate analyti-
cal solution and validated our model in our testbed using an
open-source web application running on multicore VMs. In
addition, we presented a simple approach to achieve better
scalability for multicore web servers through use of virtual
hardware. We also demonstrated the applicability of our
model in the enhanced configurations.

In future, we will refine our model to overcome the ap-
proach limitations we discussed and extend our model to
multi-granularity multiple VM instances. We also plan to in-
vestigate how the model fits multiple applications (e.g. I/O-
intensive) deployed on heterogeneous VM instances. An-
other direction is to develop a multi-objective optimisation
policy to support more comprehensive resource management.

Acknowledgements
We would like to thank Lukas Rupprecht and the anony-
mous reviewers for insightful comments. We greatly appre-
ciated the help with test-bed setup from Duncan White,
Lloyd Kamara, Thomas Joseph and other CSG team mem-
bers. Thanks also to Eva Kalyvianaki and members of AE-
SOP group. Xi Chen is supported by an Imperial Faculty
of Engineering International Scholarship.

8. REFERENCES
[1] A. Aldhalaan and D. A. Menascé. Analytic

performance modeling and optimization of live VM
migration. Proc. EPEW, pages 28–42, 2013.

[2] S. Bardhan and D. A. Menascé. Analytic performance
models of applications in multi-core computer. Proc.
MASCOTS, 2013.

[3] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt, and
A. Warfield. Xen and the art of virtualization
categories and subject descriptors. Proc. SOSP, 2003.

[4] M. Bourguiba, K. Haddadou, and G. Pujolle. Packet
aggregation based network I/O virtualization for cloud
computing. Proc. Computer Communications, pages
309–319, Feb. 2012.

[5] F. Brosig, F. Gorsler, N. Huber, and S. Kounev.
Evaluating approaches for performance prediction in
virtualized environments. Proc. MASCOTS, 2013.

[6] J. Cao, M. Andersson, C. Nyberg, and M. Kihl. Web
server performance modeling using an M/G/1/K*PS
queue. Proc. Telecommunications, 2:1501–1506, 2003.

[7] D. Cerotti, M. Gribaudo, P. Piazzolla, and G. Serazzi.
End-to-End performance of multi-core systems in
cloud environments. Proc. EPEW, pages 221–235,
2013.

[8] L. Y. Chen, G. Serazzi, D. Ansaloni, E. Smirni, and
W. Binder. What to expect when you are
consolidating: effective prediction models of
application performance on multicores. Proc. Cluster
Computing, May 2013.

[9] L. Cherkasova and R. Gardner. Measuring CPU
overhead for I/O processing in the Xen virtual
machine monitor. Proc. USENIX ATEC, pages
387–390, 2005.

[10] J. D. Deng and M. K. Purvis. Multi-core application
performance optimization using a constrained tandem
queueing model. Journal of Network and Computer
Applications, 34(6):1990–1996, Nov. 2011.

[11] N. J. Dingle, W. J. Knottenbelt, and T. Suto. PIPE2:
A tool for the performance evaluation of generalised
stochastic Petri nets. Proc. ACM SIGMETRICS, 2009.

[12] H. Esmaeilzadeh, E. Blem, R. St. Amant,
K. Sankaralingam, and D. Burger. Dark silicon and
the end of multicore scaling. Proc. ISCA, pages
365–376, 2011.

[13] M. Ferdman, A. Adileh, and O. Kocberber. Clearing
the clouds: a study of emerging scale-out workloads
on modern hardware. Proc. ASPLOS 2012, pages
1–11, 2012.

[14] P. Gepner and M. Kowalik. Multi-Core processors:
new way to achieve high system performance. Proc.
PARELEC, pages 9–13, 2006.

[15] D. Gupta, L. Cherkasova, R. Gardner, and A. Vahdat.
Enforcing performance isolation across virtual
machines in Xen. Proc. Middleware, 2006.

[16] V. Gupta, R. Nathuji, and K. Schwan. An analysis of
power reduction in datacenters using heterogeneous
chip multiprocessors. Proc. ACM SIGMETRICS,
pages 87–91, 2011.

[17] R. Han, L. Guo, M. M. Ghanem, and Y. Guo.
Lightweight resource scaling for cloud applications.
Proc. CCGrid, pages 644–651, May 2012.

[18] A. S. Harji, P. A. Buhr, and T. Brecht. Comparing
high-performance multi-core web-server architectures.
Proc. SYSTOR, pages 1–12, 2012.

[19] P. G. Harrison. Turning back time in Markovian
process algebra. Journal of Theoretical Computer
Science, 290:1947–1986, Jan. 2003.

[20] P. G. Harrison, C. M. Lladó, and R. Puigjaner. A
unified approach to modelling the performance of
concurrent systems. Journal of Simulation Modelling
Practice and Theory, 17:1445–1456, Oct. 2009.

[21] R. Hashemian, D. Krishnamurthy, M. Arlitt, and
N. Carlsson. Improving the scalability of a multi-core
web server. Proc. ACM/SPEC ICPE, pages 161–172,
2013.

[22] N. Huber, M. V. Quast, M. Hauck, and S. Kounev.
Evaluating and modeling virtualization performance
overhead for cloud environments. Journal of CLOSER,
pages 563–573, 2011.

[23] W. Iqbal, M. Dailey, and D. Carrera. SLA-driven
adaptive resource management for web applications on
a heterogeneous compute cloud. Proc. CloudCom,
pages 243–253, 2009.

[24] H. C. Jang and H. W. Jin. MiAMI: Multi-core aware
processor affinity for TCP/IP over multiple network
interfaces. Proc. HPI, pages 73–82, Aug. 2009.

[25] N. Khanyile, J. Tapamo, and E. Dube. An analytic
model for predicting the performance of distributed
applications on multicore clusters. Proc. IAENG, 2012.

[26] S. Kikuchi and Y. Matsumoto. Performance modeling
of concurrent live migration operations in cloud
computing systems using PRISM probabilistic model
checker. Proc. Cloud Computing, pages 49–56, 2011.

[27] H. Liu, H. Jin, C. Z. Xu, and X. Liao. Performance
and energy modeling for live migration of virtual
machines. Proc. HPDC, pages 249–264, Dec. 2011.

[28] D. A. Menascé. Virtualization: concept, application,
and peformance modeling. Proc. CMG conference,
2005.

[29] Q. Noorshams, D. Bruhn, S. Kounev, and R. Reussner.
Predictive performance modeling of virtualized storage
systems using optimized statistical regression
techniques categories and subject descriptors. Proc.
ACM/SPEC ICPE, pages 283–294, 2013.

[30] Peter G. Harrison, Nareth M. Patel. Performance
modeling of communication networks and computer
architecture. Addison-Wesley, 1992.

[31] A. Peternier, W. Binder, A. Yokokawa, and L. Chen.
Parallelism profiling and wall-time prediction for
multi-threaded applications. Proc. ACM/SPEC ICPE,
pages 211–216, 2013.

[32] R. Prasad, M. Jain, and C. Dovrolis. Effects of
interrupt coalescence on network measurements.
Passive and active network measurement, pages
247–256, 2004.

[33] G. Prinslow and R. Jain. Overview of performance
measurement and analytical modeling techniques for
multi-core processors, 2011.
http://www.cse.wustl.edu/~jain/cse567-

11/ftp/multcore/.

[34] X. Pu, L. Liu, Y. Mei, S. Sivathanu, Y. Koh, C. Pu,
and Y. Cao. Who is your neighbor: Net I/O
performance interference in virtualized clouds. Proc.
Services Computing, pages 314–329, 2012.

[35] A. Rai, R. Bhagwan, and S. Guha. Generalized
resource allocation for the cloud. Proc. ACM SoCC,
pages 1–12, 2012.

[36] K. K. Ram, J. R. Santos, Y. Turner, A. L. Cox, and
S. Rixner. Achieving 10 Gb/s using safe and
transparent network interface virtualization. Proc.
ACM SIGPLAN/SIGOPS VEE, 2009.

[37] C. Reiss, A. Tumanov, and G. Ganger. Heterogeneity
and dynamicity of clouds at scale: Google trace
analysis. Proc. SoCC, 2012.

[38] G. Shanmuganathan, A. Gulati, and P. Varman.
Defragmenting the cloud using demand-based resource
allocation categories and subject descriptors. Proc.
ACM SIGMETRICS, pages 67–80, 2013.

[39] A. Sharifi and S. Srikantaiah. Mete: meeting
end-to-end qos in multicores through system-wide
resource management. Proc. ACM SIGMETRICS,
pages 13–24, 2011.

[40] U. Sharma, P. Shenoy, and D. F. Towsley. Provisioning
multi-tier cloud applications using statistical bounds
on sojourn time. Proc. ICAC, pages 43–52, 2012.

[41] S.S.Lam. Queuing Networks with Population Size
Contraints. IBM Journal of Research and
Development, pages pp 370–378, July, 1977.

[42] T. Suto, J. Bradley, and W. Knottenbelt. Performance
trees: A new approach to quantitative performance
specification. Proc. MASCOTS, pages 303–313, 2006.

[43] B. M. Tudor and Y. M. Teo. On understanding the
energy consumption of ARM-based multicore servers.
Proc. ACM SIGMETRICS, pages 267–278, 2013.

[44] A. Tumanov and J. Cipar. alsched: algebraic
scheduling of mixed workloads in heterogeneous
clouds. Proc. SoCC, 2012.

[45] B. Veal and A. Foong. Performance scalability of a
multi-core web server. Proc. ANCS, pages 57–66, 2007.

[46] D. Wentzlaff, K. Modzelewski, and J. Miller. An
operating system for multicore and clouds :
mechanisms and implementation categories and
subject descriptors. Proc. SoCC, 2010.

[47] W. Wu, M. Crawford, and M. Bowden. The
performance analysis of Linux networking - packet
receiving. Proc. International Journal of Computer
Communications, 2006.

[48] F. Wuhib, R. Stadler, and H. Lindgren. Dynamic
resource allocation with management objectives
implementation for an OpenStack cloud. Proc. CNSM,
pages 309–315, 2012.

http://www.cse.wustl.edu/~jain/cse567-11/ftp/multcore/
http://www.cse.wustl.edu/~jain/cse567-11/ftp/multcore/

APPENDIX
A. PROOF OF PROPOSITION 2

Proof. By definition, the expected number of jobs is

E(k) =
∑
i,j

(i+ j)πi,j .

Using results from Proposition 1, we have

E(k) =
∑
i,j

(i+ j)πi,j ,

= π0,0

∑
i,j

(i+ j)αiβj ,

= π0,0

N∑
i=0

N−i∑
j=0

(i+ j)αiβj ,

= π0,0
g(α, β)− g(β, α) + (β − α)(2αβ − α− β)

(α− 1)2(α− β)(β − 1)2
,

=
g(α, β)− g(β, α) + (β − α)(2αβ − α− β)

[αN+2(β − 1) + βN+2(1− α) + α− β](α− 1)(β − 1)
,

where g(x, y) := xN+2(y − 1)2(xN −N − 1).

B. PROOF OF PROPOSITION 3
Proof. Let na be the current number of class a job in

the system, we have

E(Ts) = E(Ts|γ is job a)P (γ is job a)

+E(Ts|γ is job b)P (γ is job b)

=
1

µ1
P (γ is job a) +

1

µ2
P (γ is job b)

=
1

µ1
P (γ is job a|na = 0)P (na = 0)

+
1

µ1
P (γ is job a|na > 0)P (na > 0)

+
1

µ2
P (γ is job b|na = 0)P (na = 0)

+
1

µ2
P (γ is job b|na > 0)P (na > 0).

Since

P (γ is job b|na = 0) = 0, P (γ is job a|na = 0) = 1,

we have

E(Ts) =
1

µ1
P (na = 0)

+
1

µ1
P (γ is job a|na > 0)P (na > 0)

+
1

µ2
P (γ is job b|na > 0)P (na > 0).

=
1

µ1
P (na = 0) +

1

µ1

λ

λ+ pµ1
P (na > 0)

+
1

µ2

pµ1

λ+ pµ1
P (na > 0)

=
1

µ1
P (na = 0) +

1

µ1

λ

λ+ pµ1
(1− P (na = 0))

+
1

µ2

pµ1

λ+ pµ1
(1− P (na = 0)).

Notice that from previous results,

P (na = 0) =

N∑
j=0

π0,j

= π0,0

N∑
j=0

α0βj

= π0,0
1− βN+1

1− β .

Therefore,

E(Ts) =
1

µ1
n0
a +

1

µ1

λ

λ+ pµ1
(1− n0

a) +
1

µ2

pµ1

λ+ pµ1
(1− n0

a),

where

n0
a = π0,0

1− βN+1

1− β .

	Introduction
	Background
	Benchmarking
	Proposed Model
	Model Specification
	CPU 0
	Two-class Markov Chain and its Stationary Distribution of CPU 0
	Average Sojourn Time
	Average Service Time and Utilisation

	Likelihood for Estimating Parameters
	Combined Model
	Validation

	Scalability and Model Enhancement
	Scalability Enhancement
	Model Enhancement
	Blind Prediction with Previous Parameters and Model Limitations

	Related Work
	Conclusion
	References
	Proof of Proposition 2
	Proof of Proposition 3

