
Performance evaluation of NoSQL databases

A. Gandini1, M. Gribaudo1, W. J. Knottenbelt2, R. Osman2, P. Piazzolla1

1 Politecnico di Milano, via Ponzio 34/5, 20133 Milano, Italy
{andrea.gandini, marco.gribaudo, pietro.piazzolla}@polimi.it

2 Department of Computing, Imperial College London, London SW7 2AZ, UK
{rosman,wjk}@imperial.ac.uk

Abstract. NoSQL databases have emerged as a backend to support Big
Data applications. NoSQL databases are characterized by horizontal scal-
ability, schema-free data models, and easy cloud deployment. To avoid
overprovisioning, it is essential to be able to identify the correct number
of nodes required for a specific system before deployment. This paper
benchmarks and compares three of the most common NoSQL databases:
Cassandra, MongoDB and HBase. We deploy them on the Amazon EC2
cloud platform using different types of virtual machines and cluster sizes
to study the effect of different configurations. We then compare the be-
havior of these systems to high-level queueing network models. Our re-
sults show that the models are able to capture the main performance
characteristics of the studied databases and form the basis for a capacity
planning tool for service providers and service users.

1 Introduction

Recently NoSQL databases have become widely adopted on cloud platforms due
to their horizontal scalability, schema-free data model and the capability to man-
age large amounts of data. Huge amounts of data require systems that are able
not only to retrieve information in very short timescales, but also to scale at
the same rate as the data increases. The growing importance of Big Data appli-
cations [15] has driven the development of a wide variety of NoSQL databases,
e.g. Google’s BigTable [5], Amazon’s Dynamo [10], Facebook’s Cassandra [16],
Oracle’s NoSQL DB [20], MongoDB [18] and Apache’s HBase [14].

One of the main features of NoSQL databases is horizontal scalability [4]; that
is, the capacity to scale in performance when the number of machines added to
an existing cluster increases. This capability potentially wastes resources due
to over-provisioning. Thus, being able to identify the correct number of nodes
required for a specific workload is important. Moreover, correctly adding or re-
moving nodes from a distributed database is often a time-consuming operation
whose impact can be minimised by proper planning.

The purpose of this work is to benchmark three of the most common NoSQL
databases [9], namely Cassandra, MongoDB and HBase in order to provide in-
sights about their behavior under various settings. We deploy them on the Ama-
zon EC2 cloud platform using different types of virtual machines (in term of



2

CPUs, memory, I/O speed, etc.) and variable number of nodes, in order to
study the effect of different configurations on the performance of these systems.
Finally, we present two simple high-level queuing network models that are able
to capture the main features of the considered databases. These models are able
to provide insight into suitable cluster sizes for NoSQL applications and form
the basis of a capacity planning tool for service providers.

To date there has been limited work in benchmarking the performance of
NoSQL datastores. Rabl et al. [25] benchmark six NoSQL datastores, identi-
fying their ability to support application performance management tools. The
authors report response times and throughput for workloads that scale as the
number of nodes increases in a configuration. The experiments are conducted
on a fixed physical hardware architecture. By contrast, the present work bench-
marks three popular datastores on a visualized architecture and explores their
performance under different hardware, software and workload configurations. In
[8], the authors evaluate and compare the performances of four different NoSQL
systems (Cassandra and HBase among them) when used for RDF processing.
Their work is mainly aimed at characterizing the differences between NoSQL
systems and native triple stores.

In terms of modelling efforts, the performance community has concentrated
on the modelling of traditional relational databases [23], using mainly queueing
networks, e.g. [19, 12, 11, 21] and more recently queueing Petri nets, e.g. [22, 7].
In [3] Mean Field analysis is used to model the replication of resources in a
NoSQL application, while [1] uses a multi-formalism approach to model queries
in the Apache Hive data warehousing NoSQL solution. The authors in [24],
use queueing Petri nets to study the replication performance of the Cassandra
NoSQL datastore. We are unaware of previous work that attempts to depict the
main characteristics of multiple NoSQL datastores in one model as presented in
this paper.

The remainder of this paper is organized as follows. Section 2 explains the ar-
chitecture and primary characteristics of our target NoSQL databases. Section 3
discusses the experimental setup, Section 4 presents benchmarking results, and
Section 5 introduces our queueing models. Finally, Section 6 concludes and con-
siders avenues for future work.

2 NoSQL Database Architecture

Here we give a brief introduction to the main characteristics of the NoSQL
databases considered, highlighting those aspects that impact on performance:

Cassandra [13] belongs to the wide-column store NoSQL family [26] and
provides an extended key-value store method built on a column-oriented struc-
ture. Its architecture, shown in Fig. 1a, is based on a ring topology, in which
every node is identical to the others, guaranteeing that the system has no single
point of failure. Each record inserted in the database has an associated hash
value called token. The range of tokens is partitioned among the nodes to bal-
ance the ring. Cassandra allows replication among the nodes in the cluster by



3

Cassandra MongoDB

a. b.
HBase

c.

Fig. 1. The architectures of our target NoSQL Databases.

duplicating data from a node to subsequent nodes on the ring. The number of
replicas for each data item can be controlled by a parameter set by the user,
called the replication factor. The consistency level defines the number of repli-
cas that should respond to a data request. It is also possible to define which
nodes communicate outside the ring. Such nodes are called entry points.

MongoDB [18] belongs to the document-store NoSQL family. As shown in
Fig. 1b, the main components of the system are:

– mongod: data nodes for storing and retrieving data.
– mongos: the only instances able to communicate outside of the cluster.



4

– config-server: the containers of the metadata about the objects stored in
the mongod. The metadata is used in case of a node failure. A cluster allows
only one or three config-server instances.

Each running component constitutes one node in the MongoDB cluster.
Replication is achieved by means of shards. Every shard is a group of one or

more nodes. The number of nodes in a shard determines the replication factor
of the system: each member of the shard contains a copy of the data, creating
a so-called replica set. Nodes belonging to the same shard have the same data.
Within a shard only one node can be a master, able to execute write and read
tasks; the others are considered slaves and can only perform read operations.

HBase [14] is based on the Hadoop map-reduce framework and Hadoop
Distributed File System (HDFS). It belongs to the wide-column store NoSQL
family. As shown in Fig. 1c, HBase relies on two supporting applications:

– Hadoop: a distributed map-reduce framework that provides high-throughput
access to application data and which manages replication.

– Zookeeper: provides a distributed configuration and synchronization service
for large distributed systems.
HBase has two main types of nodes: the master, that accounts for the nodes

that are alive and which provides communication services, the zookeeper cluster
and clients; and the region servers, which distribute data using the notion of
regions. Regions are initially allocated to a node and split when they become
too large. Thus, HBase tends to accumulate data on some nodes with a non-
uniform distribution of data, especially when the system is lightly loaded.

3 Experimental Setup

We used the Yahoo! Cloud Serving Benchmark (YCSB) [6], a workload generator
developed by Yahoo!, as our benchmarking framework. YCSB provides means
to stress-test multiple databases and compare them in a fair and consistent way.
It operates in two phases: first, data is loaded onto the data nodes (the ones
responsible for storing actual data, irrespective of the naming convention of each
database architecture). In our experiments, the data was generated randomly
and stored by the database in its specific data format. In the second phase,
YCSB executes the actual tests, in which random key requests are sent to the
data nodes. The requests are randomly mixed with 50% reads and 50% writes
for each client thread. The number of client threads concurrently querying the
database is either varied to simulate different workload levels, or fixed to a value
that saturates the DB servers. For each execution, the benchmark measures
the latency (in microseconds per operation) and throughput (in operations per
second).

The servers used for the tests are provided by the Amazon EC2 cloud plat-
form. Table 1 presents the virtual hardware specifications of the machines em-
ployed for the benchmarking experiments. All nodes of a database, independently
of their role in the architecture, are run on a virtual machine with the same spec-
ification during a given test to allow for a fair comparison. To ensure that the



5

Table 1. Virtual Hardware Specifications.

Instance Type vCPU Physical Processor Memory(GiB)

m1.large 2 Intel Xeon Family 7.5

c1.xlarge 8 Intel Xeon Family 7

c3.2xlarge 8 Intel Xeon E5-2680 v2 15

benchmark application does not affect the performance of the database under
test, it is hosted on a dedicated machine that is not part of the DB cluster. We
will refer to this machine as the ycsb client. We used the m1.large virtual ma-
chine specification for the machines hosting the nodes of the database and the
ycsb client for most of our experiments. The m1.large virtual machines were
chosen since they offer a good trade-off between cost and available memory. In
particular, it satisfies the minimum memory requirement of HBase which is at
least 7 GiB. When the number of cores per server became the focus of the tests,
we switched to c1.xlarge instances to have a larger number of cores available.
During some of the tests, due to the high number of client threads required for
the total number of nodes, the ycsb client became the bottleneck of the system.
In those cases, we switched the ycsb client machine to a c3.2xlarge instance.
Every machine runs the Ubuntu Server 12.04 operating system release provided
by Amazon. In order to reduce the variability inherent to the cloud environment
on the measured results, some tests were performed during particular time slots
when we observed that the provisioned servers showed more stability.

Each test is performed using a specific DB configuration in terms of active
cores per server, number of nodes and data replication. The ycsb tool is executed
at least 20 times for each configuration before collecting the average values for
response time and throughput. In addition to the performance indexes collected
by the benchmark, we used several bash scripts to track the cpu utilization of
every single node in the cluster. Testing the scalability of MongoDB was not as
straightforward as for the other databases. For this DB we had to experimentally
determine which of its configurations was able to scale more uniformly. For
MongoDB both mongos and mongod instances run on every node, while the
config-server (that has a negligible load) runs in addition to the other two
services on a randomly chosen node. However, the ycsb tool is not able to set
more than one mongos connection at a time; therefore we perform the tests on
MongoDB by scaling the number of clients to be equal to the number of nodes.
In addition, the number of client threads running on one node is scaled by an
appropriate factor to maintain the same average load used for Cassandra and
HBase.

4 Benchmarking Results

Our initial tests focused on infrastructure-dependent parameters that influence
the performance of a NoSQL database. We began with investigating the effect of



6

node capacity, i.e. number of cores, on performance. The impact of the number
of nodes in a cluster and the number of threads (workload) on the client was
then studied. Finally, we examined the effect of the replication factor.

4.1 Number of Cores

The first set of experiments measure the database performance as the number
of cores on a single node is increased. The number of client threads was fixed
at 50 threads irrespective of the number of cores. These tests are performed on
a single machine of the c1.xlarge type for both Cassandra and MongoDB, in
which each was configured with one node only. For HBase, the region server
was hosted on a single machine of the c1.xlarge type, and the master and the
zookeeper were each hosted on a different m1.xlarge VM. In Fig. 2a, we show the

K ops/sec

0

5

10

15

20

25

Number of Core1 2 3 4 5 6 7 8

Throughput

Label

Cassandra
Mongo
Hbase

ms

0

5

10

15

20

Number of Core1 2 3 4 5 6 7 8

Label

Cassandra
Mongo
Hbase

ms

0

10

20

30

40

50

60

Number of Core1 2 3 4 5 6 7 8

Label

Cassandra
Mongo
Hbase

a. b. c.

Fig. 2. System throughput and latencies as a function of the number of cores.

total throughput as function of the number of cores active on a single node. It is
evident that HBase is able to take advantage of the number of cores better than
the other databases, scaling almost linearly. MongoDB scales well initially but
then it shows a plateau at around 6 cores. Such a tendency seems absent from
Cassandra which, although significantly slower that HBase in absolute terms,
also scales quite linearly. Fig. 2b shows the mean update latency as function
of the number of cores. In this case the mean response time required for write
operations is more or less constant for both Cassandra and HBase, showing,
presumably that this task is mainly I/O bound on these databases. HBase shows
an extremely low update latency, benefiting from its client-side write buffer.
MongoDB shows an improvement in performance when the number of cores
increases from one to three, then stabilizes. This is due to the fact that the
data node must communicate updates with the config-server. For the read
operations in Fig. 2c, the behavior is more hyperbolic, as read operations are
more likely to benefit from parallelization. In this case, MongoDB has the lowest
latency; Cassandra shows the highest latency when running on a VM with a low
number of cores. HBase has a much lower performance for read requests than
for write requests since the former do not exploit a client-side buffer.



7

4.2 Number of Nodes

Distributed database performance is strongly affected by the size of the cluster
and the workload it has to handle. To investigate the effect of the number of
nodes on performance we simulate higher workload intensities by increasing the
number of threads running simultaneously on the client for each request. For
Cassandra and MongoDB, the number of entry points is scaled to match the
number of nodes; for HBase the number of entry points is not configurable. For
the single node case, we consider the performance of both on a single and a
double core CPU. For more than one node, we only present results considering
VMs with two cores.

Cassandra MongoDB HBase

K ops/sec

0

2

4

6

8

10

12

14

16

Number of threads
0 5 10 15 20 25 30

Label

1N/1_cpu
1N/2_cpu
2N/2EP/1REPL
4N/4EP/1REPL
8N/8EP/1REPL
16N/16EP/1REPL

K ops/sec

0

5

10

15

20

25

30

35

40

Number of threads
0 10 20 30 40 50 60

Label

1N/1_cpu
1N/2_cpu
2N/2_shard
4N/4_shard
8N/8_shard
16N/16_shard

K ops/sec

0

10

20

30

40

Number of threads
0 10 20 30 40 50 60

Label

1N/1_cpu
1N/2_cpu
2N
4N
8N

a. b. c.

Fig. 3. Throughput as a function of the number of nodes.

The throughput of Cassandra is considered in Fig. 3a. The throughput gen-
erally increases with an increase in the number of nodes. Fig. 3a shows the
saturation point of the database, that is the point at which the database is fully
utilized and throughput does not increase along with the number client threads.
Configurations with 8 nodes and above do not saturate the system even at 30
threads. Similar results are shown for MongoDB in Fig. 3b and for HBase in
Fig. 3c. Note that, in terms of absolute performance, HBase presents higher
throughput than Cassandra and MongoDB. However, its scalability is less pre-
dictable. This is due to the non-uniform distribution of data among the nodes,
in contrast to Cassandra and MongoDB.

Read and write latencies for the three DBs are reported in Fig. 4. Cassandra
does not show a significant gain when the number of nodes jumps from eight
to sixteen: this might be an indication of some scalability issues for very large
configurations. MongoDB does not saturate with the considered workloads when
distributed on four or eight nodes. HBase presents an almost linear behavior for
all the considered configurations.

4.3 Replication

Replication of data in a DB cluster introduces yet another performance impact-
ing factor. A replication factor equal to one, means that there is only one copy



8

Cassandra MongoDB HBase

Number of threads
0 5 10 15 20 25 30

Label

1N/1_cpu
1N/2_cpu
2N/2EP/1REPL
4N/4EP/1REPL
8N/8EP/1REPL
16N/16EP/1REPL

ms

0

2

4

6

8

10

Number of threads
0 10 20 30 40 50 60

Label

1N/1_cpu
1N/2_cpu
2N/2_shard
4N/4_shard
8N/8_shard
16N/16_shard

ms

0

2

4

6

8

10

12

14

16

Number of threads
0 10 20 30 40 50 60

Label

1N/1_cpu
1N/2_cpu
2N
4N
8N

0

500

1,000

1,500

2,000

2,500

3,000

3,500

4,000

4,500

5,000

5,500

Number of thread
0 5 10 15 20 25 30

Label

1N/1_cpu
1N/2_cpu
2N/2EP/1REPL
4N/4EP/1REPL
8N/8EP/1REPL
16N/16EP/1REPL

ms

0

2

4

6

8

10

12

14

16

Number of threads
0 10 20 30 40 50 60

Label

1N/1_cpu
1N/2_cpu
2N/2_shard
4N/4_shard
8N/8_shard
16N/16_shard

us

0

50

100

150

200

Number of threads
0 10 20 30 40 50 60

Label

1N/1_cpu
1N/2_cpu
2N
4N
8N

Fig. 4. Latency for the three databases with different number of nodes.

of the data item among all the nodes of the cluster. Higher replication factors
means that, aside from the original data, copies are stored on different nodes.

Cassandra MongoDB HBase

K ops/sec

0

5

10

15

20

Number of nodes2 3 4 5 6 7 8 9

Replication factor

1
2
3

K ops/sec

0

5

10

15

20

25

Number of nodes2 3 4 5 6 7 8 9

Replication factor

1
2
3

K ops/sec

0

10

20

30

40

50

60

Number of nodes2 3 4 5 6 7 8 9

Replication factor

1
2
3

a. b. c.

Fig. 5. Mean throughput for different replication factor.

Fig. 5a shows that increased replication in the cluster produces degradation
of throughput. This degradation increases as more copies of the same data are
requested in order to achieve consistency within the database. Fig. 5b shows the
behavior of MongoDB when the replication factor is set to values higher than
one. In this case, having replicas of data decreases the throughput, but differently
from Cassandra, having more than one replica does not decrease performance.
This is due to the fact that increase of replication in MongoDB consists in having
more than one data node belonging to a shard, which basically distributes the



9

nodes to more than one master. In Fig. 5c the effects of replication in HBase
are shown. Because of the architecture of HBase, the behavior is not what was
expected. There was no noted decrease in performance, nor in throughput, nor
in response time. This is due to the fact that Hadoop is responsible for data
allocation in a process transparent to the user. Moreover, HBase packs its data
regions and splits data among its nodes randomly, hence no uniform architecture
for data distribution exists.

5 Modeling a NoSQL database

Informed by the results of Section 4, we now show how some high level features
of NoSQL databases can be captured using simple queueing network models [17].
Here we present two models aimed at capturing the effect of the number of nodes
in the system and of the selected replication factor.

5.1 Characterizing the workload

We start by modelling YCSB and a system deployed on a single node (see Fig. 6).
As described in Section 3, YCSB is composed of a fixed number of threads (set as
a parameter of the benchmark) that concurrently perform both read and write
requests with equal probability. As seen in Section 4, read and write present
different performance characteristics. Moreover, write requests are subject to
caching and delayed write operation, both at the client interface (HBase) and
at the server (Cassandra), and thus experience a high variability in their service
time.

Each client thread performs a very large number of read/write operations;
hence we have modeled the entire system with a closed queueing network, where
each circulating job models a YCSB thread. Read and write operations are
modeled with two different classes of jobs. To reflect the random requests, we
have added a class switching feature in the model of Fig. 6, such that each
job has a 50% probability at each iteration of becoming of a different class.
The database nodes are each modeled by two resources: one representing the
CPU and the other representing the disk. Since VMs running the servers may
have more than one core, the number of servers in the CPU station is set to
the actual number of cores, which in this case is 2 virtual cores. The resource
representing the disks are single-server with FIFO service discipline to represent
the serial access that characterizes storage components. Clients are modeled by
a queueing station whose number of servers is set to the number of cores of the
VMs where the YCSB client are executed. This is done to reflect the resource
contention of the YCSB threads. The network latency is explicitly included in
the model as a infinite-server delay station as it directly affects read and write
response times.

The service time of read requests is not affected by caching; therefore, read
requests are executed by all the resources when submitted by the client (i.e.,
the network, the server CPU and the server disk). Write requests can be cached



10

either at the client side (do not enter the network after being produced in the
client, e.g., the write buffer in HBase), or at the server side (requests are not
immediately written to the disk, as in Cassandra). The write behavior is modeled
by class-dependent routing that connects the client to itself immediately after the
class switching (caching at the client), and by the route that immediately returns
to the client after the server cpu (caching at the server). We then determined

Fig. 6. Queueing network model representing a single node architecture.

Fig. 7. Queueing network model representing a multi-node architecture.

the service demands to use in the models. Network delay was measured using
the ping command on the client machine, and estimated to be 0.45375ms. The
read and write service times for the disks were determined by benchmarking the
I/O operations of the VMs and determined to be approximately 170ms (read)
and 200ms (write). The CPU requirements and the caching probability are the
parameters that reflect the behaviour of the considered NoSQL databases.

Tables 2, 3 and 4 show in the first column the estimated CPU demands for
the read and write classes for Cassandra, MongoDB and HBase, respectively.
For HBase, since it buffers write requests before sending them to the server,
Table 4 has an extra column called P (flush). It represents the probability that
the generated request fills the buffer and that its content is sent to the server by
routing it through the route that connects the class-switch node to the network



11

Table 2. Model Parameters for Cassandra.

node(s) replication cpu demand cpu demand

factor (write) (read)

1 - 0.075 1.15

4 1 0.8 1.25

4 4 0.15 0.55

Table 3. Model Parameters for MongoDB.

node(s) replication cpu demand cpu demand

factor (write) (read)

1 - 0.42 0.28

4 1 0.7 0.3

4 4 0.42 0.9

Table 4. Model Parameters for HBase.

node(s) cpu demand cpu demand P(flush)

(write) (read)

1 0.25 0.43 0.03

4 0.2 0.87 0.01

delay. With probability 1−P (flush), requests are not sent to the servers, so the
corresponding job is immediately routed back to the client. For the other DBs,
since they do not have client-side buffering, P (flush) = 1. To include server side
caching of write commands, the probability of accessing the disk has been set to
10% on the DB: i.e. 90% of the write requests are served by the CPU only, and
immediately return to the client.

The models have been analyzed using the JMT (Java Modeling Tool) [2].
The mean total throughput and mean read and write throughput for the single
node configuration are shown in Fig. 8 for Cassandra, MongoDB and HBase. The
JSimGraph component was used to solve the models by discrete event simulation.
Confidence intervals were set to 95%; the resulting confidence intervals were too
tight to appear on the graphs. Table 5 shows the relative error in the first line.
From the results, the model captures the system mean throughput and the mean
response times of the read and of the write operations for both Cassandra and
MongoDB. For HBase, the model has a large error for the throughput. HBase is
in fact the most complex of the three DBs, so a simple queuing network cannot
accurately capture all its features and produce acceptable results.



12

K ops/sec

0

2

4

6

8

10

0 5 10 15 20 25 30

ms

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

ms

0

5

10

15

20

Number of thread
0 5 10 15 20 25 30

Fig. 8. Mean throughput and latency for one node for Cassandra, MongoDB and
HBase.

K ops/sec

0

2

4

6

8

10

12

14

16

18

0 5 10 15 20 25 30
0

500

1000

1500

2000

2500

3000

3500

4000

0 5 10 15 20 25 30

ms

0

1

2

3

4

5

6

Number of thread
0 5 10 15 20 25 30

Fig. 9. Mean throughput and latency for four nodes and replication factor set to one
for Cassandra, MongoDB and HBase.

K ops/sec

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

ms

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

ms

0

2

4

6

8

10

Number of thread
0 5 10 15 20 25 30

Fig. 10. Mean throughput and latency for four nodes and replication factor set to four
for Cassandra, MongoDB and HBase.



13

Table 5. Relative errors of the proposed models: throughput (th), write latency (wr),
read latency (re)

node(s) Cassandra MongoDB HBase

repl. (th/wr/re) (th/wr/re) (th/wr/re)

1 / 1 4% / 14% / 8.4% 12.2% / 16.9% / 21.9% 24.4% / 10.7% / 9%

4 / 1 15.1% / 19.7% / 23.4% 7.5% / 6.3% / 16.3% 19.6% / 33% / 30.5

4 / 4 19.3% / 23.8% / 22.4% 8.7% / 23.4% / 2.4% N.A.

5.2 Configurations with multiple nodes

We then model the configurations with more than one node with the queueing
network model, as shown in Fig. 7. In this case we have several groups of two
queueing stations per node, representing respectively the CPU and the disk. A
router models the choice of the node that will serve the requests: for Cassandra
and HBase it implements a random selection policy. For MongoDB, it behaves
differently for the read and for the write class. Read requests are randomly sent
to the nodes. Write requests are sent to a single node (the topmost node of
the model) to represent single-master replication of this specific database. We
assume that network latency is the same for all the nodes: in this way we can
model the network delay with a single delay station inserted before the router.
Since the presence of more nodes introduces extra overhead in the computations
necessary to serve the requests, we have to estimate a different service demand
for each of the considered DB, as shown in the second line of Tables 2, 3 and 4.
Fig. 9 compares the model results with the measurement of Section 4, and the
second line of Table 5 reports the relative errors. The model performs quite well
for high loads, but it presents larger errors for a small number of client threads.

Finally we consider the effect of replication in both Cassandra and MongoDB:
we do not include HBase since that DB does not have a specific replication
feature, and instead relies on the underlying Hadoop infrastructure. We model
replication with the fork and join feature of queueing networks (nodes Fork and
Join in Figure 7). We fork each job based on the number of replicas, and join
them again before continuing to the client. In this case, we have to estimate
the demands for the CPU operations to account for the overheads required to
consider this additional feature. These corresponding values are presented in
the last line of Tables 2 and 3. Results are compared with measurements in
Fig. 10 and relative errors are reported in the last line of Table 5. The results
are acceptable for high loads, but are inaccurate for the lower loads. In this
case, replication at high loads produces high replica requests between nodes
causing bottlenecks similar to the previous case. The model inaccuracies at low
loads is due to the fact that the fork and join feature approximates replication
synchronization, as it is not symmetric as in the fork and join queue. Therefore,
the model sends requests to all nodes, which in reality does not happen.



14

6 Conclusion

This paper has presented benchmarks and models for three of the most com-
mon NoSQL databases: Cassandra, MongoDB and HBase. We deployed them on
the Amazon EC2 cloud platform using different types of virtual machines and
cluster sizes to study the effect of different configurations and to characterize
the performance behavior of the databases. Using a high-level queueing network
model we represented these characteristics. Our results showed that the models
are able to capture much of the main performance characteristics of the stud-
ied databases at high workloads. Further investigation into modelling complex
replication is required to accurately reflect the performance of replicated data.
Future work includes benchmarking other NoSQL databases and providing a
generic modelling framework.

References

[1] Enrico Barbierato, Marco Gribaudo, and Mauro Iacono. Performance eval-
uation of nosql big-data applications using multi-formalism models. Future
Generation Computer Systems, to appear - available on-line, 2013.

[2] Marco Bertoli, Giuliano Casale, and Giuseppe Serazzi. JMT: performance
engineering tools for system modeling. SIGMETRICS Perform. Eval. Rev.,
36(4):10–15, 2009.

[3] A. Castiglione, M. Gribaudo, M. Iacono, and F. Palmieri. Exploiting mean
field analysis to model performances of big data architectures. Future Gen-
eration Computer Systems, 2013. cited By (since 1996)0; Article in Press.

[4] Rick Cattell. Scalable sql and nosql data stores. SIGMOD Rec., 39(4):12–27,
May 2011.

[5] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A.
Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage system for structured data. ACM
Trans. Comput. Syst., 26(2):4:1–4:26, June 2008.

[6] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with ycsb. In Proceed-
ings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages
143–154, New York, NY, USA, 2010. ACM.

[7] David Coulden, Rasha Osman, and William J. Knottenbelt. Performance
modelling of database contention using queueing petri nets. In ICPE, pages
331–334, 2013.

[8] Philippe Cudr-Mauroux, Iliya Enchev, Sever Fundatureanu, Paul Groth, Al-
bert Haque, Andreas Harth, FelixLeif Keppmann, Daniel Miranker, JuanF.
Sequeda, and Marcin Wylot. Nosql databases for rdf: An empirical eval-
uation. In Harith Alani, Lalana Kagal, Achille Fokoue, Paul Groth, Chris
Biemann, JosianeXavier Parreira, Lora Aroyo, Natasha Noy, Chris Welty,
and Krzysztof Janowicz, editors, The Semantic Web ISWC 2013, volume
8219 of Lecture Notes in Computer Science, pages 310–325. Springer Berlin
Heidelberg, 2013.



15

[9] db engines. Db-engines ranking of database management systems, march
2014. Accessed: 2014-03-04.

[10] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kaku-
lapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian,
Peter Vosshall, and Werner Vogels. Dynamo: Amazon’s highly available
key-value store. SIGOPS Oper. Syst. Rev., 41(6):205–220, October 2007.

[11] Pierangelo Di Sanzo, Roberto Palmieri, Bruno Ciciani, Francesco Quaglia,
and Paolo Romano. Analytical modeling of lock-based concurrency control
with arbitrary transaction data access patterns. In WOSP/SIPEW ’10,
pages 69–78, New York, NY, USA, 2010. ACM.

[12] Sameh Elnikety, Steven Dropsho, Emmanuel Cecchet, and Willy
Zwaenepoel. Predicting replicated database scalability from standalone
database profiling. In EuroSys ’09, pages 303–316, New York, NY, USA,
2009. ACM.

[13] Apache Software Foundation. Cassandra, http://cassandra.apache.org/.
Accessed: 2014-03-04.

[14] Apache Software Foundation. Hbase project, https://hbase.apache.org/.
Accessed: 2014-03-04.

[15] Alexandros Labrinidis and H. V. Jagadish. Challenges and opportunities
with big data. Proc. VLDB Endow., 5(12):2032–2033, August 2012.

[16] Avinash Lakshman and Prashant Malik. Cassandra: A decentralized struc-
tured storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, April 2010.

[17] E. D. Lazowska, J. Zahorjan, G. S. Graham, and K. C. Sevcik. Quantitative
System Performance. Prentice-Hall, 1984.

[18] MongoDB, Inc. Mongodb, http://www.mongodb.org/. Accessed: 2014-03-
04.

[19] Matthias Nicola and Matthias Jarke. Performance modeling of dis-
tributed and replicated databases. IEEE Trans. on Knowl. and Data Eng.,
12(4):645–672, July 2000.

[20] Oracle. Oracle nosql database. an oracle white paper. white paper, Septem-
ber 2011.

[21] Rasha Osman, Irfan Awan, and Michael E. Woodward. Queped: Revisit-
ing queueing networks for the performance evaluation of database designs.
Simulation Modelling Practice and Theory, 19(1):251–270, 2011.

[22] Rasha Osman, David Coulden, and William J. Knottenbelt. Performance
modelling of concurrency control schemes for relational databases. In
ASMTA, pages 337–351, 2013.

[23] Rasha Osman and William J. Knottenbelt. Database system performance
evaluation models: A survey. Perform. Eval., 69(10):471–493, 2012.

[24] Rasha Osman and Pietro Piazzolla. Modelling replication in nosql datas-
tores. In QEST, 2014.

[25] Tilmann Rabl, Mohammad Sadoghi, Hans-Arno Jacobsen, Sergio Gómez-
Villamor, Victor Muntés-Mulero, and Serge Mankowskii. Solving big data
challenges for enterprise application performance management. PVLDB,
5(12):1724–1735, 2012.

[26] Silvan Weber. Nosql databases. University of Applied Sciences HTW Chur,
Switzerland.


