Benchmarking Replication in
Cassandra and MongoDB NoSQL Datastores

Gerard Haughian!, Rasha Osman? and William J. Knottenbelt?

! Department of Computing, Imperial College London
London SW7 2AZ, UK
{gh413, wjk}@imperial.ac.uk
2 Faculty of Mathematical Sciences, University of Khartoum
Khartoum, Sudan
rosmanQieee.org

Abstract. The proliferation in Web 2.0 applications has increased the
volume, velocity, and variety of data sources which have exceeded the lim-
itations and expected use cases of traditional relational DBMSs. Cloud
serving NoSQL data stores address these concerns and provide replica-
tion mechanisms to ensure fault tolerance, high availability, and improved
scalability. In this paper, we empirically explore the impact of replica-
tion on the performance of Cassandra and MongoDB NoSQL datastores.
We evaluate the impact of replication in comparison to non-replicated
clusters of equal size hosted on a private cloud environment. Our bench-
marking experiments are conducted for read and write heavy workloads
subject to different access distributions and tunable consistency levels.
Our results demonstrate that replication must be taken into considera-
tion in empirical and modelling studies in order to achieve an accurate
evaluation of the performance of these datastores.

1 Introduction

The volume, velocity and variety of data produced and consumed by organi-
zations in recent years has outgrown the capabilities of traditional relational
DBMSs, due to the explosion of the web generated content [10]. New data stores
have been designed to accommodate this emerging landscape; some of which
have even been designed to work exclusively in the cloud. A main feature of
these cloud data stores is horizontal scalability and high availability. Horizontal
scalability is achieved through linear expansion of the data store as the work-
load increases. High availability is achieved through replicating the data across
different machines and data centers.

NoSQL data stores use eventual consistency protocols to ensure that repli-
cated data in some time in the future will be consistent [1]. Each data store pro-
vides consistency guarantees to (1) control how the data is distributed between
the nodes of the cluster, (2) define how read and write requests are handled,
(3) determine when different copies of the data are updated, and (4) specify
the accepted level of consistency of the data. The replication factor (RF) is the

number of times a data item is duplicated across the cluster, which in most data
store architectures reflects the number of physical nodes that hold a copy of the
data item. The defined consistency level specifies how many of the replicas/nodes
must respond to a request for the request to be considered valid.

Replication strategies and consistency levels impact the performance of the
data store. Lower consistency levels provide lower latencies while stricter consis-
tencies incur the overhead of inter-node communication and data passing. The
performance comparison of replication and consistency guarantees is complicated
by the different protocols implemented in NoSQL data stores. In this paper, we
consider multi-master (Cassandra) and master-slave (MongoDB) replication and
their corresponding consistency protocols.

There has been an increased interest in the benchmarking and performance
of NoSQL data stores. However, the majority of the benchmarking studies in
industry and academia do not consider the effect of replication in their studies.
Further, different data access patterns are not investigated, as most depend on
the uniform access of data and the disabling of consistency guarantees within
their configurations. In contrast, this paper aims to fill a gap in the performance
and benchmarking literature by presenting a benchmarking study in which we
evaluate the impact of replication and consistency guarantees on the perfor-
mance of Cassandra [2] and MongoDB [3]. This paper contributes the following.

e We illustrate the impact of replication on the performance of Cassandra and
MongoDB NoSQL data stores using various cluster sizes in comparison to
non-replicated clusters of equal sizes. Specifically, we analyze the impact of
read and write heavy workloads under different levels of tunable consistency
on the underlying optimizations and design decisions for each datastore.

e We provide insight into each data store’s suitability to different industry ap-
plications by experimenting with three different data and access distributions,
each simulating a different real-world use case.

e Our results demonstrate that replication and consistency levels have a direct
impact on the performance of Cassandra and MongoDB. Therefore replication
must be taken into consideration in empirical and modelling studies in order
to achieve an accurate evaluation of the performance of these datastores.

This rest of this paper is organized as follows. Related work is presented
in Section 2. Section 3 details the data stores benchmarked in this study. The
experimental setup is described in Section 4. Benchmarking results are detailed in

Section 5 and discussed in Section 6. Conclusions and future work are presented

in Section 7.

2 Related Work

The development of the Yahoo! Cloud Serving Benchmark tool (YCSB) [4] has
led to numerous benchmarking studies of NoSQL datastores. Cooper et al. [4]

benchmarked HBase, Cassandra, PNUTS and sharded MySQL to illustrate the
performance and scalability trade-offs of each system. Pirzadeh et al. [20] eval-
uated range query dominant workloads on Cassandra, HBase, and Voldemort.
Rabl et al. [22] compared Redis, Cassandra and VoltDB in their ability to scale to
support application performance management tools. The work in [21] compares
Voldemort and Cassandra for scalability, performance and focusing on failover
characteristics under different throughputs.

Dede et al. [6] evaluated the use of Cassandra for Hadoop, discussing various
features of Cassandra, such as replication and data partitioning which affect
Hadoop’s performance. The work evaluated different replication factors with a
single consistency level on clusters of up to 8 nodes. The previous benchmarking
studies evaluated NoSQL datastores with non-replicated or limited replication
data configurations and thus evaluating the impact of replication and different
consistency levels on performance was beyond their scope. In contrast to this
work, most studies assumed uniform access and data distribution which does
not accurately stress the datastore.

Industrial benchmarking studies [5,7, 16,17, 23], configured the data stores
with constant replication factors with no comparisons to baseline configurations
or assessment of different access and consistency levels. Some studies tackled a
very narrow problem domain (i.e., [7,17]) by highly optimizing their studies for
specific use cases or for specific data stores as in [23]. Similarly, performance
modelling studies either considered configurations with no replication or repli-
cation with uniform distributions and access as in [8,18,19].

In this paper, we present a benchmarking study that examines the impact of
replication, tuneable consistency levels and data and access distributions on the
performance of two popular NoSQL datastores: Casandra and MongoDB. We
investigate their performance using different replication factors selected based
on the architecture of the data store using uniform, Zipfian and latest data and
access distributions. We evaluate the impact of these configurations by com-
paring to non-replicated clusters of equal size with uniform data and access
distributions.

To evaluate the effect of different consistency levels on performance we em-
ploy three different levels of consistency: (1) ONE: which indicates that only one
node at most needs to reply to a request, (2) QUORUM: a specific number of
nodes must reply before the request is considered valid, and (3) ALL: all nodes
holding a copy of the data item must reply before a request is returned to the
client. Each data store implements different replication strategies and thus these
consistency levels may not be directly defined within the configuration parame-
ters of the data store. For such cases, we have configured the data store to the
closest possible configuration that produces the same level of consistency. In the
following, we summarize the properties of Cassandra and MongoDB focusing on
their replication strategies and consistency configurations.

mongos mslancas
(1 per cilent)

cifant appiication

Clent Appication Conng Servers

'\ B Shards (as replca safs]

\readwrte
@ E @ l
. |ii - primary
Vo (

A
- fnam‘ 1 ﬁnam 2 ﬁnarﬂ 3 ﬁnam 4
noda 4 ‘
@ B @ i

. @ o § .

Fig. 1. The (a) Cassandra and (b) MongoDB architectures.

3 Systems Under Investigation

3.1 Cassandra

Cassandra is a distributed extensible record data store, developed at Face-
book [11] for storing large amounts of unstructured data on commodity servers.
Cassandra’s architecture is a peer-to-peer distribution model [10] with no single
point of failure thus supporting high availability and horizontal scalability. Data
is distributed evenly across the cluster to guarantee load balancing. Cassandra
offers tunable consistency settings for reads and writes, which provide the flex-
ibility to make tradeoffs between latency and consistency [11]. For each read
and write request, users choose one of the predefined consistency levels: ZERO,
ONE, QUORUM, ALL or ANY. In this study, we investigated ONE, QUORUM
and ALL.

Cassandra automatically replicates records throughout a cluster based on a
user specified replication-factor which determines which nodes are responsible
for which data ranges. Client applications can contact any node, which acts as a
coordinator and forwards requests to the appropriate replica node(s) that store
the data. This mechanism is illustrated in Figure 1(a). A write request is sent to
all replica nodes; however the consistency level determines the number of nodes
required to respond for the transaction to be considered complete. For a read
request, the coordinator contacts the number of replica nodes specified by the
consistency level. Cassandra is optimized for large volumes of writes as each
write request is treated like an in-memory operation, while all I/O is executed
as a background process. In contrast, read requests require in-memory and I/0
operations in addition to consistency checks between data returned from the
replicas. Keeping the consistency level low makes read operations faster as fewer
replicas are checked before returning the call.

For this study, Cassandra version 1.2.16 (the latest 1.X release available be-
fore commencing this study) was used based on the supported YCSB (see Sec-

tion 4) Cassandra client driver with most of the default configurations. Hinted-
handoff (a mechanism to ensure consistency of the cluster in the event of a
network partition [10]) was disabled on all nodes within the cluster to avoid
the hints building up rapidly within the cluster when a node fails. The tokens
representing the data range for each node in each independent cluster configura-
tion was pre-calculated and saved in separate copies of Cassandra configuration
files. Finally, the RPC server type was changed to hsha to reduce the amount of
memory used by each Cassandra node; this is ideal for scaling to large clusters.
Justifications for these configurations and other Java JVM setting can be found
in [9].

3.2 MongoDB

MongoDB is a document-oriented NoSQL data store that facilitates horizontal
scalability by auto-partitioning data across multiple servers known as sharding.
MongoDB’s sharded architecture is represented in Figure 1(b). Each shard exists
as a replica set providing redundancy and high availability. Replica sets consist
of multiple Mongo Daemon (mongod) instances, including an arbiter node3, a
master node acting as the primary, and multiple slaves acting as secondaries
which maintain the same data set. If the master node crashes, the arbiter node
elects a new master from the set of remaining slaves.

All write operations must be directed to a single primary instance. By de-
fault, clients send all read requests to the master; however, a read preference is
configurable at the client level on a per-connection basis, which makes it possi-
ble to send read requests to slave nodes instead [15]. Varying read preferences
offer different levels of consistency guarantees. Balancing is the automatic pro-
cess used to distribute the data of a sharded collection evenly across a sharded
cluster which takes place within the mongos App server (required in sharded
clusters) [14].

In this study, we used MongoDB version 2.6.1 with all standard factory set-
tings, with the exception that journaling (i.e., logging) was disabled since the
overhead of maintaining logs to aid crash recovery was considered unnecessary
in this work. We setup only one configuration server which resided on the same
host as a single App server. Clients interacted with this App server exclusively.
It has been shown that having only one configuration server is adequate for de-
velopment environments [13]. In addition, we have observed that having both
servers reside on the same host did not prove to be a bottleneck.

MongoDB replication operates by way of an oplog, to which the master node
logs all changes to its data sets. Slave nodes then replicate the master’s oplog,
applying those operations to their data sets. This replication process is asyn-
chronous, therefore slave nodes may not always reflect the most up to date data.
Varying write concerns can be issued per write operation to determine the num-
ber of nodes that should process a write operation before returning to the client

3 An arbiter node does not replicate data and only exists to break ties when electing
a new primary if necessary.

successfully. This allows for fine grained tunable consistency settings, including
quorum and fully consistent writes [12].

MongoDB offers different write concerns for varying tunable consistency set-
tings, of which NORMAL, QUORUM, and ALL write concerns where explored.
MongoDB allows for concurrent reads on a collection, but enforces a single
threaded locking mechanism on all write operations to ensure atomicity. In ad-
dition, all write operations need to be appended to the oplog on disk, which
involves greater overhead. In contrast, regardless of the requested read concern
no additional consistency checks are performed between replicas on read opera-
tions.

4 Experimental Setup

YCSB Configuration. The Yahoo Cloud Serving Benchmark (YCSB) [4] was
developed to support benchmarking cloud NoSQL data stores. We use the YCSB
benchmark to execute our benchmarking experiments on Cassandra and Mon-
goDB. However, for the purpose of this work, we have extended its functionality
as described below.

Central to the YCSB tool is the YCSB Client, which when executed in load
mode inserts a user specified number of randomly generated records of size 1Kb
into a specific data store with a specified distribution. In run mode, the chosen
distribution determines the likelihood of certain records being read or updated.
We use the following data and access distributions in the experiments, each
simulating a different industry application use case [4]:

e uniform: items are chosen uniformly, this represents applications where the
number of items associated with an event are variable, e.g., blog posts.

e Zipfian: items are chosen according to popularity irrespective of insertion time,
this represents social media applications where popular users have many con-
nections, regardless of the duration of their membership.

e [atest: similar to the Zipfian distribution except items are chosen according to
latest insertion time, this represents applications where recency matters, e.g.,
news is popular at its time of release.

In this study, one read-heavy and one write-heavy workload is used to stress
the data stores. The read-heavy workload (referred to as G) is one of the default
workloads provided within the YCSB Core Package; i.e., workload B compris-
ing a 95/5% breakdown of read/write operations. The write-heavy workload
(referred to as H) was custom designed to consist of a 95/5% breakdown of
write/read operations. After preliminary tests, we configured the YCSB client
to a fixed eight threads per CPU core, similar to [4]. For the Cassandra and
MongoDB, which are not single threaded and can make use of all available CPU
cores, a total of sixty-four threads were used. In order to accurately evaluate the
effect of replication on data store performance, we did not increase the workload
as the cluster size increased.

For MongoDB, the YCSB Client does not support write concerns or read
preferences, therefore we extended the YCSB Client to facilitate this. A listing

of these extensions are given in [9]. For all experiments the primary preferred read
preference was used to favor queries hitting the master, however if the master
was unavailable, requests would be routed to a replicated slave. For Cassandra,
the configuration for the maximum number of concurrent reads and writes was
increased to match the same number of threads used by the YCSB Client, i.e.,
sixty-four threads.

Further, we included an additional warm-up stage to the YCSB code base
to improve results and comparative analysis by using the open-source* warm-
up extension developed for the studies in [16,17]. Averages of the time for the
data store to stabilize at or above the overall average throughput of a given
experiment can be found in [9]. These warm-up times where subsequently passed
as an additional configuration parameter to the YCSB Client for run phases only.

Setting Value
0S Ubuntu 12.04
Word Length 64-bit
RAM 6 GB
Hard Disk 20 GB
CPU Speed 2.90GHz
Cores 8
Ethernet gigabit
Additional Kernel Settings|atime disabled

Table 1: Virtual Machine Specifications and Settings.

All experiments conducted in this study where carried out on a cluster of Vir-
tual Machines (VM) hosted on a private cloud infrastructure within the same
data center. Each VM had the same specifications and kernel settings as indi-
cated in Table 1. A total of 14 VM nodes where provisioned for this study. One
node was designated for the YCSB Client, and one additional node was reserved
for MongoDB configuration and App servers which are required in sharded archi-
tectures to run on separate servers from the rest of the cluster. The remaining 12
nodes operated as standard cluster nodes which had both data stores installed
but only one running at any given time. To ensure all nodes could interact ef-
fectively, each node was bound to a fixed IP address and each node was aware
of the IP addresses of the other nodes.

Data Store Configuration. Each data store was configured and optimized for
increased throughput, low latency, and where possible to avoid costly disk-bound
operations. Each data store node hosted enough data to utilize a minimum of
80% RAM. MongoDB was configured to have a constant replication factor of
two replicas per shard, meeting the minimum recommended production settings.
The number of shards were incremented from one shard with two replicas up to
4 shards each with two replicas, in order to directly explore the write-scalability

 Available at https://github.com/thumbtack-technology/ycsb.

of MongoDB. This corresponds to cluster sizes of three nodes up to 12 nodes.
Cassandra, due to its multi-master architecture, was evaluated on 3 to 12 node
clusters, in which the replication factor was increased with the increase in cluster
size from two to 8. For both datastores experiments were also conducted on one
node clusters with no replication.

To accurately evaluate the impact of replication on datastore performance,
we conducted base line experiments for comparison. These base line experiments
consisted of maintaining the same cluster sizes, with no replication, using the
uniform distribution only. We limited ourselves to the uniform distribution as it
has been used in previous benchmarking experiments and performance modelling
papers to evaluate different scenarios. Each set of experiments was repeated a
minimum of three times. For each experiment: there is a warm-up phase, and
the main run phase for 10 minutes and a final cool down phase. To ensure all
experiments and their iterations start with the same initial state, at the end of
each iteration the entire cluster is torn down and a new cluster is reconfigured
and loaded with data.

5 Experimental Results

In this Section, we report the results of our benchmarking experiments. For
each data store we present results of replicated clusters for each workload under
different consistency levels and compare with the corresponding non-replicated
baseline clusters of equal size. Confidence intervals were calculated for all results
and can be found in [9], however there were too tight to appear in the graphs.
In addition, due to space limitations results for read and write latencies are
available in [9].

5.1 Cassandra

Throughput. From Figure 2, the effect of replication on the performance of
Cassandra is very clear, as the trends of throughput for replicated clusters are
directly opposite to those for non-replicated clusters. On a single non-replicated
node, throughputs are 45.7% higher for the write-dominated workload (H) than
the read-dominated workload (G). This is expected due to Cassandra’s write
optimized architecture. Further, the throughput on non-replicated clusters for
workload H consistently outperforms workload G by an average of 33.1% per
cluster size. In contrast, for replicated cluster sizes greater than one, we ob-
serve an average of 39.6%, 37.9%, and 30.3% decrease in throughput for the
write-heavy workload (H) compared to workload G, across all cluster sizes and
consistency levels for uniform, Zipfian, and latest distributions respectively. This
corresponds to a 19.5%, 38.6%, and 49.7% decrease on average across all cluster
sizes and distributions for ONE, QUORUM, and ALL consistency levels respec-
tively.

Performance is most affected by the strictest consistency level ALL. This
suggests that Cassandra is scalable at the cost of maintaining a lower level

50000 50000 . . .

15000 45000 AT

10000 10000 + L 1
35000 35000 T

30000 30000 77 - il

25000 g 7

20000 F

25000 gy

20000

Throughput (ops/sec)

15000, 15000

10000 10000 +

5000 L - -
1 3 6 9 12

5000

Cluster Size

workloadg uniform e workloadh 7ipfian workloadh zipfian —&—
workloadg zipfian -3¢ workloadh latest --@-- workloadh latest - - @-=
workloadg latest —K— workloadg no-repl - workloadg no-repl -

workloadh uniform --3-- workloadh no-repl - - -

(a) (b)

50000

workloadlt no-repl - - -

45000
10000
35000
30000
25000 gy -

20000

15000

10000

5000

Cluster Size

workloadh zipfian —&=—
workloadh latest

workloadg no-repl

workloadh no-repl

Fig. 2: Cassandra: Overall Throughputs per Consistency Level for all Workloads
and Distributions: (a) ONE (b) QUORUM (c) ALL.

of consistency. However, stronger consistency levels tend to reduce scalability
as the cluster size and replication factor increase. The QUORUM consistency
level demonstrates a promising sweet spot in the consistency versus throughput
tradeoff battle. Moreover, stricter consistencies have a much greater impact on
write-heavy workloads than on read-heavy workloads.

Access Distributions. For workload G, we observe that the uniform distri-
bution on average outperforms the Zipfian and latest distributions by 4.2% and
0.8% respectively. Given that the YCSB client selects a node at random for
forwarding requests, this is likely to impact relative performance between distri-
butions, favoring the uniform distribution due to a stronger correlation in their
random number generators. In addition, the uniform distribution will spread the
requests more evenly throughout the cluster. However, for workload H the latest
distribution on average outperforms the uniform and Zipfian distributions by
7.1% and 9.7% respectively. Zipfian’s poorer performance could be related to
high disk access due to one key being frequently updated.

10

Impact of Replication. From Table 2, when comparing replicated clusters to
non-replicated clusters of equal size, we observe a consistent ordering of perfor-
mance metrics for both workloads based on the consistency level. For workload
G, we see an average of 28.8%, 55.1% and 94.4% decrease in throughput for
consistency levels ONE, QUORUM and ALL, respectively for all distributions,
cluster sizes and replication factors compared to non-replicated clusters of equal
size. For workload H, there is an average decrease of 74.6%, 104%, and 120.7% in
throughput for consistency levels ONE, QUORUM and ALL respectively com-
pared to non-replicated clusters of equal size. As the cluster size and replication
factor increase more nodes are required to confirm each operation resulting in
additional overhead and reduced performance. This trend is a reflection of Cas-
sandra’s architecture favoring availability and network partition tolerance over
consistency. We note that the impact of replication on the write-heavy workload
is more evident due to the overhead of updating data within the cluster.

Workload G Workload H
cluster size 3 6 9 12 3 6 9 12
replication factor 2 4 6 8 2 4 6 8

Uniform ONE 1.5 315 383 278|613 905 875 683
QRM 8.6 46.4 49.6 36.8 | 70.5 105 114.2 129.6
ALL 9.9 614 76 849 | 77.0 131.1 143.2 135.8
Zipfian ~ ONE 3.6 374 40.2 34| 61.1 938 834 718
QRM 7.1 49.2 51 42.2 | 68.8 115 120.6 110.7
ALL | 152 67.1 86.1 91.1 | 81.0 123.8 139 136.2
Latest ONE 2.8 45.6 472 359 | 50.7 76.6 80 64.8
QRM 6.3 53.2 56.7 43.6 | 68.3 106.6 107.3 87.1
ALL 2.7 555 674 65.7 | 76.7 127 1374 122.2

Table 2: Cassandra: The Difference (%) In Overall Throughput Between Repli-

cated and Non-Replicated Clusters per Workload.

5.2 MongoDB

Throughput. The effect of MongoDB’s contrasting consistency checks for reads
and writes is evident from Figure 3 in which the throughput of the read-heavy
workload (G) has on average an 89% higher level of throughput than the write-
heavy workload (H). This corresponds to 94.8%, 84%, and 87.2% increases for
uniform, Zipfian, and latest distributions respectively, on average across all con-
sistency levels and cluster sizes. When broken down by consistency level, we
can observe a 89.5%, 87.1%, and 89.5% increase for ONE, QUORUM, and ALL
consistency levels respectively. Figure 3 illustrates how this trend varies as the
cluster size increases. For both workloads we observe a performance drop from
cluster sizes 1 to 3. This is due to an additional replication factor of two being

35000

30000

25000

20000

15000

10000

Throughput (ops/sec)

5000

0

35000

30000

25000

20000

10000

Throughput (ops/sec)

U\ll‘](i>

Sll‘](i!

1 3 6

Cluster Size Cluster Size
workloadg uniform s workloadh zipfian —=— workloadg uniform =g workloadh zipfian —s—
workloa plian -3¢ workloadh latest - -@-= workl Zipfian - workloadh latest --@---
workloadg latest —— workloadg n0-repl - workloadg latest —— workloadg no-repl ~—-----
workloadh uniform --g3-- workloadh no-repl --4-- workloadh uniform --E3-- workloadh no-repl --4--

11

(b)

35000

30000
£ 25000
= 20000

15000

10000

workloadh zipfian

workloa . workloadh latest --@-
workloadg latest —K— workloadg no-repl &
workloadh uniform --E3-- workloadh no-repl -~

()
Fig. 3: MongoDB: Overall Throughputs per Consistency Level for all Workloads
and Distributions: (a) ONE (b) QUORUM (c) ALL.

applied to the single shard in the 3 node cluster. The master node now needs to
save data to an oplog on disk and manage two additional servers. As the cluster
size increases above 3 nodes more shards distribute the load of reads and writes
and thus there is an increase in throughput following the trend of the baseline
non-replicated clusters of equal size.

For all subsequent cluster sizes (6+), the average decrease in throughput
is only 13.6% and 40.3% for workload G and H respectively in comparison to
the non-replicated clusters. This suggests that replication has a lesser effect on
performance for read-heavy workloads once the overhead of maintaining a small
number of shards have been overcome. When comparing based on the consistency
levels, we observe higher throughputs for a consistency level of ONE on average
across all distributions and cluster sizes, with slight degradations for QUORUM
and ALL consistency levels.

Access Distributions. The latest distribution outperforms the Zipfian and
uniform distributions for both workloads. For workload G, the latest distribu-
tion has a 15% and 17.9% increase in throughput on average across all cluster
sizes and consistency levels compared to the Zipfian and uniform distributions

12

respectively. For workload H, the latest distribution has a 10.9% and 27.9% in-
crease in throughput on average across all cluster sizes and consistency levels
compared to Zipfian and uniform distributions respectively. This is expected as
MongoDB stores all data on disk and reads data into RAM on a need to basis.
The latest and Zipfian distributions would outperform the uniform distribution
as accessed data would be in main memory after a short number of operations.
Further, the warm-up stage added to the YCSB Client gives an added advantage
to the latest and Zipfian distributions in this regard.

Impact of Replication. The impact of replication is more evident for write-
heavy workloads due to the effect of consistency checks performed on writes. Ta-
ble 3 shows the difference in percentages between replicated and non-replicated
clusters of equal size for all experiments. From Table 3, the impact of replication
on the performance of workload H in comparison to workload G, especially for
cluster sizes 6+, is evident in the large differences between the throughput of
workload H and that of the baseline non-replicated clusters of equal size. The
effect of the access skew is clear when comparing to the baseline non-replicating
clusters, as shown in Table 3. For the read-heavy workload, when comparing to
the baseline non-replicated clusters of equal size, the Zipfian and latest distribu-
tions mitigate the overhead of replication due to the availability of data in main
memory. This is not the case for the uniform distribution where the impact of
replication is evident. When considering the write-heavy workloads, the increase
in disk access on multiple replicas leads to the increased impact of replication,
irrespective of access distribution, consistency level or cluster size.

Workload G Workload H
cluster size 3 6 9 12 3 6 9 12
replication factor 2 2 2 2 2 2 2 2

Uniform ONE 94.1 204 225 6.2 | 1204 54.1 49.6 129

QRM 95.4 23.7 254 6.7 99 64.8 49 153

ALL 113.6 315 271 10.5 | 1072 714 54 155

Zipfian ~ ONE 93.6 282 93 1.7 | 784 249 21 14.6

QRM | 101.5 234 145 4.0 89 41 29 15.7

ALL 102.5 30.1 155 2.5 | 978 43 243 16.2

Latest ~ONE 73.8 78 56 25| 83.6 25.1 7.1 1.7

QRM 74 14 5.7 1] 374 30.7 156 4.5

ALL 776 194 6.0 1.6 | 76.7 127 1374 1222

Table 3: MongoDB: The Difference (%) In Overall Throughput Between Repli-
cated and Non-Replicated Clusters per Workload.

13

6 Discussion

Throughput. For the read-heavy workload (G), MongoDB (averaging 21230
ops/sec) is only marginally better than Cassandra (which averages 20184 op-
s/sec) by 5.1%. For workload H which is write dominated, the greatest difference
is that Cassandra outperforms MongoDB by 72.5%. This stark contrast is a clear
indication of Cassandra’s write optimized architecture.

For the read-heavy workload (G), MongoDB demonstrates better perfor-
mance with the latest distribution, whereas Cassandra performs best with the
uniform distribution. MongoDB outperforms Cassandra on all distributions, ex-
cept for the uniform distribution in which Cassandra has better throughputs
than MongoDB. Cassandra’s better performance on read-heavy workloads with
a uniform distribution is likely a result of a strong correlation between how
the YCSB Client selects a node randomly for routing requests, spreading the
requests more evenly across the cluster. Whereas the latest distribution would
force the same set of nodes to constantly handle operations, causing a backlog of
read-repairs to build up. When accessed with the latest distribution, MongoDB
is only 1.1 times more performant than Cassandra.

For the write-heavy workload (H), the latest distribution once again outper-
forms all other distributions on average across all cluster sizes and consistency
levels, followed by Zipfian, except for Cassandra which performs second best
with the uniform distribution. When all data stores are accessed with the latest
distribution, Cassandra is 2 times better than MongoDB. The reason we observe
larger contrasts in relative performance compared to workload G, is because Cas-
sandra is write optimized delaying consistency checks for read time. In contrast,
MongoDB performs consistency checks at write time.

Replication. To assess the impact replication on data store performance, we
compare two different replication strategies, i.e., the multi-master model used by
Cassandra, and the replica set model used by MongoDB. We can observe that
apart from the exception of consistency level ONE on workload G, for cluster
sizes 64, MongoDB’s replica set replication model has less of an impact on
throughput performance than Cassandra’s multi-master replication model when
compared to non-replicated clusters of equal size. Cassandra’s replication model
accounts for a 41.1%, and 98% throughput degradation for all consistency levels
and distributions, averaged across all replicated clusters sizes for workload G and
H respectively. In contrast, MongoDB'’s replication model only accounts for 33%
and 52% degradation in throughput for workload G and H respectively. This
suggests that MongoDB’s master-slave replication architecture has less of an
effect on cluster performance than Cassandra’s multi-master architecture.This
is a result of each master and slave being responsible for a single data partition
leading to reduced access contention compared to the multi-master model used
by Cassandra in which each node contains more than one unique partition on a
single server.

14

Performance Summary. Write-heavy workloads on non-replicated Cassandra
clusters are able to exploit Cassandras write-optimized architecture. In contrast,
replication has a noticeable impact on the performance of write-heavy workloads
in comparison to read-heavy workloads. Cassandra is scalable at the cost of
maintaining a lower level of consistency, we observed 65% and 75% degradations
in performance between consistency levels ONE and ALL for read-heavy and
write-heavy workload respectively. Stricter consistency levels have a greater im-
pact (9%) on write-heavy workloads than on read-heavy workloads. Read-heavy
workloads perform best when data access is random or close to random. For
write-heavy workloads, memory resident datasets provide better performance
(as represented by Zipfian and lastest distributions).

MongoDBs architecture is highly read-optimized, with read-heavy workloads
outperforming write-heavy workloads on average by 90% across all cluster sizes,
distributions and consistency levels. An interesting observation is that replica-
tion has minimal impact on performance relative to non-replicated clusters of
equal size once the overhead of maintaining a small number of shards have been
overcome. In addition, stricter consistency levels have on average a 5% impact
on performance for both workloads. MongoDB performance is best when the
entire or majority of the working data set can be kept in RAM as it would be
for latest and Zipfian distributions.

7 Conclusions and Future Work

This study benchmarked replication in Cassandra and MongoDB NoSQL data
stores, focusing on the effect of replication on performance compared to non-
replicated clusters of equal size. To increase the applicability of this study to
real-world use cases, a range of different data access distributions (uniform,
Zipfian, and latest) were explored along with three tunable consistency levels:
ONE, QUORUM, and ALL, and two different workloads: one read-heavy and
one write-heavy. Our experiments have shown that master-slave type replication
models, as exhibited by MongoDB tend to reduce the impact of replication com-
pared to multi-master replication models exhibited by Cassandra. These results
demonstrate that replication must be taken into consideration in empirical and
modelling studies in order to achieve an accurate evaluation of the performance
of these datastores. For future work, we plan to conduct a similar benchmark-
ing study on the Amazon EC2 cloud, extending experiments to include larger
data sets and cluster sizes while making use of solid-state disks to better reflect
industry standard deployments.

References

1. P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein, and I. Stoica. Prob-
abilistically bounded staleness for practical partial quorums. Proc. VLDB Endow.,
5(8):776-787, Apr. 2012.

2. Cassandra. http://cassandra.apache.org/.

- w

10.
11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

15

K. Chodorow. MongoDB: the definitive guide. O’Reilly Media, Inc., 2013.

B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears. Benchmark-
ing cloud serving systems with ycsb. In Proceedings of the 1st ACM symposium
on Cloud computing, pages 143-154. ACM, 2010.

Datastax Coperation. Benchmarking top NoSQL databases. a performance com-
parison for architects and IT managers. 2013.

E. Dede, B. Sendir, P. Kuzlu, J. Hartog, and M. Govindaraju. An evaluation of
Cassandra for Hadoop. In 2013 IEEE Sixth International Conference on Cloud
Computing (CLOUD), pages 494-501. IEEE, 2013.

Diomin and Grigorchuk. Benchmarking Couchbase server for interactive applica-
tions. http://www.altoros.com/, 2013.

A. Gandini, M. Gribaudo, W. J. Knottenbelt, R. Osman, and P. Piazzolla. Per-
formance analysis of nosql databases. In 11th European Performance Engineering
Workshop (EPEW 2014), 2014.

G. Haughian. Benchmarking Replication in NoSQL Data Stores. Master’s thesis,
Imperial College London, UK, 2014.

E. Hewitt. Cassandra: the definitive guide. O’Reilly Media Inc., 2010.

A. Lakshman and P. Malik. Cassandra: a decentralized structured storage system.
ACM SIGOPS Operating Systems Review, 44(2):35-40, 2010.

MongoDB Inc. MongoDB manual: Replication. http://docs.mongodb.org/
manual/replication/.

MongoDB Inc. MongoDB manual: Sharded cluster config servers. http://docs.
mongodb . org/manual/core/sharded-cluster-config-servers/.

MongoDB Inc. MongoDB manual: Sharded collection balancer. http://docs.
mongodb . org/manual/core/sharding-balancing/.

MongoDB Inc. MongoDB manual: Sharding. http://docs.mongodb. org/manual/
sharding/.

Nelubin and Engber. NoSQL failover characteristics: Aerospike, Cassandra, Couch-
base, MongoDB. http://www.thumbtack.net/, 2013.

Nelubin and Engber. Ultra-high performance NoSQL benchmarking. http://wuw.
thumbtack.net/, 2013.

R. Osman and P. G. Harrison. Approximating closed fork-join queueing networks
using product-form stochastic petri-nets. Journal of Systems and Software, 110:264
— 278, 2015.

R. Osman and P. Piazzolla. Modelling replication in nosql datastores. In 11th
International Conference on Quantitative Evaluation of Systems (QEST), 2014.
P. Pirzadeh, J. Tatemura, and H. Hacigumus. Performance evaluation of range
queries in key value stores. In 2011 IEEE International Symposium on Parallel
and Distributed Processing Workshops and Phd Forum (IPDPSW), pages 1092
1101. IEEE, 2011.

A. Pokluda and W. Sun. Benchmarking failover characteristics of large-scale data
storage applications: Cassandra and Voldemort.

T. Rabl, S. Gémez-Villamor, M. Sadoghi, V. Muntés-Mulero, H.-A. Jacobsen, and
S. Mankovskii. Solving big data challenges for enterprise application performance
management. Proceedings of the VLDB Endowment, 5(12):1724-1735, 2012.

A. Rogers. VOLTDB in-memory database achieves best-in-class results, running
in the cloud, on the YCSB benchmark. http://tinyurl.com/VoltDB-YCSB, May
2014. Last Accessed: June 2016.

