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Abstract

Conventional methods for state space exploration are limited to the analysis of
small systems because they suffer from excessive memory and computational re-
quirements. We have developed a new dynamic probabilistic state exploration al-
gorithm which addresses this problem for general, structurally unrestricted state
spaces.

Our method has a low state omission probability and low memory usage that
is independent of the length of the state vector. In addition, the algorithm can
be easily parallelised. This combination of probability and parallelism enables us
to rapidly explore state spaces that are an order of magnitude larger than those
obtainable using conventional exhaustive techniques.

We derive a performance model of this new algorithm in order to quantify its
benefits in terms of distributed run-time, speedup and efficiency. We implement
our technique on a distributed-memory parallel computer and demonstrate results
which compare favourably with the performance model. Finally, we discuss suitable
choices for the three hash functions upon which our algorithm is based.
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1 Introduction

Complex systems can be modelled using high-level formalisms such as stochas-
tic Petri nets and process algebras. Often the first phase in the logical and
numerical analysis of these systems is the explicit generation and storage of
the model’s underlying state space and state transition graph. In special cases,
where the state space has sufficient structure, an efficient analytical solution
can be obtained without the explicit enumeration of the entire state space.
Several ingenious techniques, predominantly based on the theory of queueing
networks, can be applied in such cases [3]. Further, certain restricted hier-
archical structures allow states to be aggregated and the state space to be
decomposed [5,16]. In this paper, however, we consider the general problem
where no symmetry or other structure is assumed.

Conventional state space exploration techniques have high memory require-
ments and are very computationally intensive; they are thus unsuitable for
generating the very large state spaces of real-world systems. Various authors
have proposed ways of solving this problem by either using shared-memory
multiprocessors [2] or by distributing the memory requirements over several
computers in a network [7,6].

Allmaier et al. [2] present a parallel shared memory algorithm for the anal-
ysis of Generalised Stochastic Petri Nets (GSPNs) [1]. The shared memory
approach means that there is no need to partition the state space as must
be done in the case of distributed memory. This also brings the advantage of
simplifying the load balancing problem. However, it does introduce synchroni-
sation problems between the processors. Their technique is tested on a Convex
SPP 1600 shared memory multiprocessor with 4GB of main memory. The au-
thors observe good speedups for a range of numbers of processors employed
and the system can handle 4 000000 states with 2GB of memory.

Caselli et al. [6] offer two ways to parallelise the state space generation for mas-
sively parallel machines. In the data-parallel method, a marking of a GSPN
with ¢ transitions is assigned to ¢ processors. Each processor handles the firing
of one transition only and is responsible for determining the resulting state.
This method was tested on a Connection Machine CM-5 and showed compu-
tation times linear in relation to the number of states. In the message-passing
method the state space is partitioned between processors by a hash function
and newly discovered states are passed to their respective processors. This
method achieved good speedups on the CM-5, but was found to be subject to
load imbalance.

Ciardo et al. [7] present an algorithm for state space exploration on a network
of workstations. Their approach is not limited to GSPNs but has a general



interface for describing state transition systems. Their method partitions the
state space in a way similar to [6] but they give no details of the storage tech-
niques they use. The importance of a hashing function which evenly distributes
the states across the processors is emphasised, but the method also attempts
to reduce the number of states sent between processors. It was tested on a
network of SPARC workstations interconnected by an Ethernet network and
on an IBM SP-2 multiprocessor. In both cases a good reduction in processing
time was reported although with larger numbers of processors, diminishing
returns occurred. The largest state space successfully explored had 4500 000
states; this required four hours of processing on a 32-node IBM SP-2.

None of the techniques proposed so far take advantage of the considerable gains
achieved by using dynamic storage techniques based on hash compaction. The
dynamic storage method we present here has several important advantages:
memory consumption is low, space is not wasted by a static allocation and
access to states is simple and rapid. We also present a parallel version of our
technique which results in further performance gains.

After introducing the problem of state space exploration in Section 2, we give
the details of the storage allocation algorithm in Section 3 and of the paral-
lel state space generation algorithm in Section 4. A theoretical performance
model is developed in Section 5 and numerical results demonstrating the ob-
served performance of the algorithm are given in Section 6. Section 7 discusses
suitable hashing and partition functions and Section 8 concludes and considers
future work.

2 State Space Exploration

Fig. 1 shows an outline of a simple sequential state space exploration algo-
rithm. The core of the algorithm performs a breadth-first search (BFS) traver-
sal of a model’s underlying state graph, starting from some initial state sy.
This requires two data structures: a FIFO queue F' which is used to store
unexplored states and a table of explored states F used to prevent redundant
state exploration. The resulting breadth-first generation strategy is preferred
over the alternative depth-first approach since it enables efficient row-by-row
generation of the state graph A.

The function succ(s) returns the set of successor states of s. Some formalisms
(such as GSPNs) include support for “instantaneous events” which occur in
zero time. A state which enables an “instananeous event” is known as a van-
ishing state. We will assume that our successor function implements one of
several known on-the-fly techniques available for eliminating vanishing states
[8,17]. In addition, we will not consider the case where s is vanishing.



begin

E = {so}

F.push(sp)

A=10

while (F not empty) do begin
F.pop(s)
for each s' € succ(s) do begin

if s ¢ E do begin

F.push(s')
E=EuU{s}
end
A=AU{id(s) — id(s")}
end
end

end

Fig. 1. Sequential state space generation algorithm

As the algorithm proceeds, it constructs A, the state graph. To save space, the
states are identified by a unique state sequence number given by the function
id(s). If we require the equilibrium state space probability distribution, we
must construct a Markov chain by storing in A the transition rate between
state s and s for every arc s — s’. The graph A is written out to disk as the
algorithm proceeds, so there is no need to store it in main memory.

3 Dynamic Probabilistic Hash Table Compaction

The memory consumed by the state exploration process depends on the layout
and management of the two main data structures of Fig. 1. The FIFO queue
can grow to a considerable size in complex models. However, since it is accessed
sequentially at either end, it is possible to manage the queue efficiently by
storing the head and tail sections in main memory, with the central body of the
queue stored on disk. The table of explored states, on the other hand, enjoys
no such locality of access, and it has to be able to rapidly store and retrieve
information about every reachable state. A good design for this structure is
therefore crucial to the space and time efficiency of a state generator.

One way to manage the explored state table is to store the full state descriptor
of every state in the state table. Such ezhaustive techniques guarantee complete
state coverage by uniquely identifying each state. However, the high memory
requirements of this approach severely limit the number of states that can be
stored. Probabilistic techniques, on the other hand, use hashing techniques to
drastically reduce the memory required to store states. This reduction comes



at a cost, however, and it is possible that the hash table will represent two
distinct states in the same way. If this should happen, the state hash table will
incorrectly report a state as previously explored. This will result in incorrect
transitions in the state graph and the omission of some states from the hash
table. This risk may be acceptable if the probability of inadvertently omitting
one or more states can be kept very small.

Probabilistic methods first gained widespread popularity with the develop-
ment of Holzmann’s bit-state hashing technique [13,14]. This technique aims
at maximizing state coverage in the face of limited memory by using a hash
function to map each state onto a single bit position in a large bit vector. Holz-
mann’s method was subsequently improved upon by Wolper and Leroy’s hash
compaction technique [20], and Stern and Dill’s enhanced hash compaction
method [19]. These techniques hash states onto compressed values which are
inserted into a large pre-allocated hash table with a fixed number of slots.

All of these probabilistic methods rely on static memory allocation, since they
pre-allocate large blocks of memory for the explored-state table. Since the
number of states in the system is in general not known beforehand, the pre-
allocated memory may not be sufficient, or may be a gross overestimation.
We now introduce a new probabilistic technique which uses dynamic storage
allocation and which yields a very low collision avoidance probability.

The system is illustrated in Fig. 2. The explored state table takes the form
of a hash table with several rows. Attached to each row is a linked list which
stores compressed state descriptors. Two independent hash functions are used.

primary secondary.
hash key hash keys
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1 :{84920| } {00983| } {64940| ]

2 (12503| } {83025| } {23432| } {89532| J
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5[08621| }={a7632| J—={12344| }—={37042| }={53376] |
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Fig. 2. Hash table with compressed state information

The primary hash function A;(s) is used to determine which hash table row
should be used to store a compressed state and the secondary hash function



ho(s) is used to compute the compressed state descriptor values (also known as
secondary keys). If a state’s secondary key ho(s) is present in the hash table
row given by its primary key hi(s), then the state is deemed to have been
explored. Otherwise the secondary key is added to the hash table row and its
successors are pushed onto the FIFO queue. Note that two states s; and so
are classified as being equal if and only if h1(s1) = hi(s2) and ha(s1) = ha(s2);
this may happen even when the two state descriptors are different, so collisions
may occur (as in all other probabilistic methods). As we will see in the next
section, however, the probability of such a collision can be kept very small —
certainly much smaller than the chance of a serious man-made error in the
specification of the model. In addition, by regenerating the state space with
a different independent set of hash functions and comparing the resulting
number of states and transitions, it is possible to further arbitrarily decrease
the risk of an undetected collision.

3.1 Reliability of the probabilistic dynamic state hash table

We consider a hash table with r rows and ¢ = 2° possible secondary key
values, where b is the number of bits used to store the secondary key. In such
a hash table, there are rt possible ways of representing a state. Assuming
that hq(s) and hs(s) distribute states randomly and independently, each of
these representations are equally likely. Thus, if there are n distinct states to
be inserted into the hash table, the probability p that all states are uniquely
represented is given by:

B (rt)!
D=t )t

(1)

Using Stirling’s approximation for n! in Eq. (1) yields:

n2

prRe Tt

If n? << rt (as will be the case in practical schemes with p close to 1), we can
use the fact that e” ~ (1 + z) for |z| << 1 to approximate p by:

The probability ¢ that all states are not uniquely represented, resulting in the
omission of one or more states from the state space, is of course simply:

1 P rt r2b 2)

Thus the probability of state omission g is proportional to n? and is inversely
proportional to the hash table size r. Increasing the size of the compressed



state descriptors b by one bit halves the omission probability.

3.2 Space complexity

If we assume that the hash table rows are implemented as dynamic arrays,
the number of bytes of memory required by the scheme is:

M = hr + nb/8. (3)

Here h is the number of bytes of overhead per hash table row. For a given num-
ber of states and a desired omission probability, there are a number of choices
for » and b which all lead to schemes having different memory requirements.
How can we choose r and b to minimize the amount of memory required?
Rewriting Eq. (2):

TR — (4)

and substituting this into Eq. (3) yields

N hn? nb

@ TS
Minimizing M with respect to b gives:

oM n?(In2)h
T +n/8=0

Solving for the optimal value of b at a specified state omission probability ¢
yields:

In2
bzb&<m”l>+3
q

The corresponding optimal value of r can then be obtained by substituting b
into Eq. (4).

Table 1 shows the the optimal memory requirements in megabytes (MB) and
corresponding values of b and r for state space sizes ranging from 10° to 10%. We
have assumed a hash table row overhead of h = 8 bytes per row. In practice,
it is difficult to implement schemes where b does not correspond to a whole
number of bytes. Consequently, 4-byte or 5-byte compression is recommended.



number of states
q 106 107 108
MB b r | MB b r | MB b T

0.001 || 4.608 35 29104 | 50.21 39 181899 | 543.2 42 2273737
0.01 || 4.186 32 23283 | 46.08 35 291038 | 502.1 39 1818989
0.1 3.774 29 18626 | 41.86 32 232831 | 460.8 35 2910383

Table 1
Optimal values for memory usage and the values for b and r used to obtain them
for various system state sizes and omission probabilities g

4 Parallel State Space Exploration

We now investigate how our technique can be further enhanced to take advan-
tage of the memory and processing power provided by a network of worksta-
tions or a distributed-memory parallel computer. We will assume that there
are N nodes available. Each node has its own processor and local memory and
can communicate with other nodes via a network.

In the parallel algorithm, the state space is partitioned between the nodes so
that each node is responsible for exploring a portion of the state space and
for constructing a section of the state graph. A partitioning hash function
ho(s) = (0,..., N — 1) is used to assign states to nodes, such that node i is
responsible for exploring the set of states E; and for constructing the portion
of the state graph A; where:

E;={s: ho(s) =i}
A;={(s1 — 82) : ho(s1) =1}

It is important that ho(s) achieves a good spread of states across nodes in
order to achieve good load balance. Naturally, the values produced by hy(s)
should also be independent of those produced by hi(s) and hy(s) to enhance
the reliability of the algorithm.

The operation of node 7 in the parallel algorithm is shown in Fig. 3. Each
node 7 has a local FIFO queue F; used to hold unexplored local states and
a hash table used to store the set F; representing the states that have been
explored locally. State s is assigned to processor hy(s), which stores the state’s
compressed state descriptor ho(s) in the local hash table row given by hy(s).

As in the sequential case, node 7 proceeds by popping a state off the local
FIFO queue and determining the set of successor states. Successor states for



begin
if ho(sp) =i do begin
Ei = {80}
F;.push(s)
end else
Ei = {}
while (shutdown signal not received) do begin
if (F; not empty) do begin
Fi.pop(s)
for each s’ € succ(s) do begin
if ho(s') =i do begin
if s ¢ F; do begin
F;.push(s)

E;, = E;U{s'}
end
A; = A; U {id(s) — id(s)}
end else
send-state(ho(s'), id(s), s)
end
end

while (receive-id(g, h)) do
while (receive-state(k, g, s’)) do begin
if s ¢ E; do begin
F,.push(s’)

Ez' = EZ U {S’}
end
send-id(k, g, id(s"))
end
end

end

Fig. 3. Parallel state space generation algorithm for node 4

which hg(s) = i are dealt with locally, while other successor states are sent to
the relevant remote processors via calls to send-state(k, g, s). Here k is the
remote node, ¢ is the identity of the parent state and s is the state descriptor
of the child state. The remote processors must receive incoming states via
matching calls to receive-state(k, g, s) where k is the sender node. If they are
not already present, the remote processor adds the incoming states to both
the remote state hash table and FIFO queue.

For the purpose of constructing the state graph, states are identified by a pair
of integers (i,j) where i = hgo(s) is the node number of the host processor



and 7 is the local state sequence number. As in the sequential case, the index
j can be stored in the state hash table of node i. However, a node will not
be aware of the state identity numbers of non-local successor states. When a
node receives a state it returns its identity to the sender by calling send-id (%,
g, h) where k is the sender, g is the identity of the parent state and h is the
identity of the received state. The identity is received by the original sender
via a call to receive-id(g, h).

In practice, it is inefficient to implement the communication as detailed in
Fig. 3, since the network rapidly becomes overloaded with too many short
messages. Consequently state and identity messages are buffered and sent in
large blocks. In order to avoid starvation and deadlock, nodes that have very
few states left in their FIFO queue or are idle broadcast a message to other
nodes requesting them to flush their outgoing message buffers.

The algorithm terminates when all the F;’s are empty and there are no out-
standing state or identity messages. We use Dijkstra’s circulating probe algo-
rithm [10] to determine when this occurs.

In terms of reliability of the parallel technique, two distinct states s; and sg
will mistakenly be classified as identical states if and only if hy(s1) = ho(s2)
and hi(s1) = hi(s2) and ho(s1) = he(sa). Since hg, hy and hy are independent
functions, the reliability of the parallel algorithm is essentially the same as
that of the sequential algorithm with a large hash table of Nr rows, giving a
state omission probability of

nZ

= Nr2v

(5)

q

5 A Theoretical Performance Model

We now develop a model for the predicting the run-time and speedup of our
algorithm when implemented on a statically-routed wraparound mesh of N
processors. The model is based on the calculation of two key quantities: the
computation time Ty (N) required to generate arcs and search for states in
the local hash table, and the communication time Tc(IN) required to send and
receive non-local states. Predicted run-time is then simply given by Ty (N) +
Tc(N).

For the purposes of this analysis, we ignore the start-up period and termination
phase and we assume that the FIFO queue is never empty in any processor.
These are reasonable assumptions for problems with large state spaces — cer-
tainly for any algorithm that runs for more than a few minutes. Further, the
randomness in the hash functions is assumed to achieve perfect load balanc-
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ing so that, after the start-up period and before the termination phase of the
algorithm, all processors operate functionally in the same way as per Fig. 3.

We assume that a total of a arcs are generated in total and that there are
a total of n unique states (nodes) in the state graph. A processor takes c
seconds to construct the destination state corresponding to an arc in the state
graph. Further, each local arc requires a search to be performed on a row in
the local hash table. Each processor’s hash table has r rows and it takes an
average of d seconds to scan each entry in a row. Note that the value of ¢ is
likely to vary between models (depending on such factors as the proportion
of vanishing states in the state graph), while the value of d remains constant
between models.

Assuming ideal random hash functions which distribute states and arcs evenly
over processors, each processor will generate a/N (mostly non-local) arcs and
will process a/N local arcs. Each state hash table row on each processor will
contain an average of n/(2Nr) elements over the lifetime of the hash table.
The computation time Ty, as a function of the number of processors N is thus
estimated by:

a dn
Tw(N)= —(c+ —).
w (V) N( T3 Nr)
The number of non-local arcs m generated per processor, assuming that new
destination states generated belong to each of the N processors with equal
probability, is simply

_aN-1_a(N-1)
N N N2

m

The processing of a non-local arc is assumed to generate L bytes of data traffic.
To prevent the communication network from being overwhelmed by thousands
of short messages, state and identity messages for non-local arcs are buffered
and sent in blocks between processors. The overhead associated with buffer
management for each arc is assumed to be s seconds. We assume that buffers
are transmitted over the network when they become full with B bytes of data,
using a blocking I/O cut-through transfer. Messages are divided into flits of
size I’ bytes, which are sent between adjacent nodes serially. The header of
any message consists of one flit and acknowledgement messages comprise only
a header flit. The per-hop latency for one flit is f seconds.

The mean path length for a square wraparound mesh of N processors (for N
the square of an even number) is 14 +/N /2?2 and the total number of buffers
sent (and also their acknowledgements) is mL/B.

21n fact, the mesh we use in the results section is rectangular 2 x 6 and so the mean
path length is 1 + 2 = 3 which is close to our estimate of 1 + vV N/2 for N = 12.
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Mean header transfer time is therefore (14++//N/2)f and message transmission
time is Bf/F. Thus for data, average communication time is

L B
m[s + 5(1 +VN/2+ F)f]

and for an acknowledgement,

mL

= (1+VN/2)f

Hence the total time 7Tz spent by each processor on communication overhead
is, on average,

oL B
Te(N) =mls + S (1+ VN/2 + Sl

The speed-up of the algorithm executing on this architecture can now be
calculated as:

S(N)=Tw(1)/(Tw(N) + Tc(N))
and its efficiency is given by E(N) = S(N)/N.

Notice that the algorithm is not cost-optimal because its cost (the product of
the parallel run time and the number of processors used) is given by

C(N) = N(Tw(N) + Tc(N))

which cannot be proportional to Ty (1) for large N, on account of the v/N /2
term in T (N). Since it is impossible to maintain the efficiency at a constant
value by simply increasing the size of the state graph, the algorithm is techni-
cally not scalable for very large N. However, since v N /2 grows slowly and is
typically negligible in comparison with B/2F for moderate N, the algorithm’s
efficiency is maintained well for machines with up to a few hundred processors.

6 Results

To illustrate the potential of our technique, we consider the 22-place GSPN
model of a flexible manufacturing system shown in Fig. 4. This model, which
we will refer to as the FMS model, was originally presented in detail in [9], and
was subsequently used in [7] to demonstrate distributed exhaustive state space
generation. A detailed understanding of the model is not required. It suffices
to note that the model has a parameter k£ (corresponding to the number of
initial tokens in places P1, P2 and P3), and that as k increases, so does the
number of states n and the number of arcs a in the state graph (see Fig. 5).
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Fig. 4. The FMS Generalised Stochastic Petri net [9]
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We implemented the state generator algorithm of Fig. 3 using hash tables with
r = 350003 rows per processor and b = 40 bit secondary keys. The genera-
tor was written in C++, with support for two popular parallel programming
interfaces, viz. the Message Passing Interface (MPI) [12] and the Parallel Vir-
tual Machine (PVM) interface [11]. Models are specified using the DNAmaca
interface language [17] which allows the high-level specification of generalised
timed transition systems including GSPNs, queueing networks and Queueing
Petri nets [4]. The high-level specification is then translated into a C++ class
which is compiled and linked to a library implementing the core state genera-
tor. The state space and state graph are written to disk in compressed format
as the algorithm proceeds.

We obtained our results on a Fujitsu AP3000 distributed-memory parallel
computer with 12 processing nodes [15]. Each node has a 200 MHz Ultra-
Sparc processor, 256 MB RAM and 4GB local disk space. The nodes run the
Solaris operating system and support MPI. They are connected by a high-
speed wormhole-routed network with a peak throughput of 200MB/s (the
AP-net).

13



k n a
1 54 155
2 810 3 699
3 6 520 37 394
4 35910 237 120
5 152 712 1111 482
6 537 768 4 205 670
7 1 639 440 13 552 968
8 4 459 455 38 533 968
91 11058 190 99 075 405
10 | 25 397 658 234 523 289
11 | 54 682 992 518 030 370
12 | 111 414 940 | 1 078 917 632
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Fig. 5. The number of tangible states (n) and the number of arcs in the state graph
(a) for various values of k
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6.1 Run-times and speedup

The graph on the left in Fig. 6 shows the time (defined as the maximum
processor run-time) taken to explore state spaces of different sizes (up to
k =9) using 1, 2, 4, 8 and 12 processors on the AP3000. Each observed run-
time value is calculated as the mean run-time of four runs on the AP3000. The
k = 8 state space (4459455 states) can be generated on a single processor in



under 17 minutes; 12 processors require just 115 seconds. The k£ = 9 state
space (11058 190 states) can be generated on a single processor in 45 minutes;
12 processors require just 296 seconds.

The graph on the right in Fig. 6 shows the speedups for the cases £ =
4,5,6,7,8,9. The speedup for N processors is given by the run time of the
sequential generation (N = 1) divided by the run time of the distributed
generation with IV processors. For k£ = 9 using 12 processors we observed a
speedup of 9.12, giving an efficiency of 76%. Most of the lost efficiency can
be accounted for by communication overhead and buffer management, which
is not present in the sequential case. Since speedup increases linearly in the
number of processors for k£ > 6, there is evidence to suggest that our algorithm
scales well.

The memory utilization of our technique is low: a single processor generating
the k£ = 8 state space uses a total of 74AMB RAM (16.6 bytes per state),
while the £ = 9 state space requires 160MB RAM (14.5 bytes per state).
9 bytes of the memory used per state can be accounted for by the 40-bit
secondary key and the 32-bit unique state identifier; the remainder can be
attributed to factors such as hash table overhead and storage for the front and
back of the unexplored state queue. By comparison, a minimum of 48 bytes
would be required to store a state descriptor in a straightforward exhaustive
implementation (22 16-bit integers plus a 32-bit unique state identifier). The
difference will be even more marked with more complex models that have
longer state descriptors, since the memory consumption of our technique is
independent of the number of elements in the state descriptor.

6.2 Larger state graphs

Moving beyond the maximum state space size that can be generated on a
single processor, the graph on the left in Fig. 7 shows the real time required to
generate larger state spaces using 12 processors. For the largest case (k = 12)
55 minutes are required to generate a state space with 111414 940 tangible
states and a state graph with 1078917632 arcs. The graph on the right in
Fig. 7 shows the distribution of the states generated by each processor for the
case k = 12.

In comparison to the results reported above (see Table 5), Ciardo et al used
conventional exhaustive distributed generation techniques to generate the same
sample model for the case k¥ = 8 in 4 hours using 32 processors on an IBM
SP-2 parallel computer [7]. They were unable to explore state spaces for larger
values of k.

To enhance our confidence in our results for the case £ = 12, we use Eq. (5)
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to compute the probability of having omitted at least one state. For a state
space of size n = 10® states, the omission probability ¢ is given by:

n? 10%6

=~ = = (0.00217
N7r2b 12 % 350003 % 240

q

i.e. the omission probability is approximately 0.2%. This is a small price to
pay for the ability to explore such large state spaces, and is probably less than
the chance of a serious (man-made) error in specifying the model.

To further increase our confidence in the results, we changed all three hash
functions and regenerated the state space. This resulted in exactly the same
number of tangible states and arcs. This process could be repeated several
times to establish an even higher level of confidence in the results.

6.3 Validation of the performance model

We assess the accuracy of the performance model presented in Section 5 by
comparing observed results with model predictions for the FMS model running
on the AP3000. The values used to parameterise our performance model are
given in Fig. 8. Agreement of observed and predicted run-times is excellent,
as shown in the graphs of Fig. 9, and Appendix B which gives the full data
set of observed and predicted values together with the relative model error
expressed as a percentage.

In the single processor case, which does not involve any communication, pre-
dicted run-times are typically well within 1% of the observed values, suggesting
that our model for Ty is very accurate. Predicted run-times for multiple pro-
cessor runs involving communication are typically within 5% of the observed
values, with a tendency for the model to predict a slightly lower run-time
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Parameter description Value
N | number of nodes (variable)
a | number of arcs in state graph (variable)
n | number of states in state space (variable)
F | flit size 32 bits
L | comms induced by one non-local arc 60 bytes
B | message buffer size 8192 bytes
f | per-hop flit latency 220 ns
¢ | cost of generating one arc 25.4 us
d | cost of scanning one hash table entry 120 ns
s | cost of buffer management for non-local arc 6.50 us
r | number of hash table rows per node 350003 rows

Fig. 8. Parameters used in the performance model for the FMS model running on
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Fig. 9. Observed (left) and predicted (right) real time taken to generate state spaces
up to kK =9 using 1, 2, 4, 8 and 12 processors

than that which is observed. This is not surprising since our model is based
on ideal assumptions such as hash functions which achieve perfect load balanc-
ing of communication load. In addition, in those cases where there are a small
number of states per processor, the start-up and termination phase requires
a significant proportion of the run-time, and this is not accounted for by the
model.

There is also good agreement between the observed and predicted speedup
values, as shown in Fig. 10 and Appendix B. For the reasons outlined in the
previous paragraph, there is a tendency for the model to predict a slightly
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Fig. 10. Observed (left) and predicted (right) speedups for k = 5,6,7,8 and 9

higher speedup than that which is actually observed.

7 Choosing good hash functions

Recall that our technique is based on the use of the following three hash
functions:

— the partitioning hash function hy(s) — {0,1,..., N — 1}, which assigns
state s to a processor.

— the primary hash function h;(s) — {0,1,...,r — 1} which assigns state
s to a row in the hash table on processor hy(s).

— the secondary hash function hy(s) — {0,1,...,2°—1} which maps state
s onto a b-bit compressed value; this compressed value is stored in row hq(s)
of the hash table on processor hy(s).

The reliability of our technique depends on the behaviour of these hash func-
tions in three important ways. Firstly, hy and h; should randomly partition
states across the processors and hash table rows. Secondly, h, should result
in a random distribution of compressed values. Finally, hg, h; and ho should
distribute states independently of one other.

Before we consider each of these functions individually, consider the two gen-
eral hash functions f; and f; shown in Fig. 11. Both map an m-element state
vector s = (81, 2, - - -, Sm) Onto a 32-bit unsigned integer by manipulating the
bit representations of individual state vector elements. The xor operator is
the bitwise exclusive or operator, rol is the bitwise rotate-left operator and
mod is the modulo (remainder) operator.

Hash function f; (s, shift) uses exclusive or to combine rotated bit representa-
tions of the state vector elements. State vector element s; is rotated left by
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fi(vector s, int shift) — uint32  fo(vector s, int shift; , int shifty) — uint32

begin begin
uint32 key = 0; uint32 key = 0;
int slide = 0; int slide; = 0, slides = 16, sum = 0;
for =1 to m do begin for =1 to m do begin
key = key xor (s; rol slide); sum = sum + 8;
slide = (slide + shift) mod 32;  key = key xor (s; rol slide;);
end key = key xor (sum rol slides);
return key; slidey = (slide; + shift;) mod 32;
end slideo = (slides + shift;) mod 32;
end
return key;
end

Fig. 11. Two general hash functions for mapping states onto 32 bit unsigned integers.

an offset of (i x shift) mod 32 bits. Hash function f5(s, shift, shift,) is based
on encoding not only element s; rotated left by an offset of ¢ x shift; mod 32,
but also the sum }°;_; s; rotated left by an offset of i X shift, mod 32. This
technique makes the hash function resistant to any symmetries and invariants
that may be present in the model.

We make use of functions f; and f, to derive suitable choices for hy(s), hi(s)
and hs(s) as follows:

— For the partitioning hash function, we use either
ho(s) = fi(s, shift) mod prime mod N
or
ho(s) = fa(s, shifty, shifty) mod prime mod N

where shift, shift; and shift, are arbitrary shifting factors relatively prime
to 32 and prime is some prime number >> N.
— For the primary hash function, we use either

hi(s) = fi(s, shift) mod r
or
hi(s) = fa(s, shifty, shift;) mod r
where shift, shift; and shift, are arbitrary shifting factors relatively prime

to 32 and r, the number of rows in the hash table, is a prime number.
— For the secondary hash function, we consider 32-bit (4-byte) compression
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based on either f; or fo:

ha(s) = fi(s, shift)

or

ha(s) = fa(s, shifty, shifts)

where shift, shifty and shift, are relatively prime to 32. Function f; has
the desirable property that it is resistant to symmetries and invariants in
the model; this prevents similar (but distinct) states from having the same
secondary hash values. Consequently, f» gives a better spread of secondary
values then f;. For 40-bit secondary hash keys (i.e. five-byte state compres-
sion), f, can easily be modified to produce a 40-bit hash key instead of a
32-bit hash key.

It is important to ensure the independence of the values produced by hy(s),
hi(s) and hs(s). The following guidelines assist this:

— Some hash functions should be based on f; while others are based on fy;
hash functions which use the same base function should use different shifting
factors.

— The hash functions should consider state vector elements in a different order.

— the value of r used by hi(s) should not be the same as the value of prime
used by ho(s)-

The results presented in Section 6 made use of partitioning and primary func-
tions based on f; and a 40-bit secondary hash function based on fy. Appendix
A presents graphs and tables illustrating the performance of these hash func-
tions for the FMS model.

8 Conclusion and future work

We have presented a new dynamic probabilistic state exploration technique
and developed an efficient parallel implementation that exhibits good scala-
bility. In contrast to conventional state exploration algorithms, the memory
usage of our technique is very low and is independent of the length of the
state vector. Since the method is probabilistic, there is a chance of state omis-
sion, but the reliability of our technique is excellent and the probability of
omitting one or more states is extremely small. Moreover, by performing mul-
tiple runs with independent sets of hash functions, we can reduce the omission
probability almost arbitrarily at linear computational cost.

Our results to date show good speedups and scalability. It is the combina-
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tion of probability and parallelism that dramatically reduces both the space
and time requirements of large-scale state space exploration. We note here
that the same algorithm could also be effectively implemented on a shared-
memory multiprocessor architecture, using a single shared hash table and a
shared breadth first search queue. There would be no need for a partition-
ing function and contention for rows in the shared hash table would be very
small. Consequently, it should again be possible to achieve good speedups and
scalability.

Our technique is based on the use of hashing functions to assign states to pro-
cessors, hash table rows, and compressed state values. The reliability analysis
requires that the hash functions distribute states randomly and independently
and we have shown how to generate hashing functions which meet these re-
quirements. To illustrate its potential, we have explored a state space with
more than 10® tangible states and 10° arcs in under an hour using 12 proces-
sors on an AP3000 parallel computer. The probability of state omission is just
0.2%.

Previously, the memory and time bottleneck in the performance analysis pipeline
has been state space exploration. We believe that our technique shifts this bot-
tleneck away from state space generation and onto stages later in the analysis
pipeline. Future work will therefore focus on a parallel functional analyser
and a parallel steady-state solver. The functional analyser will ensure that the
generated state graph maps onto an irreducible Markov chain by eliminating
transient states and by verifying that the remaining states are strongly con-
nected. The steady-state solver will then solve the state graph’s underlying
Markov chain for its steady-state probability distribution by using state-of-
the-art linear equation solvers designed to cope with the large problem size.
Indeed, recent experiments with distributed disk-based solution techniques
have demonstrated the ability to solve for the steady-state distribution of
very large models with over 50 million states and over 500 million transitions
[18].
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A Appendix: Hash Function Performance

In this appendix we give detailed results showing how well the hash functions
proposed in Section 7 meet their objectives of achieving a good spread of states
over processors, hash table rows and secondary key values. We also evaluate
the independence of the values produced by these hash functions.

A.1 Partitioning hash function

The graphs in Fig. A.1 show the distribution of state assignments in the FMS
model with £ = 9 and N = 12 for two partitioning hashing functions, one
based on f;, the other on f,. Table A.1 compares the performance of these
two hash functions against that of an ideal random hash function over a wider
range of £ and N values. The performance is expressed in terms of oy, the
standard deviation of the number of states assigned to each processor, and
we assume that an ideal random hash function distributes n states over N
processors such that the number of states assigned to a processor follows a
binomial distribution with parameters (n,1/N).

Both variants of the partitioning function give well-balanced state distribu-
tions. However, the function based on f; is preferable, since f; involves less
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Fig. A.1. State distributions for the FMS model with £ = 9 and N = 12 using
ho(s) = fi(s,3) mod 5003 mod N (left) and hy(s) = fa(s,3,5) mod 5003 mod N
(right).

ON
tangible N =38 N =12 N =16
k states rnd f fo rmd | fi fo rnd fi fo
5 152712 | 129 7 78 | 108 | 164 89| 95 48 99
6 537768 | 243 | 127 | 164 | 203 | 282 | 142 | 178 124 234
7| 1639440 | 423 | 370 | 355 | 354 | 323 | 263 | 310 258 270
8| 4459445 | 698 | 482 | 716 | 584 | 417 | 314 | 511 545 533
9111058190 | 1100 | 1418 | 1942 | 919 | 1353 | 1118 | 805 | 1089 | 1345
Table A.1

Values of oy, the standard deviation of the number of states allocated to
each processor, for the FMS model using three partitioning functions: an ideal
random hashing function, ho(s) = fi(s,3) mod 5003 mod N and ho(s) =
f2(s,3,5) mod 5003 mod N.

computation than f,. The even distribution of states ensures good load bal-
ancing of computation and communication overhead across processors, and
also maintains the reliability of our technique.

A.2  Primary hash function

Table A.2 compares the performance of two primary hash functions against
that of an ideal random hash function for the FMS model. We assume all states
are inserted into a single hash table with » = 350003 rows. We express the
performance of the hash functions in terms of the number of hash table rows
used and in terms of o2, the variance of the hash table row length. We assume

24



tangible hash table rows used o2
k states random f1 fo random fi fo
5 152712 | 123757 | 122349 | 123809 0.436 | 0.448 | 0.436
6 537768 | 274704 | 271493 | 274611 1.536 | 1.618 | 1.542
7 1639440 | 346769 | 345932 | 346 743 4.684 | 5.165 | 4.672
8 4459445 | 350002 | 350001 | 350001 | 12.741 | 14.670 | 12.741
9 | 11058190 | 350003 | 350003 | 350003 | 31.595 | 39.391 | 31.694
Table A.2

Values of 02, the variance of the number of states allocated to each hash table row,
and the number of hash table rows used for the FMS model. We take r = 350003 and
consider three primary hash functions: an ideal random hashing function, h;(s) =
fi(s,7) mod r and hi(s) = fa(s,3,5).

that an ideal random hash function distributes n states over r rows such that
the number of states assigned to each row follows a binomial distribution with
parameters (n,1/r).

Both functions provide a good spread of states across hash table rows. If
maximum computational speed is desirable the hash function based on f;
provides a reasonable distribution of states. However, the hash function based
on fy consistently achieves a better spread of states, so the hash function based
on fo is better if maximum reliability is the main concern.

A.8 Secondary hash function

The reliability analysis of our technique requires that the secondary hash func-
tion achieves a good distribution of states over the possible key values. In
addition, the values produced by hs(s) should be independent of the values
produced by hy(s) and hi(s). This can be ensured using the techniques out-
lined in Section 7.

Table A.3 compares the performance of secondary hash functions hs(s) =
fi(s,7) and ha(s) = fao(s,3,5) with that of an ideal random hashing function
for the states in the FMS model. The performance is expressed in terms of the
number of unique secondary key values across all states. As before, we assume
that an ideal random hash function distributes n states over 232 possible key
values such that the number of states assigned to each key value follows a
binomial distribution with parameters (n,1/23%).

Hash function f; does not achieve a particularly good distribution of secondary
key values, while f5 consistently achieves an excellent state distribution better
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tangible unique secondary key values
k states random fi fo
5 152712 152707 | 149694 152712
6 537768 537701 | 519530 537730
7 1639440 | 1638814 | 1540241 | 1639058
8 4459455 | 4454827 | 4063882 | 4456 835
9 | 11058190 | 11029755 | 9544696 | 11043 283

Table A.3

The number of unique secondary key values obtained by applying three secondary
hash functions to the states of the FMS model. We consider an ideal random hash
function, ha(s) = f1(s,7) and he(s) = fafs, 3,5).

than the ideal random hash function.

A.4 FEwvaluating hash function independence

Table A.4 shows the correlation between hash function values for various values
of k£ for the states of the FMS model. The results are presented in terms of
1ij, the correlation between the values produced by hash functions h;(s) and
h;(s). None of the correlations is significantly different from zero (assuming a
significance level of o = 0.05 in Pearson’s test for significant correlation).

k=4 k=5 k=6 k=1 k=38

ror | 435x1073 | 1.17x 1073 | 4.38x107*| 3.63x107* | —5.80 x 10~°

ro2 | 274x1073 | 593 x 1074 | —2.12x 1075 | 856 x10°° | —2.37 x 104

o | 1.30x 1073 | 428 x10°3 | —1.66 x 107* | —1.41 x 10°* | —=7.87 x 10°°
Table A.4

Correlations between hash function values for the states of the FMS model with
k=4,5,6,7,8. Here N = 256, r = 350003 and b = 32. The hash functions used are
ho(s) = fi(s,3) mod 5003 mod N, h1(s) = f1(s,7) mod r and ha(s) = fa(s,3,5).

Fig. A.2 shows scattergrams of the hash function values of 10 000 states sam-
pled from the state space of the FMS model with £ = 7. No unusual clusters
or patterns are observed in any of the scattergrams. The assumption that our
hash functions distribute states independently of one another therefore seems
to be reasonable in the context of the FMS model.
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Fig. A.2. Scattergrams of the hash function values of a sample of 10 000 states taken
from the state space of the FMS model with £ = 7. The parameter values and hash
functions are the same as those used in Table A.4.

B Appendix: Accuracy of the Performance Model

pred. obs. err. pred. obs.

k | N | run-time | run-time | % | speedup | speedup
51 1 28.26 27.32 | 3.44 1.00 1.00
2 16.85 16.00 | 5.31 1.67 1.70
4 9.103 8.850 | 2.86 3.10 3.08
6 6.220 6.440 | -3.42 4.54 4.24
8 4.722 5.018 | -5.90 5.99 5.44
10 3.805 4.368 | -12.9 7.43 6.25
12 3.186 3.918 | -18.7 8.87 6.97
6| 1 107.21 107.01 | 0.19 1.00 1.00
2 63.82 64.80 | -1.51 1.68 1.65
4 34.46 34.70 | -0.69 3.11 3.08
6 23.54 23.67 | -0.55 4.55 4.52
8 17.87 17.84 | 0.16 6.00 6.00
10 14.40 14.68 | -1.91 7.45 7.29
12 12.06 12.43 | -2.98 8.89 8.61
7|1 348.05 349.07 | -0.29 1.00 1.00
2 206.30 208.64 | -1.12 1.69 1.67
4 111.22 111.54 | -0.29 3.13 3.13
6 75.94 76.64 | -0.91 4.58 4.55
8 57.63 58.35 | -1.23 6.04 5.98
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pred. obs. err. pred. obs.

k | N | run-time | run-time | % | speedup | speedup

7110 46.43 48.38 | -4.03 7.50 7.22

12 38.87 40.52 | -4.07 8.96 8.61

8| 1| 1008.22 | 1008.42 | -0.02 1.00 1.00

2 591.21 586.24 | 0.85 1.71 1.72

4 317.39 318.15 | -0.24 3.18 3.17

6 216.43 218.26 | -0.84 4.66 4.62

8 164.14 164.30 | -0.10 6.14 6.14

10 132.19 136.55 | -3.19 7.63 7.39

12 110.64 115.33 | -4.07 9.11 8.74

9| 1| 2704.33 | 2698.01 | 0.23 1.00 1.00

2| 1548.08 | 1538.99 | 0.59 1.75 1.75

4 823.04 825.03 | -0.24 3.29 3.27

6 559.59 559.99 | -0.07 4.83 4.81

8 423.78 423.08 | 0.17 6.38 6.37

10 340.99 349.52 | -2.44 7.93 7.72

12 285.25 295.68 | -3.53 9.48 9.12
10 | 12 679.22 697.88 | -2.67 - -
11 112 | 1518.37 1537.7 | -1.26 - -
12 112 | 3235.28 | 3314.46 | -2.39 - -
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