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Abstract

Very large Markov chains often arise from stochastic models of complex real-life

systems. In this paper we investigate disk-based techniques for solving such Markov

chains on a distributed-memory parallel computer. We focus on two scalable numerical

methods, namely the Jacobi and Conjugate Gradient Squared (CGS) algorithms.

The critical bottleneck in these methods is the parallel sparse matrix-vector mul-

tiply operation. By exploiting the data locality typically found in automatically gen-

erated state-transition-rate matrices, we develop an e�cient matrix-vector multiply

kernel that is characterised by low per-processor memory usage, low communication

cost, and good load balance. At a slightly higher memory cost, the kernel also allows

for the overlapping of communication and computation.

We describe a distributed software architecture which makes use of two processes

per node to allow for the overlapping of disk I/O with computation and commu-

nication. By embedding our matrix-vector multiply kernel in this architecture, we

implement a high-performance disk-based solver on a 16-node Fujitsu AP3000 com-

puter. We demonstrate results showing good speedups and the capability to analyse

very large models with over 50 million states and over 500 million transitions.

1 Introduction

Several formalisms can be used to specify performance models, for example stochastic

Petri nets, stochastic process algebras and queueing networks. Traditionally, performance

measures for such models are derived by generating and solving a Markov chain corre-

sponding to the model's state-level transition behaviour. However, workstation memory

and compute power are frequently overwhelmed by the sheer size of the Markov chain's

state space and in�nitesimal generator matrix.

There are several techniques which attempt to cope with this state space explosion or

\largeness" problem. Most of these techniques avoid explicit storage of the in�nitesimal
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generator matrix by exploiting structure in the model [Buc95, Kem95]. Here, however, we

will consider the general case where no symmetry, hierarchy or other structure is assumed.

By far the most promising generally applicable technique for the large-scale solution of

Markov models on a single processor is the \disk-based" solution proposed by Deavours and

Sanders [DS98]. Their Block Gauss-Seidel (BGS) solver stores the in�nitesimal generator

matrix on disk and maintains high disk throughput using a system of two cooperating

processes which perform disk I/O and computation concurrently. The memory usage of

the BGS solver is low with the main requirement being the space for the solution vector.

In this way, systems of 10 million states and 100 million transitions can be solved on a

workstation with only 128MB RAM.

With the availability of distributed-memory computers and high-speed workstation clus-

ters, much attention has been focussed on methods for distributed and parallel state space

generation [CCM95, AH97, CGN98]. Recent developments mean that it is possible to

generate very large state spaces of over 50 million states and 500 million transitions on

a 12-node distributed-memory parallel computer in under half an hour [KMHK98]. A

single workstation is inadequate to solve models of this scale { the amount of computation

required is vast and the space required for the solution vector alone requires more memory

than is available on most workstations.

Corresponding distributed techniques which leverage the compute power, memory and

disk space of several processors are therefore needed to solve these models. This is the

focus of the present study, which considers disk-based solution techniques for distributed-

memory computers. In particular we consider two numerical methods that are suited to

parallel implementation: the Jacobi and Conjugate Gradient Squared (CGS) algorithms.

We discuss opportunities for parallelism and show how the memory requirements of the

CGS algorithm can be reduced at the cost of extra disk space.

Achieving good parallel performance from sparse matrix problems is a challenge which

often arises in scienti�c computing. The situation is particularly di�cult when the band-

width is low. This is often the case with Markov models where there are usually only

a limited number of events that can occur in each state, leading to a limited number of

successor states. This problem manifests itself in the sparse matrix-vector multiply op-

eration which lies at the core of the Jacobi and CGS algorithms. However, by exploiting

the structure induced by breadth-�rst search state generation algorithms we develop an

e�cient matrix-vector multiply kernel which exhibits low memory use, low communication

load and good load balance.

We combine our kernel with a high-performance distributed software architecture which

makes use of two processes per node to maximise the overlapping of disk I/O with com-

munication and computation. We have implemented the resulting solver on a distributed-

memory parallel computer with 16 nodes, each of which has a 300MHz processor and

256MB RAM. We demonstrate its e�ectiveness of our tool by solving Markov chains of

up to 50 million states and 500 million transitions.

The rest of this paper is organised as follows. Section 2 outlines the Jacobi and Conjugate

Gradient Squared algorithms and considers opportunities for parallelism. Section 3 shows

how sequential and distributed breadth �rst generators induce a structure on the in�nites-

imal generator matrix which can be used to develop an e�cient matrix-vector multiply

kernel. Section 4 presents a software framework for a high-performance distributed disk-

based Markov solver. Results from an implementation which embeds the matrix-vector
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multiply kernel in this framework are presented in Section 5. Section 6 concludes and

considers future work.

2 Scalable Numerical Methods

Solving a continuous time Markov chain with n states corresponds to solving the set of

steady-state equations of form:

�Q = 0;

P

�

i

= 1

where Q is the n � n in�nitesimal generator matrix and � is the n-element steady-state

solution vector. An equivalent formulation is Q

T

�

T

= 0 which allows the use of general

algorithms for solving Ax = b. Note that in general, we can assume A

ii

= Q

T

ii

= 1

without loss of generality, since Q

T

�

T

can be transformed into By where B = Q

T

D

�1

and y = D�

T

with D = diag(Q

T

11

; Q

T

22

; : : : ; Q

T

nn

). �

T

is then easily obtained as D

�1

y.

A broad spectrum of sequential solution techniques are available for solving steady-state

equations [Ste94]. These include classical iterative methods, Krylov subspace techniques

and decomposition-based techniques. Many of these algorithms are unsuited to distributed

or parallel implementation, however, since they rely on the so-called \Gauss-Seidel e�ect"

to accelerate convergence. This e�ect occurs when updated steady-state vector elements

are used in the calculation of other vector elements within the same iteration. In the case

of sparse matrices, this sequential dependency can be alleviated by using multi-coloured

ordering schemes which allow parallel computation of unrelated vector elements in phases;

however, this is a combinatorial problem of exponential complexity and obtaining suitable

orderings for very large matrices is infeasible.

Most classical iterative methods, such as Gauss-Seidel and SOR, su�er from this problem.

An important exception is the Jacobi method which uses independent updates of vector

elements. The Jacobi method is characterised by slow, smooth convergence and will be

used as a base case for comparison.

Krylov subspace methods [Wei95] are a powerful class of iterative methods which includes

many conjugate gradient-type algorithms. They derive their name from the fact that they

generate their iterates using a shifted Krylov subspace associated with the coe�cient ma-

trix. They are widely used in scienti�c computing since they are parameter free (unlike

SOR) and exhibit rapid, if somewhat erratic, convergence. In addition, these methods are

well suited to parallel implementation because they are based on matrix-vector products,

independent vector updates and inner products. The most recently developed algorithms

(CGS [Son89], BiCGSTAB [Vor92] and TFQMR [Fre93]) are also suitable for a disk-based

implementation since they access A in a predictable fashion and do not require multi-

plication with A

T

. Compared to classical iterative methods, however, Krylov subspace

techniques have high memory requirements. We select CGS for our study because it re-

quires the least memory of these methods; further we devise a scheme for reducing the

total memory requirement (across all processors) from 7 n-vectors to just 3 by storing

intermediate vectors on disk.
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Jacobi Algorithm

1. Initialise

� Q

T

is given and x

(0)

is an initial guess at the solution vector.

� r
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= �Q

T
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2. Iterate

� while jjr

(k)
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1
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1

> 10

�10

do

k = k + 1

for i = 0 to n� 1 do
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i
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x

(k)

3. Normalise x.

Figure 1: The Jacobi method [KGGK94].

2.1 Jacobi Method

Jacobi's method is a simple iterative method which is based on the observation that a

solution to Ax = b satis�es:

x

i

= (b

i
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X

i 6=j

A

ij

x

j

)=A

ii

This suggests the iterative form

x
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ij
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where k starts at 0 and x

(0)

is an initial guess at the solution vector. We can rework this

equation in terms of the residual r = b� Ax by observing that r

(k)

i

= b

i

�

P
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ij

x

(k)

j

,
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ii

= r
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=A

ii

+ x

(k)

i

The algorithm based on this formulation appears in Fig. 1. Since calculations of the x

(k)

i

's

are independent, vectors can be distributed and equation updates performed in parallel.

There is one matrix-vector product which may also be performed in parallel, although this

requires communication. Total storage requirements across all processors amounts to 3

n-vectors.

The stopping condition we choose is jjr

(k)

jj

1

=jjx

(k)

jj

1

< � with � = 10

�10

. This is a good

measure of the quality of the solution relative to the size of elements in the unnormalised

solution vector.
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2.2 Conjugate Gradient Squared Algorithm

CGS Algorithm
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Figure 2: The CGS algorithm [Son89].

The Conjugate Gradient Squared (CGS) algorithm [Son89] is a generalisation of the clas-

sical Conjugate Gradient method in that it allows for a general non-symmetric matrix

A instead of requiring A to be symmetric positive de�nite. The algorithm is shown in

Fig. 2. Greek letters (�, � and �) represent scalar values while Roman letters (p; q; r etc.)

represent n-vectors (with the exception of the iteration counter k). CGS performs two

matrix-vector multiplications, 6 vector updates and 2 dot products per iteration. These

operations give much scope for parallelism since vectors can be completely distributed

and calculation can proceed largely independently. Communication is only required for

the matrix-vector multiplication, the dot products and the calculation of vector norms

involved in the convergence test.

The memory requirements of the CGS algorithm are high, since storage is required for a

total of 7 n-vectors across all processors (p, q, r, u, v, x and m which is a vector required

by the distributed vector-multiply). Not all of these vectors are used at the same time,

however, and it is possible to reduce the total memory requirement to just 3 n-vectors at

the cost of writing some intermediate vectors to disk. The schedule which achieves this
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goal is shown to the right of the CGS algorithm in Fig. 2. The notation x

R

indicates

that vector x is read from disk at the start of an operation and x

W

indicates the vector is

written to disk at the end of the operation.

The stopping condition is the same as for the Jacobi algorithm. Since the convergence of

the CGS algorithm is often erratic, this avoids false convergence problems associated with

stopping conditions based on jjx

(k+1)

� x

(k)

jj

1

, and allows for fair comparison of the two

algorithms.

3 Distributed sparse matrix-vector multiply kernel

The sparse matrix-vector multiply operation Q

T

x forms the core of both the Jacobi and

CGS algorithms. Consequently an e�cient implementation of this kernel is central to

obtaining good performance. Ideal attributes of the kernel include low communication

load, good load balance, good scalability and the ability to overlap communication and

computation. In addition, per-processor memory requirements should be kept as low

as possible since storing vectors of double precision oating point numbers is expensive

(usually eight bytes each).

In the following sections, we study the structure of the in�nitesimal generator matrix Q

as typically produced by a large class of sequential and distributed state space generation

tools. We then consider various state reordering strategies which can be used during

matrix tranposition to obtain an e�ective data distribution for Q

T

. Finally, we present an

outline of an e�cient matrix-vector multiply kernel.

3.1 In�nitesimal Generator Matrix structure

Automated state space generation tools are widely used to map structurally unrestricted

high-level models onto their underlying state spaces and in�nitesimal generator matrices.

Typically this mapping is performed using a sequential breadth-�rst search (BFS) traversal

which assigns unique state sequence numbers to states in the order in which they are

encountered. Fig. 3(a) demonstrates how a sequential BFS generator induces a (mostly)

lower-diagonal structure on the resulting in�nitesimal generator matrix Q.

Distributed state space generators [CCM95, CGN98, KMHK98] use hash functions to

partition states across nodes so that each node is responsible for exploring a portion of the

state space and for constructing a portion of the generator matrixQ. Each node performs a

BFS-like exploration of a local state queue in a manner similar to the sequential algorithm.

Newly discovered states are passed to their \owner" processors where they are inserted

into the local queue and assigned a local state sequence number. Given p processors each

of which generates n

i

states, states in this scheme are identi�ed by a pair of integers (i; j)

where i (0 � i < p) is the node number of the host processor and j (0 � j < n

i

) is

the local state sequence number. Fig 3(b) illustrates the resulting structure induced by a

distributed BFS generator.
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(b) Distributed BFS generator (4 processors).

Figure 3: The non-zero structure of the in�nitesimal generator matrix Q as induced by

sequential and distributed breadth-�rst state generators. The matrices are derived from

a queueing Petri net model of a telecommunications protocol with an underlying Markov

chain of 73 735 states and 295 591 transitions.
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(b) Approximate BFS remapping with row-wise as-
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zeros allocated to each processor is the same.

Figure 4: The structure of Q

T

after state reordering and corresponding processor assign-

ments.
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3.2 Matrix reordering strategies

3.2.1 Random reordering

The most e�cient matrix-vector multiply algorithms for dense matrices are those based on

a block-checkerboard partitioning in which processors are assigned n=

p

p�n=

p

p blocks of

matrix elements [KGGK94]. Such algorithms rely on a balanced distribution of elements

across processors and regular interprocessor communication that can be conducted in

parallel. In general, however, sparse matrices have an unbalanced non-zero structure

so computation time is determined by the block with the largest number of non-zeros.

Ogielski and Aiello overcome this problem by showing that randomly permuting the rows

and columns of a sparse matrix produces a well-balanced block allocation with high-

probability [OA93]. The resulting matrix can then be used to good e�ect with well-known

general algorithms for sparse parallel matrix-vector multiplication [LG93, LPG94, HLP95].

In our case, the same random scattering e�ect can be achieved by using a pseudo-random

function f(i; j) ! (0; : : : ; n � 1) to assign state (i; j) to a unique global state number

according to the mapping:

f(i; j) = (c

1

� (

i�1

X

k=0

n

k

+ j) + c

2

) mod n

where n

i

is the number of states generated by node i, c

1

is a large prime and c

2

is an

arbitrary o�set. The global state number can then be used to partition the states over

the nodes in a straightforward fashion. Fig. 4(a) shows the resulting layout of Q

T

after

the application of this mapping and a corresponding block-checkerboard assignment of

processors.

3.2.2 Approximate BFS reordering

The random remapping described above allows for the application of well-known e�cient

algorithms but su�ers from high communication cost. One approach to alleviating this

bottleneck is to reorder the states of Q

T

across processors to maximize data locality

and minimise communication. This goal maps directly onto a p-way weighted graph

partitioning problem. This problem involves subdividing the vertices of a weighted graph

into p equal partitions such that the number of edges that straddle partitions is minimised

and the sum of the vertex weights in each partition is the same [KK98]. In our case

the states in Q

T

correspond to the vertices of the graph, the transitions between states

constitute the edges and the number of non-zeros in a row are the vertex weights. This

problem is NP-complete. We can, however, obtain considerable data locality by using a

rapid mapping which exploits the structure evident in Fig. 3(b). In particular, if we assign

state (i; j) to a global state number given by the function

f(i; j) = n�

i

X

k=0

min(j + 1; n

k

)�

p�1

X

k=i+1

min(j; n

k

)

we obtain the BFS-like structure for Q

T

shown in Fig. 4(b). It is then a straightforward

task to assign blocks of consecutive states to processors such that the number of non-zeros
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allocated to each processor is equal. This results in a row-wise allocation of matrix-blocks

to processors, as shown in Fig. 4(b).

3.3 Kernel algorithm

We now outline a disk-based distributed sparse vector-matrix multiply kernel. We assume

that the states of Q

T

have been reordered according to the approximate BFS mapping

described above, resulting in an allocation of s

i

states to processor i. We will use the

notation Q

IJ

to indicate the jth matrix block of node i (0 � i; j < p). x

I

will be used

to denote the distributed portion of vector x of length s

i

allocated to node i.

function multiply-kernel (Q

T

I�

: matrix[s

i

][n], x : vector[s

i

]) : vector[s

i

]

var y : vector[s

i

]

m : vector[max

i

(s

i

)]

j; k; p : integer

begin

y = 0

for k = 0 to p� 1 do begin

j = (i+ k) mod p

if Q

T

IJ

is empty continue

if i 6= j do begin

m = request-subvector(j)

y = y + disk-multiply(Q

T

IJ

;m)

end else

y = y + disk-multiply(Q

T

II

; x)

end

serve-requests(x)

return y

end

Figure 5: Distributed sparse matrix-vector multiply kernel for node i.

The algorithm for node i which performs y

I

= Q

T

I�

x

I

is outlined in Fig. 5. Node i begins by

multiplying matrix block Q

T

II

with x

I

. This is performed by the procedure disk-multiply

which reads blocks of non-zero elements from disk as necessary. Then, for each j 6= i and

non-empty blockQ

T

IJ

, the node calls request-subvector(j) which requests and receives from

node j the subvector m to be multiplied with that block. To minimize communication, the

subvector m contains only the sequence of elements in x

J

which are actually referenced

by the computation of Q

T

IJ

x

J

.

Nodes may use a dedicated thread to detect and service incoming requests for elements of

x

J

, thus allowing communication to proceed in tandem with the computation. Alterna-

tively, in the case of a thread-unsafe message passing library, non-blocking probe and send

9



operations can be used to achieve the same e�ect. Any requests that remain outstanding

are processed by the serve-request procedure.

The kernel algorithm as presented above blocks while waiting for remote subvectors. This

can be avoided by taking further advantage of non-blocking communication primitives.

In particular, during the initial multiplication Q

T

II

x

I

, node i can request the subvector

required by the subsequent block (i + 1) mod p. This subvector can be received into m

using a non-blocking receive operation. At the cost of an extra vector of length max

i

(s

i

),

this procedure can be extended to the remaining subblocks, thus reducing waiting time

further by allowing for the complete overlap of communication and computation.

4 Tool architecture

This section describes a high-performance architecture for a distributed disk-based Markov

Chain solver that makes use of our matrix-vector multiply kernel.

The limiting factor governing the computation speed of disk-based methods is usually disk

throughput. This is especially the case with very large matrix �les where operating system

�le caching is likely to be ine�ective, resulting in poor disk throughput. It is therefore

important for nodes to be able to overlap disk I/O and computation to achieve maximum

e�ciency. To solve this problem, Deavours and Sanders propose a two-process architecture

which they use in their sequential disk-based Block Gauss-Seidel (BGS) solver [DS98]. We

adapt this architecture to the distributed case, where the approach has the added bene�t

of allowing communication to proceed in parallel with disk I/O.

Local
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Disk

Disk

Process

Disk I/O

Compute Disk I/O

Shared
Memory

Compute

Shared Shared
Memory

Memory
Shared

Process

Process
Disk I/O Compute

Process

Memory

Process
Compute

Process

ProcessProcess

Disk I/O

Network

Buffer 1

Buffer 2

Buffer 1

Buffer 2

Semaphores

P0

P2Semaphores

Buffer 1

Buffer 2

SemaphoresP3

Buffer 1

Buffer 2

P1

Semaphores

Figure 6: Tool architecture

Fig. 6 shows the architecture. Each node has two processes: a Disk I/O process dedicated

to reading matrix elements from a local disk, and a Compute process which performs
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the iterations using the matrix-vector multiply kernel. The processes share two data

bu�ers located in shared memory and synchronise via semaphores. Together the processes

operate as a classical producer-consumer system, with the disk I/O process �lling one

shared memory bu�er while the compute process consumes data from the other. Interested

readers are invited to consult [DS98] for a thorough exposition of this architecture and its

bene�ts in a single processor context.

5 Results

We have implemented a distributed disk-based Markov solver which uses the kernel de-

scribed in Section 3.3 and the software architecture outlined in Section 4. The solver is

written in C++ and uses the Message Passing Interface (MPI) [GLS94] standard so it

is portable to a wide variety of parallel computers and workstation clusters. The results

presented here were obtained on a Fujitsu AP3000 distributed-memory parallel computer

with 16 processing nodes [ITS97]. Each node runs the Solaris operating system and has a

300MHz UltraSparc processor, 256MB RAM and a 4GB local disk with uncached through-

put of 6MB/s. The nodes are connected by a high-speed network with cut-through routing

and a peak throughput of 50MB/s.
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(a) Petri net representation

k states (n) transitions

1 54 155

2 810 3 699

3 6 520 37 394

4 35 910 237 120

5 152 712 1 111 482

6 537 768 4 205 670

7 1 639 440 13 552 968

8 4 459 455 38 533 968

9 11 058 190 99 075 405

10 25 397 658 234 523 289

11 54 682 992 518 030 370

(b) States and transitions in

the underlying Markov chain

Figure 7: The FMS Generalised Stochastic Petri net [CT93]

To test our solver over a range of problem sizes, we consider the 22-place GSPN model of

a exible manufacturing system shown in Fig 7(a). This model, which we refer to as the

11



FMS model, was originally presented in detail in [CT93]. A detailed understanding of the

model is not required, except to note that the model has a parameter k (corresponding to

the number of initial tokens on places P1, P2 and P3) and that as k increases, so does

the number of states n and the number of transitions in the state graph (see Fig. 7(b)).

We use the same transition rates (many of them state-dependent) as given in [CT93].

The state spaces and in�nitesimal generator matrices for the models were generated using

the distributed state generation algorithm presented in [KMHK98]. The generator ma-

trices were then remapped in a distributed fashion according to the reordering presented

in Section 3.2.2. Both of these steps are rapid relative to the time taken for solution; 16

processors generate and remap the k = 11 (54 million states) case in under an hour of real

time.

The resulting matrix blocks require 6 bytes of disk space per non-zero element { 4 for

the column index and 2 used as in index into a vector of transition rates. The largest

model requires about 18000 distinct transition rates so this approach is more economical

than using 8 bytes to store each rate as a double precision number. The number of non-

zero entries in each block row is also stored; one byte per block row is adequate since

the bandwidth of the matrix is low (about 10). The latter information may be stored

in memory for rapid access, or, for extremely large models, read in from disk during

matrix-vector multiplication.

Table 1 presents the execution time (de�ned as maximum processor run-time) in seconds

required for the distributed solution of models using the CGS and Jacobi methods. The

models range in size from k = 4 (35 910 states) to k = 11 (54 million states) and runs are

conducted on 1, 2, 4, 8, 12 and 16 processors.

The number of iterations and the per-node memory requirement for each run is also

shown. The number of CGS iterations varies slightly with p whereas the number of Jacobi

iterations remains constant. This occurs because the uniformly distributed starting vector

x

(0)

used to initialise the Jacobi method is unsuitable for CGS since CGS's starting vector

should ideally not be close to the �nal solution. Consequently we use a randomly-generated

starting vector x

(0)

for CGS, with each processor using a di�erent random seed.

Fig. 8 compares the convergence of the Jacobi method with that of the CGS algorithm for

the k = 7 case in terms of the number of matrix-multiplications performed. The Jacobi

method exhibits smooth but slow convergence, while the CGS algorithm exhibits rapid but

erratic convergence. This trend also holds for the other results, with the CGS algorithm

typically converging about 4 times faster than the Jacobi method.

The largest model that can be solved on a single processor is the case k = 8 (4.5 million

states). Fig. 9 compares the average time taken per distributed CGS iteration for model

sizes up to k = 8 and various numbers of processors. The graph shows a dramatic reduction

in run-time as processors are added { for the case k = 8 16 processors perform iterations

at 25 times the speed of 1 processor. This superlinear speedup can be attributed to better

caching of disk I/O, resulting in higher data throughput.

Fig. 10 shows the speedup and e�ciency achieved by the CGS method for small models

with k < 7 where variation due to caching e�ects does not play an important role. The

speedup S

p

for p processors is given by the run time of the sequential solution (p = 1)

divided by the run time of the distributed solution with p processors. E�ciency for p

processors is given by S

p

=p. We see that that larger problem sizes produce better speedups,
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k=4 k=5 k=6 k=7 k=8 k=9 k=10 k = 11

Jacobi time (s) 40.383 252.89 1160.0 4491.6

Jacobi iterations 1220 1500 1790 2095

p = 1 CGS time (s) 16.817 111.25 479.09 2191.1 30974

CGS iterations 125 172 191 231 262

Memory/node (MB) 10.9 13.8 23.4 51.0 121.5

Jacobi time (s) 27.912 161.95 790.33 3535.9

Jacobi iterations 1220 1500 1790 2095

p = 2 CGS time (s) 10.008 55.795 259.81 1082.1 13822

CGS iterations 125 154 189 217 279

Memory/node (MB) 10.5 11.9 17.00 31.3 68.0

Jacobi time (s) 24.574 113.51 633.99 2710.1

Jacobi iterations 1220 1500 1790 2095

p = 4 CGS time (s) 7.0795 35.578 165.86 725.89 2752.2

CGS iterations 132 148 186 227 258

Memory/node (MB) 10.3 11.1 13.8 21.5 41.2

Jacobi time (s) 27.427 90.455 406.46 1777.1 6835.4

Jacobi iterations 1220 1500 1790 2095 2410

p = 8 CGS time (s) 5.6017 26.682 106.98 458.67 1773.3 5850.3

CGS iterations 122 159 184 222 268 315

Memory/node (MB) 10.1 10.6 12.2 16.6 27.8 54.2

Jacobi time (s) 28.245 89.047 349.54 1590.6 5132.2 17187 44911

Jacobi iterations 1220 1500 1790 2095 2410 2730 3065

p = 12 CGS time (s) 6.6556 27.423 91.973 351.43 1293.3 4379.83 23558

CGS iterations 126 166 184 217 257 322 320

Memory/node (MB) 10.1 10.5 11.6 14.9 23.4 43.2 86.2

Jacobi time (s) 31.880 95.864 348.39 1316.1 4664.8 14636 38770

Jacobi iterations 1220 1500 1790 2095 2410 2730 3065

p = 16 CGS time (s) 7.1523 26.483 89.230 333.35 1183.2 3818.5 11058 62261

CGS iterations 123 162 185 227 254 317 329 391

Memory/node (MB) 10.1 10.4 11.3 14.1 21.1 37.6 73.5 92.0

Table 1: Real time in seconds required for the distributed solution of the FMS model.
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Figure 8: Jacobi and CGS convergence behaviour for the case k = 7.
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and that adding processors increases the speedup for all but the smallest problems where

communication costs dominate. The e�ciency graph shows that diminishing returns occur

as we add processors, as is to be expected on a sparse problem with low bandwidth.

Moving beyond the maximum problem size that can be generated on a single processor,

the k = 9 case (11 million states) is solved in little over an hour on 16 processors, while

the k = 10 case (25 million states) takes just over 3 hours. In the latter case, the total

amount of disk I/O across all nodes is in excess of 1TB, with the nodes jointly processing

an average of 91MB of disk data every second.

The largest case with k = 11 (54 million states) is solved in 17 hours 20 minutes on 16

processors. Here the total amount of disk I/O required is almost 3TB, with the nodes

jointly processing an average of 42MB of disk data every second. The capability to solve

a problem of this scale is impressive.

6 Conclusion and future work

We have considered distributed disk-based techiques for solving very large Markov chains

using a distributed-memory parallel computer. We selected appropriate numerical meth-

ods and investigated the structure of in�nitesimal generator matrices produced by sequen-

tial and distributed breadth-�rst state space generators. We exploited this structure to

develop a matrix-vector multiply kernel which has low memory usage, low communication

cost and good load balance. The kernel also provides opportunities for the overlapping of

communication and computation.

We have described a software architecture for a distributed disk-based Markov solver. This

software architecture uses two processes per node which allows for disk I/O to proceed

concurrently with computation and communication. We have implemented such a solver

on a 16-node distributed-memory parallel computer and used it to solve models with up to

50 million states and 500 million non-zero elements. Solving such a large problem using a

sequential solver running on a single processor would be a daunting task indeed { besides

the huge amount of computation required, the memory required to store the solution

vector alone is over 400MB.

This study has concentrated on two scalable well-known numerical methods (Jacobi and

Conjugate Gradient Squared). Future work will focus on developing distributed algorithms

that also scale well but which use less memory and allow for the reuse of matrix blocks as

they are generated.

7 Acknowledgements

The authors would like to thank the Imperial College Parallel Computing Centre for the

use of the AP3000 distributed-memory parallel computer. We would also like to thank

Silvana Zappacosta for helpful discussion. William Knottenbelt gratefully acknowledges

the support and funding provided by the Beit Fellowship for Scienti�c Research.

15



References

[AH97] S.C. Allmaier and G. Horton. Parallel shared-memory state-space exploration in

stochastic modeling. Lecture Notes in Computer Science, 1253, 1997.

[Buc95] P. Buchholz. Hierarchical Markovian models: Symmetries and aggregation. Perfor-

mance Evaluation, 22:93{110, 1995.

[CCM95] S. Caselli, G. Conte, and P. Marenzoni. Parallel state exploration for GSPN models.

In Lecture Notes in Computer Science 935: Proceedings of the 16th International Con-

ference on the Application and Theory and Petri Nets. Springer Verlag, Turin, Italy,

June 1995.

[CGN98] G. Ciardo, J. Gluckman, and D. Nicol. Distributed state space generation of discrete-

state stochastic models. INFORMS Journal on Computing, 10(1):82{93, Winter 1998.

[CT93] G. Ciardo and K.S. Trivedi. A decomposition approach for stochastic reward net

models. Performance Evaluation, 18(1):37{59, 1993.

[DS98] Daniel D. Deavours and William H. Sanders. An e�cient disk-based tool for solving

large Markov models. Performance Evaluation, 33(1):67{84, June 1998.

[Fre93] Roland W. Freund. A transpose-free quasi-minimal residual algorithm for non-

Hermitian linear systems. SIAM Journal on Scienti�c Computing, 14(2):470{482,

March 1993.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming with

the Message Passing Interface. MIT Press, Cambridge, Massachussetts, 1994.

[HLP95] Bruce Hendrickson, Robert Leland, and Steve Plimpton. An e�cient parallel algo-

rithm for matrix-vector multiplication. International Journal of High Speed Comput-

ing, 7(1):73{88, 1995.

[ITS97] H. Ishihata, M. Takahashi, and H. Sato. Hardware of AP3000 scalar parallel server.

Fujitsu Scienti�c and Technical Journal, 33(1):24{30, June 1997.

[Kem95] P. Kemper. Numerical analysis of superposed GSPNs. In Proc. of the Sixth Interna-

tional Workshop on Petri Nets and Perfromance Models, pages 52{62. IEEE Computer

Society Press, 1995.

[KGGK94] Vipin Kumar, Ananth Grama, Anshul Gupta, and George Karypis. Introduction to

Parallel Computing. Benjamin/Cummings Publishing, 1994.

[KK98] George Karypis and Vipin Kumar. Multilevel k-way partitioning scheme for irregular

graphs. Journal of Parallel and Distributed Computing, 48(1):96{129, 1998. URL

http://www.cs.unm.edu/~karypis.

[KMHK98] William J. Knottenbelt, Mark Mestern, Peter Harrison, and Pieter Kritzinger. Proba-

bility, parallelism and the state space exploration problem. In Ramon Puijaner, Nun-

zio N. Savino, and Bartomeu Serra, editors, Lecture notes in Computer Science 1469:

Proceedings of the 10th International Conference on Modelling, Techniques and Tools

(TOOLS '98), pages 165{179, Palma de Mallorca, Spain, September 1998. Springer

Verlag.

[LG93] John G. Lewis and Robert A. van de Geijn. Distributed memory matrix-vector multi-

plication and conjugate gradient algorithms. In Proceedings Supercomputing '93, pages

484{492, Portland, Oregon, 15{19 November 1993. IEEE Computer Society Press.

[LPG94] John G. Lewis, David G. Payne, and Robert A. van de Geijn. Matrix-vector mul-

tiplication and conjugate gradient algorithms on distributed memory computers. In

Scalable High Performance Computing Conference, 1994.

16



[OA93] Andrew T. Ogielski and William Aiello. Sparse matrix computations on parallel pro-

cessor arrays. SIAM Journal on Scienti�c Computing, 14(3):519{530, May 1993.

[Son89] Peter Sonneveld. CGS, a fast Lanczos-type solver for nonsymmetric linear systems.

SIAM Journal on Scienti�c and Statistical Computing, 10(1):36{52, January 1989.

[Ste94] William J. Stewart. Introduction to the Numerical Solution of Markov Chains. Prince-

ton University Press, 1994.

[Vor92] Henk van der Vorst. Bi-CGSTAB: A fast and smoothly converging variant of BiCG

for the solution of nonsymmetric linear systems. SIAM Journal on Scienti�c and

Statistical Computing, 13(2):631{644, March 1992.

[Wei95] R. Weiss. A theoretical overview of Krylov subspace methods. Appl. Numer. Math.,

19:207{233, 1995. Special Issue on Iterative Methods for Linear Equations.

17


