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Abstract
This thesis aims to serve as a comprehensive guide for effective design, development
and performance evaluation of novel Weighted-Risk-Contribution indices for the alter-
native asset space. We concentrate our focus on the quest for diversification and risk-
reward balance by incorporating commodities into a crypto-asset allocation.

First, we introduce the CoinShares Gold and Cryptoassets Index, a novel index product
that combines a basket of five cryptoassets with gold to enhance the risk profile while
maintaining independence from traditional financial asset classes. By generalizing the
theory of Equal Risk Contribution, we compare various asset allocation strategies and
demonstrate the effectiveness of a crypto-gold weighting based on the Weighted Risk
Contribution allocation scheme in terms of Sharpe Ratio.

To assess the resilience of the index, we further introduce a complete stress testing
framework using ARMA–GARCH processes and copulas to simulate realistic market
conditions and extreme events. The analysis reveals a superior risk-return profile for the
CoinShares Gold and Cryptoassets Index compared to traditional market-cap-weighted
cryptoasset indices. Furthermore, we employ Gaussian Hidden Markov Models and
Markov-switching GARCH models to identify high-risk market conditions and demon-
strate the stable risk-reward profile and superior performance of the index in terms of
the Omega ratio, particularly for investors targeting wealth preservation and moderate
annual returns.

Lastly, we seek to quantify the diversification benefits of incorporating commodities into
cryptoasset portfolios by comparing the CoinShares Gold and Cryptoassets Index with
a modified index that replaces gold with a basket of five commodities. Mean-variance
spanning tests and simulation-based Dynamic Conditional Correlation GARCH models
reveal statistically significant improvements in the efficient frontier for both indices. We
conclude that the modified index is more suitable for investors seeking higher annual
returns, while the original index is more appropriate for those with moderate annual
return goals.

The aforementioned studies advance our understanding of portfolio diversification in
the context of cryptoassets and emphasize the potential benefits of incorporating gold
and other commodities into crypto-based index strategies, thereby providing valuable
insights for investors and financial practitioners.
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Chapter 1

Introduction

1.1 Publications & Thesis Outline
This thesis is built upon the following research publications:

1. Koutsouri, Aikaterini, Poli, Francesco, Alfieri, Elise, Petch, Michael, Distaso, Walter, and
Knottenbelt, William J. (2019). ”Balancing Cryptoassets and Gold: A Weighted-Risk-
Contribution Index for the Alternative Asset Space.” In Proc. 1st International Confer-
ence on Mathematical Research for the Blockchain Economy (MARBLE 2019), Santorini,
Greece. [87].

2. Koutsouri, Aikaterini, Petch, Michael, and Knottenbelt, William J. (2020). ”Stress Test-
ing Diversified Portfolios: The Case of the CoinShares Gold and Cryptoassets Index.” In
Proc. 2nd International Conference on Mathematical Research for the Blockchain Econ-
omy (MARBLE 2020). [84].

3. Koutsouri, Aikaterini, Petch, Michael, an Knottenbelt, William J. (2021). ”Performance of
the CoinShares Gold and Cryptoassets Index Under Different Market Regimes.” Cryptoe-
conomic Systems. [86].

4. Koutsouri, Aikaterini, Petch, Michael, and Knottenbelt, William J. (2021). ”Diversification
Benefits of Commodities for Cryptoasset Portfolios.” In 2021 IEEE International Confer-
ence on Blockchain and Cryptocurrency (ICBC) [85].

Each publication cited herein acknowledges my position as the primary author and my role in guid-
ing the research processes and presenting the findings within each work. I acknowledge the valu-
able contributions of my colleagues, particularly in assisting with the literature review and intro-
ductory sections. Their support played a significant role in the completion of this work.

The remainder of this thesis is organised as follows:

Chapter 2 introduces the basic concepts around the emerging digital assets class, including a
description of blockchain technology and the historical evolution of the cryptoassets class. It
presents characteristics of the cryptocurrencies that distinguishes them from traditional asset
classes, as well as an introductory taxonomy for them. It also provides a thorough presentation of
the technical prerequisites necessary to understand the work presented in subsequent chapters.
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1.1. Publications & Thesis Outline Introduction

Chapter 3 presents the development of a novel index that provides investors with exposure to
cryptoassets and physical gold, capitalizing on their unique characteristics: the high volatility of
cryptoassets, the low volatility of gold, and their lack of correlation. This combination results in
a reduction of price instability while increasing the average return per unit of volatility. The risk
parity theory is extended to a Weighted Risk Contribution (WRC) approach, which proves to be a
refined method for adjusting the index’s exposure to the two asset classes, with moderate turnover
and thus reduced operating costs. Additionally, the proposed framework considers various events
exclusive to the cryptoasset domain, such as hard forks and airdrops, and devises appropriate
policies to address them. This comprehensive approach ultimately culminates in the creation of
an investable product with distinct features that render it a unique investment opportunity.

Chapter 4 discusses a comprehensive stress testing methodology and scenario-based risk man-
agement framework that is appropriate for assessing diversified portfolios. The approach com-
bines univariate modelling of risk factors using ARMA and GJR-GARCH processes, Extreme Value
Theory for extreme outcomes, and copulas for dependence structures and generates plausibility-
constrained scenarios. The framework is then applied directly to the proposed index of chapter
3 and ultimately demonstrates the effectiveness of the Weighted Risk Contribution mechanism
in mitigating risk, showcasing a superior risk-return profile compared to traditional market-cap-
weighted cryptoasset indices. The methodology can be adapted for various risk factor shocks and
potentially serve as a forward-looking portfolio optimization approach.

Chapter 5 proposes a method for market regime identification by utilizing Gaussian Hidden Markov
Models (HMM) for intermediate trend-related states and Markov-switching GARCH models for
volatility-related states. The two approaches in combination can be used to generate realistic sim-
ulated price paths that follow the market’s cyclical patterns, switching between different regimes.
It is shown that the simulation framework can be used for performance assessment purposes -
utilising the Omega ratio metric - to ultimately evaluate a portfolio’s suitability for investors with
different risk tolerances and return targets. It is finally demonstrated that the described methodol-
ogy can be incorporated in the index design process and the results further confirm the superiority
of the WRC approach for the cryptoasset space.

Chapter 6 examines the diversification properties of commodities for cryptoasset investors and
further proposes extending the original index in the commodities space. This is performed through
the utilisation of mean-variance spanning tests which quantify the impact of adding constituents
to a portfolio. The results reveal a significant shift in the efficient frontier for both global minimum
variance and tangency portfolios upon the addition of physical gold and the inclusion of a broader
commodity basket further confirms a statistically significant improvement, primarily through a shift
in the tangency portfolio. Additionally, this chapter supplements the mean-variance spanning re-
sults with a Dynamic Conditional Correlation GARCH simulation specification, in order to compare
the performance of the original and modified indices and their components in terms of risk metrics.

Aikaterini Koutsouri Balancing Cryptoassets and Commodities 17



1.2. Research Motivation Introduction

1.2 Research Motivation
Our work is motivated by the rapid emergence of cryptoassets as significant components of invest-
ment portfolios which calls for a deeper understanding of their characteristics and implications for
financial risk management. With this in mind, the central theme of the thesis revolves around the
challenges of integrating cryptoassets with traditional investment strategies and the developing
robust methods to mitigate associated risks. We aim to provide concrete insights into the manage-
ment and optimization of cryptoasset-inclusive portfolios, in a way that bridges the gap between
traditional financial methods and the emerging field of cryptoassets. The research presented in
this thesis is driven by four key points of motivation, summarised as follows:

1. The Quest for Diversification: The primary motivation of this thesis centers around the pur-
suit of diversification in investment portfolios through the inclusion of cryptoassets. With their
distinct characteristics, particularly their low correlation with traditional asset classes, we hy-
pothesize that cryptoassets offer unique opportunities to enhance portfolio diversification.
Given the absence of risk-mitigating, cryptoasset-inclusive structured products at the time
of writing this thesis, our initial aim is to introduce simple, yet effective, novel low-volatility
indices that blend traditional investments with a selection of cryptoassets.

2. Stress Testing in Post-Crisis Financial Systems: The next component of the work presented
delves into the realm of stress testing, a critical tool in financial risk management that gained
prominence following the 2007 financial crisis. Our motivation stems from two key considera-
tions: (i) risk management is a vital component in the development of any investment strategy
and (ii) it represents an under-researched field in the context of cryptoasset portfolios as of
the time this thesis was being developed.

3. The Challenge of Market Regime Adaptation: An additional motivation for this thesis arises
from the challenge of identifying market regimes and assessing their impact on investment
strategies. Driven by the lack of relevant research at the time of composing this thesis, we hy-
pothesize the existence of several market regimes, each with distinct risk-performance char-
acteristics. Our aims are twofold: (i) to uncover high-risk market states within the context of
cryptoasset portfolios, and (ii) to evaluate the effectiveness of diversification strategies under
various market conditions.

4. Integration with Traditional Asset Classes: A final point of motivation revolves around ex-
ploring the interplay between cryptoassets and traditional asset classes, especially commodi-
ties. Considering the scarcity of available relevant research, our goals are twofold: (i) to high-
light the benefits and challenges of diversifying multi-asset portfolios with cryptoassets, and
(ii) to determine the optimal balance between cryptoassets and conventional investments in
order to meet a variety of investor objectives.

Aikaterini Koutsouri Balancing Cryptoassets and Commodities 18



1.3. Contributions Introduction

1.3 Contributions
The contributions of this thesis are summarised below:

Weighted Risk Contribution The first contribution of this thesis is the proposal of the Weighted
Risk Contribution (WRC) allocation scheme, as a generalisation of the equal risk contribution
portfolios. Ultimately we find that, in the context of crypto-based index solutions, the WRC
allocation has historically proven to be more effective in terms of Sharpe Ratio than several al-
ternative asset allocation strategies including Shannon’s Demon, market capitalisation, equally
weighted and equal risk contribution portfolios.

Digital Asset Indices The research and experimentation conducted within this thesis, eventu-
ally led to the release of the CoinShares Gold & Cryptoassets Index (CGCI), the first EU Bench-
mark Regulations (EU BMR) compliant index for the digital asset industry that combines cryp-
toassets and gold. In addition to this, two more index products have been released, the Coin-
Shares Equally Weighted Crypto Index (CECI) and the CoinShares Gold and Bitcoin Index (CGBI).
The former has been designed to provide a diversified exposure to the five most liquid cryp-
toassets, offering a way to replicate the original index’s crypto-basket composition, while the
later is a modification of the original index, replacing the crypto-basket component with Bitcoin.
All indices rebalance once a month on the first business day of each month and are currently
accessible on Bloomberg Terminals and Refinitiv (previously Reuters).

Cryptoasset Price Dynamics This thesis also utilises a set of tools to model the evolution of
cryptoasset prices. This is done from a financial time series modeling perspective, employing
various Autoregressive Moving Average (ARMA), Generalized Autoregressive Conditional Het-
eroskedasticity (GARCH), Hidden Markov Models (HMM), and regime-switching GARCH models
to capture complex dynamics of pricing data. ARMA models are used to describe the autocor-
relation structure in stationary time series, capturing mean reversion and short-term trends.
GARCH models address the volatility clustering and conditional heteroskedasticity that is ob-
served in returns time series, allowing for the estimation of time-varying volatility. HMMs en-
able the modeling of latent states underlying the observed data and provide insights into po-
tential market regime changes and hidden processes affecting cryptoasset prices. Regime-
switching GARCH models combine the GARCH framework with a Markov-switching mecha-
nism, capturing shifts in the volatility of financial time series, thereby accounting for abrupt
changes in market conditions. The aforementioned models help to advance the understanding
of the crypto-market behavior and ultimately foster the growth and integration of cryptoassets
into the broader financial ecosystem.
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1.3. Contributions Introduction

Multivariate Modeling & Relationship with Traditional Asset Classes An additional contribu-
tion of this thesis is the application of multivariate time series modeling techniques that allow
us to unveil the relationship between cryptoassets and traditional asset classes. We demon-
strate how copulas can be employed to capture the dependence structure between multiple
financial time series while accounting for their individual marginal distributions. In the realm of
financial time series, where assets often exhibit non-linear relationships and tail dependence,
we show that copulas offer a flexible and powerful approach to model these complex struc-
tures. We show that they facilitate a more accurate representation of the joint behavior of
financial assets and that they are suitable for applications such as portfolio optimization, risk
management, and financial stress testing. Finally, we demonstrate the above advantages in
practice by applying them to the price time series of cryptoassets and commodities, revealing
valuable insights into the dependence structure between the two asset classes.

Performance Evaluation & Stress Testing Frameworks An additional contribution of this the-
sis is the combination of all the aforementioned modeling techniques to create comprehensive
performance evaluation and stress testing frameworks for cryptoasset-containing portfolios.
Univariate models are used to generate observations of the mean returns and volatilities for
each asset in the portfolio while the regime-switching GARCH and HMM models can help ac-
count for changes in the market dynamics and volatility across different regimes, adding more
realism to the simulation process. Also, Extreme Value Theory (EVT) is applied to estimate the
tails of the residual distributions, enabling a more accurate representation of extreme events
and copulas are then employed to account the potential impact of correlations shocks. Once
the proposed models are fitted and the dependencies among the assets are captured, we sug-
gest Monte Carlo simulations to be performed, in order to generate a large number of possible
future scenarios for the assets’ returns. The simulated paths are used to estimate the portfo-
lio’s performance under various market conditions and to calculate appropriate risk measures.
Additionally, we demonstrate the importance of Mean-Variance spanning tests as a a statisti-
cal framework to evaluate the diversification benefits of adding new assets or asset classes
to an existing investment portfolio. By assessing the impact of these additions on the effi-
cient frontier, the tests help investors determine whether the new assets significantly improve
the risk-return trade-off. The above concepts provide a comprehensive view of the asymptotic
performance of the portfolio, enabling investors to make informed decisions regarding their
investment strategies and risk management practices.
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Chapter 2

Background
Blockchain technology emerged as a revolutionary innovation in the financial sector,
offering a decentralized, distributed digital ledger for secure and transparent transac-
tion recording. The technology gained popularity due to its ability to provide high levels
of transparency and security, as well as its decentralized nature, which eliminates the
need for intermediaries. Bitcoin, the first and most popular cryptocurrency, was created
to serve as a decentralized digital currency without the need for central authorities or
intermediaries. The cryptocurrency market has experienced numerous boom and bust
cycles since Bitcoin’s inception, driven by market speculation, media hype, and regula-
tory developments. Despite facing challenges, such as market volatility and high-profile
exchange failures, the core blockchain technology remains resilient. With the 2008 fi-
nancial crisis further prompting a shift towards alternative investments, cryptoassets
are gaining popularity, as they offer opportunities for risk balance and portfolio diversi-
fication. Backed by blockchain technology, cryptoassets provide unique opportunities
for investors, as they are independent from traditional financial systems and can act as
a hedge against market uncertainties and currency devaluation. However, the volatile
nature of digital assets and the rapidly evolving market landscape necessitate the im-
plementation of robust risk and portfolio management techniques. By employing such
strategies, investors can better navigate the complex and dynamic crypto-ecosystem,
mitigating losses and capitalizing on promising opportunities.

This chapter introduces the unique characteristics of the cryptoasset class and highlights the im-
portance of diversification and proper risk management in the portfolio contruction process.
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2.1. Cryptocurrencies as Alternative Assets Background

2.1 Cryptocurrencies as Alternative Assets

2.1.1 ABrief History of Cryptocurrency andBlockchain Technology
Blockchain technology and Bitcoin are two concepts that are related and are now considered revolu-
tionary technologies in the financial world. While the two terms are the most commonly cited when
referring to the cryptoassets, it is important to distinguish between the two. The term ”Blockchain”
refers to a decentralized, distributed digital ledger that records transactions in a secure and trans-
parent manner. Each node in the network has a copy of the entire blockchain and transactions are
validated and added to the blockchain through a consensus mechanism. It is therefore a digital
record-keeping system that is spread across a network of computers making it difficult to tamper
with or corrupt. Each transaction is recorded in a block which is linked to the previous block form-
ing a chain of blocks, hence the term “blockchain” [130, 146]. When a new transaction is initiated it
is broadcast to all nodes in the network and the nodes validate the transaction using a consensus
mechanism. After the transaction validation, the transaction is grouped with other transactions to
form a new block and the block is added to the blockchain. To ensure the integrity and security
of the blockchain, each block contains a cryptographic hash of the previous block. This makes
it virtually impossible to alter any previous transaction on the blockchain without invalidating the
entire chain. The technology has gained significant popularity due to its ability to provide a high
degree of transparency and security [133].

Another very important reason for its popularity is its decentralized nature which eliminates the
need for intermediaries [103]. This decentralized aspect has become popular among users due to
its enhanced security, as it lacks a single point of failure, making it more resistant to hacking and
data breaches. Unlike traditional financial systems where transactions are processed and verified
by a central authority, the blockchain network is peer-to-peer meaning that transactions are vali-
dated by the participants on the network [31]. It fosters transparency and trust, as all transactions
are recorded on a public ledger. It ensures data integrity and reduces reliance on intermediaries like
banks, which can lower transaction costs and speed up processes. Furthermore, the immutability
of blockchain records guarantees the integrity of transaction histories, essential for auditing and
compliance.

Blockchain technology as we currently know it was created for the most popular cryptocurrency so
far, named bitcoin. The emergence of digital currency dates back to 1983 when David Chaum, an
American cryptographer, presented a preliminary version of anonymous cryptographic electronic
money in a conference paper [33]. The primary objective of the concept was to create a decen-
tralized currency that could be transferred without the need for central authorities such as banks.
Chaum subsequently advanced this idea and created a proto-cryptocurrency named Digicash in
1995. To utilize this currency users had to install software that would withdraw funds from their
bank accounts and transmit encrypted keys to the recipient before the funds could be transferred.
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Nick Szabo’s creation of Bit Gold in 1998 [132] is regarded by many as the direct predecessor of
Bitcoin [107]. Bit Gold relied on participants dedicating their computer power to solve cryptographic
puzzles with successful solvers receiving rewards [131]. Szabo’s work combined with Chaum’s ear-
lier concept created something similar to Bitcoin but without a resolution to the issue of double-
spending where digital data could be duplicated and reused without the involvement of a central
authority.

A decade later in 2008 an individual or group using the pseudonym Satoshi Nakamoto published
a white paper titled ”Bitcoin - A Peer to Peer Electronic Cash System” [106] marking the birth of
bitcoin and other cryptocurrencies. This groundbreaking event marked the beginning of a new era
for decentralized digital currencies, which operate without central authorities or intermediaries to
handle transactions. The Bitcoin project was registered on SourceForge.net [126], a platform ded-
icated to supporting open-source software development. It was evident at this point that Bitcoin
was not intended to integrate seamlessly into existing governmental and financial systems; instead
it aimed to establish an alternative system, free from hierarchical control and governed by a decen-
tralized community [29]. Decentralized autonomy also played a crucial role in the Internet’s early
days where each network node functioned as an autonomous agent interacting with other agents
through shared protocols [1].

From the inception of Bitcoin as a public network Satoshi demonstrated a keen awareness of the
global financial system’s shortcomings. The first data entry on Bitcoin’s blockchain contained the
message: ”The Times 03/Jan/2009 Chancellor on brink of second bailout of banks,” referring to an
article discussing the potential need for the U.K. to support additional banks to remain solvent [66].
This aspect of the blockchain has since emerged as one of the most potent applications of the tech-
nology, embedding unalterable and transparent data that cannot be erased from digital history and
is accessible to everyone [29]. The initial stages of Bitcoin were marked by exploration and progress
with the community striving to fine-tune the technology and develop novel applications [110]. De-
spite initial doubts and opposition from traditional financial institutions and regulators, Bitcoin’s
popularity and adoption expanded swiftly. Presently, Bitcoin and other cryptocurrencies are ex-
tensively employed for transactions and investments while the underlying technology continues
to advance and mature [133]. Currently, in the realm of terminology, ”Bitcoin” is generally used to
denote the Bitcoin network or the entire system. This term is applied when talking about the under-
lying technology, including the blockchain architecture, the Bitcoin protocol, or the comprehensive
ecosystem that facilitates the functioning of this digital currency. On the other hand, ”bitcoin” writ-
ten with a lowercase ”b” is specifically used in reference to the currency. This usage is common
when talking about transactions, ownership, or the economics of the currency. This distinction
helps in differentiating between the technological aspect (Bitcoin) and the financial or currency
aspect (bitcoin).

Initially Bitcoin was the dominant use case but as the technology matured, developers started ex-
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ploring other use cases. One example is the creation of Ethereum [30], a decentralized, open-source
blockchain-based platform that was created to enable developers to build decentralized applica-
tions (dApps) with smart contract functionality. It was launched in 2015 by Vitalik Buterin and has
since become one of the most popular blockchain platforms second only to Bitcoin. The Ethereum
platform was developed using a new blockchain protocol that included a programming language
called Solidity [142]. It enabled developers to write smart contracts which are self-executing agree-
ments where the conditions of the deal between the buyer and seller are explicitly embedded in
lines of code. Smart contracts are executed on the blockchain and cannot be altered once they
have been deployed, ensuring that they are tamper-proof and transparent. One of the key advan-
tages of Ethereum is its ability to support the creation of dApp, which are applications that run
on a decentralized network of computers rather than on a central server. Ethereum dApps can be
used for a wide range of purposes including financial services, gaming, social networks and more.
Additionally, the platform has its own cryptocurrency called Ether (ETH) which is used to pay for
transactions and to motivate developers to build on it.

One of the primary differences between Ethereum and Bitcoin is their consensus mechanisms.
Bitcoin uses the Proof of Work (PoW) consensus mechanism which involves miners competing to
solve complex mathematical problems to validate transactions and add new blocks to the blockchain.
The first miner to solve the problem is rewarded with newly minted bitcoin. On the other hand,
Ethereum has transitioned to the Proof of Stake (PoS) consensus mechanism. In PoS validators
are chosen to validate transactions based on the amount of cryptocurrency they hold and are will-
ing to lock up as collateral. Validators are rewarded with newly minted Ethereum for their service
and their stake acts as a deterrent against malicious behavior as they would lose their collateral in
the event of an attack. PoS is known for its energy efficiency and accessibility as it requires much
less energy and specialized hardware compared to PoW [80].

Overall, the adoption of blockchain technology in the recent years has been slow but steady. Its
complexity can be a significant barrier, especially for businesses lacking in-house blockchain ex-
pertise. Another very important aspect is the regulatory uncertainty and lack of clear legal frame-
works in many regions, which create hesitancy among organizations to fully commit to its adoption.
Additionally, concerns about scalability, energy consumption (particularly with proof-of-work mod-
els), and integration with existing systems pose challenges. Lastly, the relatively young stage of
blockchain technology means there is a limited number of proven use cases, leading to cautious
adoption as organizations and regulators seek to understand its implications and potential fully.
Nevertheless, today it is being used in various industries [133] including finance, healthcare, real
estate and supply chain management. The technology provides a secure and transparent way of
recording transactions and storing data, which reduces the risk of fraud and corruption. Blockchain
technology also enables the creation of decentralized applications that can operate without the
need for intermediaries providing greater control and autonomy to users.
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2.1.2 Evolution of the Cryptoasset Market
The cryptocurrency market has experienced several cycles of boom and bust since the introduction
of bitcoin. The market cycles are characterized by periods of rapid price increases followed by
significant price drops and are typically driven by a combination of market speculation, media hype
and regulatory developments [3].

An early major cryptocurrency market cycle was initiated in 2011 with the escalation of bitcoin’s
price from less than $1 to $30 followed by a decline to approximately $2 [29]. During this phase,
bitcoin remained the predominant cryptocurrency with the highest market capitalization and trad-
ing volume. Alternative cryptocurrencies (altcoins) were still in their nascent stage and had limited
adoption. Mt. Gox was the principal bitcoin exchange responsible for a substantial percentage of
global bitcoin trading [31]. However it experienced numerous security breaches and hacking inci-
dents, culminating in its bankruptcy in 2014. This era was also marked by the operation of Silk Road,
an online platform for illicit drug and goods trading that employed bitcoin as a mode of payment,
until its closure by law enforcement in 2013 [98] thereby impacting bitcoin’s credibility due to its po-
tential to facilitate decentralized and anonymous transactions. Additionally, litecoin [89] one of the
first altcoins that debuted in October 2011 gained traction as a faster and more scalable alternative
to bitcoin and became the second-largest cryptocurrency in terms of market capitalization. At the
same time various corporations such as WordPress, Reddit and Expedia began accepting bitcoin
as a form of payment [110] boosting cryptocurrencies’ awareness and adoption. However, both
bitcoin and altcoins’ prices demonstrated substantial volatility with sharp fluctuations over short
intervals. For example in April 2013 bitcoin’s price briefly escalated from $20 to over $260 before
tumbling to approximately $60 [37]. Overall this period witnessed Bitcoin’s dominance, the incep-
tion of altcoins and the increasing mainstream acceptance of cryptocurrencies despite notable
security and volatility challenges that necessitated regulatory interventions.

Between 2013 and 2014 the market experienced significant evolution accompanied by the emer-
gence of new altcoins the development of new use cases for cryptocurrencies as well as the in-
creasing attention of regulatory bodies. The rise of altcoins during this period was fueled by several
factors, including the growing dissatisfaction with Bitcoin’s limitations particularly its transaction
times and scalability [133]. Altcoins promised to offer better solutions to these problems attracting
investors and traders who were looking for alternatives to Bitcoin and were designed initially to be
more accessible to the average person with lower transaction fees and easier mining algorithms.
The altcoin boom also coincided with a surge of interest in cryptocurrencies from mainstream
investors [103], with many of them seeking to diversify their portfolios beyond bitcoin. Another sig-
nificant development during this period was the emergence of initial coin offerings (ICOs) which
allowed companies to raise funds by issuing their own digital tokens or coins [147]. The concept
quickly gained popularity with numerous ICOs being launched in subsequent years. The altcoin
development at the time was of course not without its challenge as many were created with little
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or no oversight or regulation, leading to a proliferation of scams and fraudulent projects. Addi-
tionally, the rapid growth of altcoins led to increased volatility and instability in the cryptocurrency
market [107] which was experiencing dramatic price swings over short periods of time.

The period between 2014 and 2016 saw the establishment of a larger number of altcoins, albeit in
a more mature and stable market environment. This comes in contrast with the previously men-
tioned period, when the market was still in its infancy, with only a handful of established altcoins
and a highly volatile environment. Tether (USDT), the first stablecoin, was also launched in October
2014 [97]. Being pegged to the U.S. dollar, it aimed to provide a stable alternative to volatile cryp-
tocurrencies and facilitate digital transactions, while being tied to traditional fiat currencies. The
altcoin boom of 2014-2016 was also marked by the emergence of new use cases for blockchain
technology, particularly in the area of decentralized applications. Ethereum [101], launched in 2015,
was the key driver of this trend and provided a platform for developers to build and launch decen-
tralized applications on its blockchain. This period was also accompanied by increased regulatory
oversight and scrutiny [112], as governments and regulators around the world began to take notice
of the growing cryptocurrency market. This led to a more stable and legitimate market environ-
ment, as investors became more confident in the security and reliability of altcoins.

Another notable cycle occurred in 2017, when the cryptocurrency market experienced an unprece-
dented surge in prices. The beginning of this period saw the market cap of all cryptocurrencies at
around $18 billion and by the end of the year, it had soared to over $600 billion [36]. This massive
increase was driven by a surge in the popularity of ICOs as a fundraising method for new projects.
ICOs raised billions of dollars in the same year and the market was flooded with projects, many
of which promised to revolutionize various industries using blockchain technology. However, the
lack of regulation and oversight also led to a number of scams and projects that failed to deliver
on their promises. Meanwhile, bitcoin started the year with a market dominance of around 85%,
but by the end of 2017, its dominance had dropped to around 38%. This was largely due to the
rise of new cryptocurrencies and the ongoing scaling debate within the Bitcoin community, which
eventually led to the creation of Bitcoin Cash (BCH) in August 2017 through a hard fork. Ethereum
also gained significant traction in 2017, with its market cap increasing from around $700 million
at the start of the year to over $70 billion by the end of it. Ethereum’s native token, Ether (ETH),
became the second-largest cryptocurrency by market cap and its growth was fueled by the plat-
form’s support for smart contracts and the use of its ERC20 token standard for the majority of
ICOs. Throughout the same year, cryptocurrencies gained more mainstream attention, with major
financial institutions expressing interest in the sector. Bitcoin futures were also launched by the
Chicago Mercantile Exchange (CME) in December 2017 [58], further legitimizing the asset class. In
December 2017, the cryptocurrency market reached its peak, with bitcoin’s price soaring to nearly
$20,000. However, this rapid growth was followed by a sharp correction in early 2018, as the market
experienced a significant pullback.
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The market continued to experience significant developments and shifts during 2018-2020. The
year of 2018, often referred to as the ”crypto winter”, was marked by a decline in market enthu-
siasm, reduced ICO activity and an increased focus on regulatory compliance. Following the un-
precedented bull run of 2017, Bitcoin’s price fell from nearly $20,000 in December 2017 to around
$3,000 by the end of 2018. As market volatility remained high, stablecoins emerged as an impor-
tant component of the ecosystem. Tether (USDT) continued to dominate the stablecoin market,
but other stablecoins also gained traction. After the prolonged ”crypto winter” of 2018, the market
began to show signs of recovery in 2019, with Bitcoin’s price reaching over $13,000 in June before
experiencing another correction. The market continued to recover throughout 2020, with Bitcoin’s
price climbing back above $10,000 and establishing a more stable support level. Decentralized
Finance (DeFi) also began to emerge as a significant trend in late 2019, gaining momentum in
2020. DeFi platforms aimed to provide financial services, such as lending, borrowing and trading
in a decentralized manner using blockchain technology. DeFi’s growth continued in 2020, fueled
by the rise of decentralized exchanges (DEXs) and innovative financial products like yield farm-
ing and liquidity mining. Meanwhile, despite the occasional market downturns, there was also a
growing interest from institutional investors and an expansion of market infrastructure. Compa-
nies like Fidelity [52], Bakkt [6] and Grayscale [57] started offering cryptocurrency-related products
and services, while traditional financial institutions such as JPMorgan and Goldman Sachs began
exploring the market more seriously [124, 125]. These developments signaled a maturing market
and increased acceptance of cryptocurrencies as an alternative asset class.

In 2021, the market experienced a strong bull run, with Bitcoin reaching an all-time high of around
$64,000 in April before facing a correction in May. Ethereum and other altcoins also experienced
significant price increases, with many reaching new all-time highs. Institutional adoption of cryp-
tocurrencies also grew considerably, with major companies like Tesla making significant invest-
ments in Bitcoin [88] and institutional investors and hedge funds increasingly allocating portions
of their portfolios to the digital asset class. Non-fungible tokens (NFTs) also became a mainstream
phenomenon in 2021 [67], with digital artists, musicians and content creators using NFTs to mone-
tize their work. The DeFi sector continued to grow and the total value locked (TVL) grew exponen-
tially, reflecting its increasing popularity. At the same time, the market experienced additional reg-
ulatory developments and various jurisdictions, such as the European Union and the United States,
tightened Anti-Money Laundering (AML) and Combating the Financing of Terrorism (CFT) require-
ments for cryptocurrency exchanges and other related businesses [141]. Additionally, in the United
States, the Internal Revenue Service (IRS) intensified its focus on cryptocurrency tax compliance.
Moreover, the U.S. Securities and Exchange Commission (SEC) continued to scrutinize cryptocur-
rency projects for compliance with securities laws [119]. The SEC also indicated its intention to
regulate cryptocurrency exchanges and digital asset securities, with the aim of providing investor
protection and ensuring market integrity. In December of the same year, the U.S. President’s Work-
ing Group on Financial Markets released a report outlining recommendations for stablecoin regu-
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lation, emphasizing the need for stablecoin issuers to be subject to federal banking oversight [137].
Additionally, many central banks explored the development and potential implementation of Central
Bank Digital Currencies (CBDCs), digital versions of their national currencies [70].

In contrast, the year 2022 proved challenging for global markets, with the U.S. stock market, bond
market and crypto markets experiencing significant declines. In response to inflation, central banks
implemented higher interest rates, consequently diminishing investors’ appetite for risk and prompt-
ing them to avoid speculative asset classes, including cryptoassets. Despite the initial flourishing
of cryptoassets due to low interest rates and a robust economy, the market encountered a severe
sell-off as central banks altered their course. Projects such as Terra [117] experienced a collapse
and overleveraged centralized finance (CeFi) institutions, including Celsius Network and Voyager
Digital, were compelled to file for bankruptcy protection [114]. By the end of the summer, the cryp-
tocurrency market displayed signs of stabilization. Regrettably, this renewed confidence proved to
be short-lived, as shocking disclosures about FTX’s financial instability triggered a market down-
fall [120]. Despite the challenges, the fundamental blockchain technology remained intact, exempli-
fied by Ethereum’s triumphant transition to a proof-of-stake model [56]. Nevertheless, the failures
and bankruptcies in 2022 have prompted calls for increased regulation and oversight in the crypto
space to protect investors from fraud, theft and irresponsible lending practices.

Overall, throughout the years the cryptocurrency market has undergone numerous cycles of growth
and decline since the inception of Bitcoin. Each phase has been marked by distinct developments
and challenges, ranging from technological innovations, regulatory advancements and increasing
mainstream adoption to security breaches, market volatility and high-profile failures. Overall, the
events of 2022 have highlighted the need for enhanced regulatory oversight to ensure the long-
term stability and sustainability of the cryptocurrency market, while continuing to foster innovation
and adoption. Nevertheless, despite the recent market turbulence, the core blockchain technology
remains resilient and continues to showcase its potential to revolutionize industries.

2.1.3 Cryptocurrencies as Alternative Assets and Taxonomy of Cryp-
toassets

The 2008 financial crisis prompted a reevaluation of investment strategies by financial advisors and
wealth managers, who began considering alternative investment vehicles beyond traditional stocks
and bonds. This shift was inspired by the remarkable performance of hedge funds during the cri-
sis, with figures such as John Paulson and James Simons achieving exceptional returns [29, 148].
Overall, defining ”alternative investment” is challenging, as definitions tend to change alongside
the evolving investment trends. Alternative investments can be generically described as assets
with unique economic and value-based characteristics that diverge from primary investments like
stocks, bonds or cash. Their primary use-case for investors is to perform independently from tra-
ditional asset classes stocks and bonds, therefore providing risk balance during times of financial
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turmoil. Considering the above, cryptoassets can be classified as alternative investments, likely to
be increasingly incorporated into mainstream retail portfolios.

A unique feature that distinguishes cryptoassets from other asset classes is the underlying tech-
nology, as it was described in the previous sections. By investing in cryptoassets, investors can
gain exposure to the growth potential of blockchain technology, which is often being hailed as a
groundbreaking innovation with the potential to transform industries beyond finance [133]. Crypto-
investors have the opportunity to yield significant returns as the technology matures and gains
widespread adoption. Additionally, comprised of distributed and cryptographically secured digital
ledgers, cryptoassets can be created, stored and transferred without the need for a central au-
thority. This decentralization makes them fundamentally different from traditional assets, as they
do not rely on central banks, governments, or other institutions for their value or operation. Ad-
ditionally, cryptoassets evolve independently of traditional financial systems [144], which means
their value is not tied to the performance of economies, interest rates, or inflation. This feature
makes them a viable hedge against market uncertainties, currency devaluation and geopolitical
risks. Independence from traditional financial systems not only provides investors with unique op-
portunities but also contributes to the overall diversification of their investment portfolios.

The landscape of digital assets is rapidly evolving, therefore it is beneficial to present a classifica-
tion based on their underlying properties and intended use cases. By providing an organized frame-
work, this can help participants in the digital asset ecosystem to better understand, evaluate and
manage their exposure to this alternative asset class. Below is a categorization example:

Currency and Payment Tokens Currency and payment tokens are designed primarily to serve
as a medium of exchange, unit of account, or store of value. These cryptoassets aim to facil-
itate the transfer of value between users, often with the goal of offering faster, cheaper and
more secure transactions compared to traditional financial systems.

Currency and payment tokens can be categorized as follows:

1. Cryptocurrencies: These are digital or virtual currencies that employ cryptographic techniques
to secure transactions and control the creation of new units. Bitcoin (BTC) is the most well-
known example.

2. Stablecoins: These are a specific type of cryptocurrency designed to minimize price volatility
by pegging their value to a reserve of assets, which could include fiat currencies, commodities,
or other cryptocurrencies. Examples include Tether (USDT) and USD Coin (USDC).

Utility Tokens Utility tokens grant holders access to a particular service or functionality within
a blockchain-based platform. These tokens are often used to incentivize participation in the
network, facilitate transactions, or enable access to various features.
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Utility tokens can be categorized as follows:

1. Network Tokens: These tokens are necessary for the proper functioning of a blockchain net-
work and are often used to pay for transaction fees or access specific services. Examples
include Ethereum’s Ether (ETH), which is used to pay for gas fees on the Ethereum network
and Binance Coin (BNB), used on the Binance Smart Chain.

2. Governance Tokens: These tokens allow holders to participate in the decision-making process
of a decentralized organization, including voting on proposals, updates and changes to the
platform. Examples include MakerDAO’s Maker (MKR) and Compound’s COMP tokens.

Asset-Backed Tokens Asset-backed tokens represent ownership or a claim on an underlying
asset, which can range from physical commodities to financial instruments. These tokens
are often designed to track the value of the underlying asset and can be traded on secondary
markets. An example is PAX Gold (PAXG), a token backed by physical gold.

Non-Fungible Tokens (NFTs) NFTs are unique digital assets that represent ownership of a
specific item or piece of content. Unlike other cryptoassets, NFTs are not interchangeable, as
each token is distinct and indivisible. NFTs have gained popularity in various sectors, such as
art, collectibles, gaming and virtual real estate.

For the remainder of this thesis we will make use of the term cryptoassets, a broad term that en-
compasses all assets using cryptographic technology, including cryptocurrencies, security tokens,
utility tokens, and other types of tokenized assets. It is an umbrella term that refers to digital assets
secured by cryptography.
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2.2 Introduction to Basic Financial Concepts

2.2.1 Financial Index Products
A financial index is a mathematical construct that tracks the performance of a group of financial
assets, such as stocks, bonds, commodities, or cryptocurrencies [72]. It represents a portfolio of
these assets and serves as a benchmark to gauge the market’s overall performance or a specific
segment within it. Index products are financial instruments that track the performance of an under-
lying index, allowing investors to gain exposure to a diversified portfolio without directly purchasing
each asset within the index.

There exist several types of index products and some examples include the following:

1. Index Funds: Index funds are passively managed investment funds designed to track the
performance of a specific index. They aim to replicate the index’s returns by holding the same
assets in the same proportions as the index [72].

2. Exchange-Traded Funds (ETFs): ETFs are a type of investment fund and exchange-traded
product, which means they are traded on stock exchanges. They typically track an index,
offering investors a cost-effective way to gain exposure to a diversified portfolio [71].

3. Index Futures: Index futures are standardized contracts to buy or sell the value of an index
at a specific future date. They allow investors to hedge against market risk or speculate on
market movements. [73]

4. Index Options: Index options are financial derivatives that give the holder the right, but not the
obligation, to buy or sell an index at a specified price on or before a specified date. They can
be used for hedging, speculation, or income generation [74].

5. Index-linked Bonds: These are bonds whose interest payments and principal repayment are
linked to the performance of a specific index. They can provide protection against inflation or
offer exposure to specific market segments [75].

Over the years, index products have become essential in the traditional financial sector, providing
investors an accessible, transparent and cost-effective method to invest in various assets [16]. With
the growth of the cryptoasset market and increased interest from different types of investors, the
demand for index products has risen significantly [69]. Cryptocurrencies’ unique properties [92],
such as decentralization, borderless transactions and programmable money, have led to the de-
velopment of diverse index products catering to investors’ needs. Given the distinct nature of the
digital asset space and the opportunities arising from proper diversification and effective risk man-
agement, the upcoming chapters will present a methodological framework for creating, evaluating
and monitoring cryptoasset indices. The approach will involve two asset classes, cryptoassets
and commodities and will aim to optimize the resulting product’s structure and enhance the under-
standing of its performance through various market cycles.

Aikaterini Koutsouri Balancing Cryptoassets and Commodities 31



2.2. Introduction to Basic Financial Concepts Background

2.2.2 Diversification and Risk Management: A Synergistic Approach
to Enhancing Portfolio Performance

Portfolio management is an essential component of the investment process that aims to assist
investors achieve their financial objectives [19]. The primary functions of portfolio management in-
clude asset allocation, risk management and performance evaluation. Asset allocation refers to the
process of determining the optimal mix of asset classes within a portfolio, based on the investor’s
unique characteristics, such as risk tolerance profile, investment horizon and financial goals. Port-
folio management involves assessing and managing various types of risk, such as market, credit
and liquidity risk and risk management refers to sets of tools that can assist investors in (i) min-
imising potential losses and (ii) maintaining portfolio stability. Performance evaluation involves
monitoring the overall portfolio, comparing its performance against a set of established bench-
marks and making necessary adjustments to remain aligned with investment objectives.

A key benefit of portfolio diversification is mitigating unsystematic risk, associated with individual
assets or industries [127]. By allocating funds across various asset classes, industries and geogra-
phies, investors can protect themselves from company-specific or industry-specific events that ad-
versely affect their portfolio. Additionally, it allows investors to participate in the growth potential
of asset classes, which can contribute to a more stable and consistent growth trajectory over time.
This approach helps investors capitalize on emerging trends and opportunities, which may lead to
superior returns in the long run. In this context, cryptocurrencies can be considered a component
of a well-diversified portfolio [28], albeit with certain caveats, as presented in the next sections.
Finally, in terms of risk metrics, a well-diversified portfolio can deliver better risk-adjusted returns,
as measured by the Sharpe ratio [122]. Therefore, for a given level of risk, a diversified portfolio is
expected to provide higher returns than a concentrated one.

In regards to asset allocation methods, it is a fundamental investment principle aimed at minimiz-
ing risk and maximizing returns by allocating assets across a variety of investment types, industries
and geographic regions. It is based on the premise that spreading investments across a wide range
of asset classes, investors can mitigate unsystematic risk, reduce the impact of market fluctua-
tions and enhance long-term growth potential. The concept can be traced back to the Modern
Portfolio Theory (MPT), pioneered by Harry Markowitz in the 1950s [99]. MPT posits that investors
can achieve an optimal risk-return trade-off by allocating their capital across a diverse set of as-
sets with varying degrees of risk and return. Central to this theory is the idea that asset prices do
not move in perfect correlation, which allows for the reduction of risk through diversification [47].
Moreover, MPT introduces the concept of efficient frontier, which represents the optimal set of
portfolios with the highest expected return for a given level of risk.

More specifically, in Markowitz’ theory of portfolio selection, the mean-variance optimization (MVO)
approach provides investors with an effective mechanism of forming portfolios that trade off risk
and expected returns. The optimization problem setting is constituted of N ≥ 2 assets, denoted
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as S1, S2, . . . , SN , with µi and si representing the expected return and standard deviation of Si

respectively and ρij denoting the correlation coefficient of the returns of assets Si and Sj for
i ̸= j. The N × N symmetric covariance matrix of returns is defined as Σ = (σij) where σij =

ρijσiσj, i ̸= j and σij = σ2
i , i = j. If xi is the portion of the total fund invested in Si, the expected

return and variance of the constructed portfolio can be defined as E[x] = µTx and V ar[x] =

xTΣx, whereµ = [µ1, µ2, . . . , µN ]
T andx = [x1, x2, . . . , xN ]

T . The set of satisfactory portfolios
are represented asX = {x : Ax = b, Cx ≥ d}, whereA is anm×N matrix, b anm-dimensional
vector, C a p×N matrix and d a p-dimensional vector. The main constraint of the asset weights
is
∑N

i=1 xi = 1 but further constraints such as maximum and minimum allocations or short-sale
allowance can be assumed for X .

The set of efficient portfolios contains all feasible combinations of xi values that maximize ex-
pected returns among all portfolios of given variance or equivalently, all combinations that mini-
mize variance given a specific level of expected returns. This set constitutes the efficient frontier
and is typically represented by a two-dimensional parabolic curve (referred to as the “Markowitz
Bullet”) along the upper edge of the scatter plot of all possible combinations in a risk-expected re-
turn space. The described MVO problem is typically formulated as a quadratic optimization prob-
lem:

min
x

1

2
xTΣx

µTx ≥ R

Ax = b

Cx ≥ d.

(2.1)

The main limitation of the mean-variance portfolios is their sensitivity of the optimization problem
solution to small changes of the input variables. Investors prefer heuristic, replicable method-
ologies that are not dependant on forward-looking approximations of individual asset returns.
Some popular modifications include Minimum Variance and equally weighted approaches, as in-
troduced by Benartzi and Thaler, 2001 [13]. Drawbacks of the former include large concentrations
of low-risk components while the latter fail to take into account volatility behavior and asset cross-
correlations.

When it comes to Quantitative Risk Management (QRM), it involves mathematical models and sta-
tistical techniques to measure, monitor and control various types of risk inherent in financial in-
vestments. In their work McNeil et al. [100] discuss the importance of investing in QRM and the
various perspectives from which the concept can be approached. It emphasizes the significance
of risk management in maintaining the smooth functioning of banking and insurance systems and
the stability of the financial system as a whole and highlight how proper financial risk management
can increase the value of a corporation and shareholder value. Broadly speaking, risk management
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serves as a firm-wide language for discussing and pricing risk, addressing management and stake-
holders’ concerns about institutional solvency and profitability. QRM involves quantifying various
risks, including credit, market, operational, insurance, liquidity, reputational, strategic or business
risks. It further includes determining the acceptable probability of default (solvency standard) for
the institution, often using external benchmarks for credit risk. The choice of horizon should align
with capital planning or business cycles.

Overall, portfolio diversification and proper risk management work hand in hand, creating a pow-
erful approach, able to improve portfolio performance. This synergistic method recognizes the
importance of spreading investments across a wide range of asset classes as a means to counter-
balance the inherent risks and uncertainties within financial markets. By ensuring that the portfolio
is well-diversified, investors attempt to minimize the negative effects of individual asset underper-
formance or market volatility on their overall investment value. At the same time, incorporating
risk management strategies involves a meticulous evaluation of potential hazards and weak spots
within the portfolio, empowering investors to pinpoint, assess and address the risks associated
with their investment decisions. By embracing this holistic approach, in the next chapters we
present the delicate balance between risk and return, applied specifically for the emerging cryp-
toaasets class, ultimately maximizing its prospects for strong, long-term portfolio performance in
an unpredictable and constantly evolving financial and technological environment.

The subsequent sections of this chapter provide an essential overview of quantitative methods re-
lated to the concepts of diversification, portfolio, and risk management, as outlined in the literature,
serving as prerequisite knowledge for the later chapters of this thesis.
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2.3 Quantitative Methods in Finance

2.3.1 Stochastic Processes in Finance

2.3.1.1 Univariate Risk Factor Modeling: ARMA-GARCH Models

Following the definitions of McNeil et al. [100], the value of a given portfolio at time t can be denoted
as Vt and determined by information available at time t. The valueVt can be modelled as a function
of time and an d-dimensional random vector X t = (Xt,1, . . . , Xt,d)

′, observable at time t and
therefore expressed in the form ofVt = f(t,X t), which is typically referred to as mapping of risks.
The change in the value of the portfolio will be ∆Vt+1 = Vt+1 − Vt, the loss is defined as Lt+1 =

−∆Vt+1 and its distribution is referred to as loss distribution. In this study, we will ultimately be
concerned with the distribution of ∆Vt+1, termed as the Profit and Loss (P&L) distribution.

In an attempt to obtain the P&L distribution, one can begin with expressing the evolution of each
risk factor individually as an autoregressive moving average (ARMA) process, which accounts for
autocorrelation and aims to model the conditional mean. A general ARMA model of order p1, q1
(where p1 and q1 denote the number of lags that explain linear dependence with past observations
and past error terms), with non-zero mean µ and white noise term ϵt, can be written as:

Xt = µt + ϵt = µ+

p1∑
i=1

ϕi(Xt−i − µ) +

q1∑
j=1

θjϵt−j + ϵt (2.2)

Additionally, it is important to consider some financial time series stylised fact, which reject condi-
tional homoskedasticity and suggest that volatility is stochastic and forecastable. Generalised au-
toregressive conditional heteroskedasticity (GARCH) processes can adequately account for volatil-
ity clustering. We can expect the GARCH-corrected time series to produce filtered conditional resid-
uals that are nearly independent and identically distributed sequences, a key fact to enable us to
examine extreme events at the tails of the distributions in the following sections.

By definition, any process Xt that involves a stochastic part Zt (white noise process) and a time-
dependent standard deviationσt, follows a GARCH(p2, q2)model if it satisfies the equations:

Xt = σtZt, σ2
t = ω +

p2∑
i=1

αiX
2
t−i +

q2∑
j=1

βjσ
2
t−j

The described GARCH model is a symmetric one, meaning that positive and negative returns have
identical influence on volatility. Empirical evidence suggests that positive innovations to volatil-
ity correlate with negative market information (and vice versa), a phenomenon also referred to
as leverage effect, and that positive returns should cause less uncertainty [100]. Glosten, Jagan-
nathan, and Runkle [55] propose a way to account for this asymmetry (GJR–GARCH) through mod-
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elling the positive and negative shocks on the conditional variance asymmetrically via the use of
the indicator function It:

σ2
t =

(
ω +

m∑
j=1

ζjvjt

)
+

p2∑
i=1

(
αiϵ

2
t−i + γiIt−iϵ

2
t−i
)
+

q2∑
j=1

βjσ
2
t−j,

In this case, ω is a volatility offset term, γj represents the leverage term andm denotes the number
of external regressors vj . The indicator function It takes on value of 1 in cases when ϵt ≤ 0 and 0
otherwise.

For a combination of the ARMA and GJR–GARCH approaches applied to a time series Xt, we
let ϵt = Xt − µt = σtZt denote the residuals with respect to the mean process (ARMA error).
We assume that σt follows a GARCH(p2, q2) specification, where p2 is the order of the squared
innovation lag (ϵ2t ) and q2 is the order of the variance lag (σ2

t ) and finally obtain the asymmetric
ARMA(p1, q1)–GARCH(p2, q2) equations:

Xt = µ+

p1∑
i=1

ϕi(Xt−i − µ) +

q1∑
j=1

θjϵt−j + ϵt

ϵt = σtZt

σ2
t = ω +

m∑
j=1

ζjvjt +

p2∑
i=1

(
αiϵ

2
t−i + γiIt−iϵ

2
t−i
)
+

q2∑
j=1

βjσ
2
t−j

(2.3)

The order of a suitable ARMA process for the conditional mean can be identified though the Akaike
Information Criterion (AIC). We iterate over pairwise values of p1 ∈ [1, pmax] and q1 ∈ [0, qmax] and
choose the combination that yields the AIC-minimal model. Heteroskedasticity and asymmetric
tails can be accounted for through a GJR–GARCH) model, fitted using a Maximum Likelihood ap-
proach with an inferred Student-t distributed innovations (as it is commonly used in practice and
considered adequate for most financial applications [100]).

The evaluation of the fitted model is inspected using residuals, since a low AIC cannot guarantee the
validity of the model assumptions. Following [100], we differentiate between unstandardised and
standardised residuals and denote the former with ϵ̂t and latter as Ẑt. Given the estimated ARMA
parameters, unstandardised innovations are calculated recursively from the data Xt and the fitted
values µ̂t, ϵ̂t = Xt−µ̂t. Due to the finiteness of the data sample, initial values forX−p1+1, . . . , X0,
ϵ−q1+1, . . . , ϵ0 can be inferred and disregarded in later analysis. Standardised residuals are given
by Ẑt = ϵ̂t/σ̂t, σ̂t is calculated through the fitted GARCH part of Eq. 2.3 recursively and the starting
value of ϵ̂t and σ̂t may be similarly chosen at will.

The main assumption of GARCH models states that standardised residuals are independent and
identically distributed (i.i.d.). This can be investigated visually through correlograms or through
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strict white noise portmanteau tests. Alternatively, we can opt for (a) a Ljung-Box test on stan-
dardised residuals to check for evidence of serial autocorrelation, and (b) a Li-Mak test [91] on the
standardised residuals to check for remaining ARCH effects.

2.3.1.2 Extension to Multivariate GARCH Models

In financial econometrics, it is important to consider the dependence structure in the second-order
moments of asset returns. Multivariate GARCH models deal with the issue of correlation and their
main application is studying the relationship between the volatilities of different markets. They are
particularly useful for portfolio optimization, risk management, and understanding interdependen-
cies between different assets. The main goal is to estimate the conditional covariance matrix of
the multivariate time series, which provides information about the time-varying volatilities of indi-
vidual assets and the time-varying correlations between them. Overall, they are more relevant than
independent univariate models and improve the decision-making process in volatility prediction,
portfolio selection and risk management.

Multivariate GARCH models can generally be expressed as:

rt = µt + ϵt, ϵt = H
1/2
t zt, (2.4)

where ϵt is the error term at time t, expressed through the mean-corrected time-series of rt,
E[ϵt] = 0, µt is the n × 1 vector of the expected values of the asset returns rt, H t is the
n× n matrix of conditional variances of ϵt at time t and zt is the n× 1 vector of the independent
and identically distributed residuals. H1/2

t can be obtained through the Cholesky factorisation of
H t.

There exist different approaches of the multivariate GARCH setting that allow to specify the condi-
tional covariance matrixH t. One method models the conditional variances and correlations rather
than straightforwardly modelling the conditional covariance matrix. In this case, the conditional co-
variance matrix H t is decomposed as follows:

H t = DtRtDt, (2.5)

where Dt is the diagonal matrix of conditional volatilities Dt = diag(h1/2
1t , . . . , h

1/2
nt ), and Rt

denotes the conditional correlation matrix of the mean-corrected time-series, ϵt.

Estimating the parameters typically involves maximum likelihood estimation, which can be com-
putationally intensive due to the complex likelihood functions and the large number of parameters.
Nevertheless, multivariate GARCH models are valuable tools for understanding the time-varying
volatility and correlation structure of multiple time series and have numerous applications in fi-
nance and economics.
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2.3.1.3 DCC-GARCH Models

This section is concerned with the issue of modeling the dependence structure of the time-varying
volatilities and correlations of two asset classes through a Dynamic Conditional Correlation (DCC)
GARCH model, as introduced by Engle and Sheppard in 2001 [50]. In this setting, both the correla-
tion matrix Rt and the conditional variances Dt are time-varying and the DCC-GARCH is defined
as:

rt = µt + ϵt, ϵt = H
1/2
t zt, H t = DtRtDt, (2.6)

The diagonal matrixDt contains the time-varying volatilities, which can be expressed as univariate
GARCH processes: 

√
h1t 0 . . . 0

0
√
h2t . . . 0

...
... . . . ...

0 0 . . .
√
hnt,

 (2.7)

where

hit = αi0 +

Qi∑
q=1

αqϵ
2
t−q +

Pi∑
p=1

βqht−q. (2.8)

The given GARCH model is a symmetric one where positive and negative returns influence volatil-
ity in the same way. However, positive innovations to volatility practically appear to correlate with
negative market information (and vice versa), while positive returns should cause less uncertainty.
Glosten, Jagannathan, and Runkle [55] have proposed a way to account for this asymmetry (GJR–
GARCH) through modelling the positive and negative shocks on the conditional variance asymmet-
rically via the use of an indicator function It.

There is no need for the univariate GARCH models to be of the same order and µt in Eq. 2.6 can be
expressed either as a constant vector or as a time-varying process. For the purposes of this study
we choose a first order ARMA model for the conditional mean and a first order GJR–GARCH for
each one of the univariate GARCH models:

rt = µ+ ϕ1(Xt−1 − µ) + θ1ϵt−1 + ϵt

ϵt = σtZt

σ2
t = ω + ζ1v1t +

(
α1ϵ

2
t−1 + γ1It−1ϵ

2
t−1
)
+ β1σ

2
t−1,

(2.9)

where ω is a volatility offset term and γ1 represents the leverage term. The indicator function It

takes on value of 1 for ϵt ≤ 0 and 0 otherwise.
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2.3.1.4 Regime Switching GARCH Models

Regime switching models serve as a pivotal tool in capturing the cyclical nature of markets, offer-
ing insights into the transitions between different phases of market behavior. Regime-Switching
GARCH models are specifically used for analyzing time series data with changing volatility dynam-
ics. They combine the features of a GARCH model which accounts for time-varying volatility, with
a regime-switching model which accounts for distinct states or regimes with different characteris-
tics. The time series is assumed to switch between different volatility regimes, where each regime
has its own GARCH process. The regime-switching component can capture abrupt changes or
structural breaks in the volatility dynamics, which might be due to changes in the underlying pro-
cess, such as economic or financial market conditions. They are used extensively in finance and
economics for modeling and forecasting time series data with changing volatility patterns, such
as stock returns, exchange rates, and interest rates.

We denote the daily value of a given financial instrument at time t by Vt and the daily logarithmic
returns by rt, which satisfy the moment conditions E[rt] = 0 and E[rtrt−l] = 0 for l ̸= 0 and t >

0. In an attempt to capture the time-varying volatility behavior, we express rt in terms of a process
that follows a regime-switching specification in its conditional variance ht. The general mixture
model, which allows for categorisation of the conditional variance dynamics in low, moderate and
high-volatility periods, can be expressed as:

rt | (st = k, It−1) ∼ D(0, hk,t, ξk), (2.10)

where the random variable rt is modelled conditional on the regime st being in state k, the in-
formation set It−1 represents any information about rt that is observed up to time t − 1 and
Dk(0, hk,t, ξk) is a continuous distribution, corresponding to state st, with zero mean and time-
dependent conditional variance hk,t. Additionally, ξk denotes the shape parameters of the distribu-
tion of the independent and identically distributed standardised innovations ηk,t

i.i.d.∼ Dk(0, 1, ξk) of
the conditional variance process. Assuming that there are K different specifications of hk,t, the la-
tent variable st is defined on the discrete space {1, . . . , K}. The definition of the regime-switching
model defined by Eq. 2.10, requires specifying (i) the conditional variance dynamics, unique in each
state st = k and (ii) the state dynamics, driving the evolution of the variable st.

In regards to the conditional variances hk,t of rt, we can adopt the approach of Haas et al. [59]
and assume that they follow K separate GARCH type processes which evolve in parallel. There-
fore, given time t, hk,t follows a GARCH specification, conditional on regime k ∈ {1, . . . , K} that
prevails at time t:

hk,t = h(rt−1, hk,t−1,θk), (2.11)

where h is a function that denotes the GARCH expression of the conditional variance and ensures
positivity and covariance stationarity and θk are the model-specific parameters.
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Assuming the ARCH model of Engle [48], we obtain:

hk,t = a0,k + a1,kr
2
t−1, (2.12)

where k ∈ {1, . . . , K}, θk = [a0,k, a1,k], a0,k > 0 and a1,k ≥ 0. Additionally, we require a1,k < 0

to ensure covariance stationarity in regime k. We further assume that the state process st ∈
{1, . . . , K} evolves according to a first-order ergodic homogeneous Markov chain, with K × K

probability matrix P , where:

P =


p1,1 · · · p1,K

... . . . ...
pK,1 · · · pK,K ,


where pi,j is the probability of transition from state St−1 = i to state St = j.

Similarly, if we assume that the conditional variance follows the GARCH model of Bollerslev [20],
we have:

hk,t = a0,k + a1,kr
2
t−1 + βkhk,t−1, (2.13)

where k ∈ {1, . . . , K}, θk = [a0,k, a1,k, βk], a0,k > 0, a1,k > 0 and βk ≥ 0. Covariance
stationarity is ensured through a1,k + βk < 1.

For the model to be complete we also need to define the underlying distribution of the standardised
residuals in each regime. We can assume a Student-t distribution, with the probability density
function (PDF) given by:

f(t; ν) =
Γ(ν+1

2
)

√
νπ Γ(ν

2
)

(
1 +

t2

ν

)− ν+1
2

where Γ(x) is the Gamma function.

Estimation of the specified model can be achieved through Maximum Likelihood approaches as
described by Ardia et al. [4]. Given the Markov switching GARCH model parameters:

Ψ = (θ1, ξ1, . . . ,θK , ξK ,P ), , (2.14)

where θi are the GARCH parameters and ξi the parameters of the conditional distribution of the
standardised innovations of state si and P the transition matrix, the likelihood function is given
by:

L(Ψ | IT ) =
T∏
t=1

f(rt | Ψ, It−1), (2.15)

where f(rt | Ψ, It−1) denotes the density of rt given its past observations It−1. Maximisation of
the logarithm of L(Ψ | IT ) gives the ML estimator Ψ̂.
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2.3.1.5 Hidden Markov Models for Intermediate Trend Regimes

Building upon the discussion of Regime Switching GARCH models, we now turn our attention to
Hidden Markov Models (HMM) as another powerful approach for deciphering market dynamics.
This section introduces HMMs as a sophisticated yet practical tool for detecting and analyzing in-
termediate trend regimes in financial markets. HMMs offer a dynamic framework for modeling the
probabilistic behavior of market states, allowing us to decipher patterns that are not immediately
apparent. We let Vt denote the daily value of a financial instrument at day t and we express its
weekly log-return with Rt = ln (Vt,n/Vt,1), where Vt,1 is the value on the first day and Vt,n is the
value on the last day of the week. In an attempt to model its intermediate-trend, we assume that
Rt can be described through a pair of stochastic processes {(St, Rt), t ∈ N} that follow a Hid-
den Markov Model (HMM) specification [54]. HMM specifications are a useful tool for modelling
observation sequences, modelled as the output of a discrete stochastic process.

They are used for various tasks, including:

1. Determining the likelihood of a given observation sequence given the HMM parameters. This
is typically done using the Forward Algorithm, which computes the probability of an observa-
tion sequence up to a particular time step.

2. Inferring the most likely sequence of hidden states given the observation sequence and the
HMM parameters. This can be achieved using the Viterbi Algorithm, which finds the most
probable path through the hidden states.

3. Simply estimating the HMM parameters (transition, emission, and initial state probabilities)
given a set of observation sequences. The Baum-Welch Algorithm[9], an expectation-maximization
(EM) algorithm, is commonly used for this purpose.

In this case, {St, t ∈ N} represents a Markov chain that is not directly observable and {Rt, t ∈ N}
is a sequence of independent random variables conditional on St. At every time point t, the next
state St+1 is dependent only upon the current state St and the conditional distribution of Rt only
depends on St.

The output variable Rt can be assumed to follow a Gaussian model (µk, σk, ), conditional on state
St = k ∈ {1, . . . , K} so that:

Rt ∼


N(µ0, σ0), St = 0

...

N(µK , σK), St = K

(2.16)

The hidden state variable St is assumed to be defined on the discrete space {1, . . . , K}. The
K ×K transition matrix is time-invariant and denoted with P :
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P =


p1,1 · · · p1,K

... . . . ...
pK,1 · · · pK,K ,


where pi,j is the probability of transition from state St−1 = i to state St = j, 0 < pi,j < 1 ∀i, j ∈
{1, . . . , K} and

∑K
j=1 pi,j = 1 ∀i ∈ {1, . . . , K}.

The main assumptions of HMMs are the following:

1. probability of transitioning to the next hidden state depends only on the current hidden state
and not on any previous states. Mathematically, this is represented as:

P (St|St−1, St−2, . . . , S1) = P (St|St−1).

2. The probability of emitting an observed symbol at a given time step depends only on the
current hidden state and is independent of other hidden states and previous observations.
Mathematically, this is represented as:

P (Rt|St, St−1, . . . , S1, Rt−1, . . . , R1) = P (Rt|St).

If applied to financial time series, autocorrelation effects in the returns time series will need to be
eliminated through filtering with a first-order autoregressive process, AR(1).

The joint distribution of a sequence of a series of T observations {S1:T ,R1:T} is written as:

P(S1:T ,R1:T ) =

P(S1)P(R1 | S1)
M∏
t=2

P(St | St−1)P(Rt | St)
(2.17)

The definition of the probabilistic network described by Eq. 2.17 requires specifying the probability
distribution over the initial state P (S1), the K ×K transition matrix that describes the evolution
of the state variable, P (St | St−1), and the output model P (Rt | St).

The prior, transition and response parameters ϕ = (ϕ1,ϕ2,ϕ3) are estimated through the EM
algorithm. Parameters can be estimated through an iterative process that seeks to maximize the
expected joint log-likelihood of both the parameters, given the observed data and states:
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log(P(S1:T ,R1:T ,ϕ)) = log(P(S1,ϕ1))

+
T∑
t=2

log(P(St | St−1,ϕ2))

+
T∑
t=1

log(P(Rt | St,ϕ3))

(2.18)

2.3.2 Diversification and Portfolio Management Strategies

2.3.2.1 Shannon’s Demon

In 1960, Claude Shannon, a famous researcher in the field of Information Theory, presented a talk
at MIT regarding stock markets and more precisely about an optimal growth-portfolio construction
method. Based on the works of Kelly and Breiman, Shannon experiments with a way to generate
extra growth using a diversification and rebalancing strategy (cf. [21, 128]) called Shannon’s Demon
[111]. In its experimental method, Shannon considers an asset that follows a random walk process
without upward or downward trend. The portfolio is built using two uncorrelated assets, where half
of available capital is allocated in some highly volatile asset and half of it in a risk free one. After
each round, the investor has to decide whether to reallocate its wealth at risk or in cash respecting
the original allocation.

The accumulated wealth after T rounds and L losses is Wt = W0[(1 + w0a)
(T−L)(1 − w0b)

L]

whereW0 is the initial wealth,w0 is the part of wealth reallocated in risk, a the percentage returns in
an up-move proportional gain and b the percentage loss in an down-move proportional loss.

The objective is to maximize the expected growth rate, E[g]:

E[g] = p log(1 + w0a) + q log(1 + w0b)

where g is the average growth rate, g = 1/T log(wt/w0).

In the Shannon game set-up, the optimal fraction obtained from the optimization is:

w∗0 =
pa− qb

ab

where p is the probability of profit and q is the probability of loss compared to the optimal full-bet
fraction of capital in the buy-and-hold case.

Indeed, the rebalanced portfolio generates extra value compared to a buy-and-hold strategy under
two specific conditions [43]: if 0 < µ < σ2/2 (where the buy-and-hold might lose the initial value)
or if σ2/2 < µ < σ2, where µ and σ the mean and standard deviation of the normally distributed
simple returns for the risky asset. Respectively, if the expected return is higher than σ2, it is best to
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fully invest in the risky asset. By maximizing the growth rate, the optimal fraction to invest at risk
is equal to:

g∗ = 1/2max[log((1 + w0b)(1− w0b))]

where the optimal weight is:
w∗0 = µ/σ2

Thus, the best choice of the risky asset among many risky assets is to one that provides the highest
Sharpe ratio.

A case of two negatively correlated but volatile assets is also considered in [43]. In this scenario, it
is shown that even with appealing diversification properties and positive expected returns, a buy-
and-hold strategy to fails to grow the investors’ wealth. Active management by rebalancing on the
other hand can effectively add value in the long term.

Overall, the Shannon’s Demon strategy is an alternative to the buy-and-hold strategy in order to
generate growth even if the returns of both assets are negative. It provides a solution to Par-
rondo’s Paradox [123] which states that a winning strategy can potentially emerge from the in-
telligent combination of two losing strategies. More generally, high volatility and low correlation
provide extra-growth reducing portfolio risk due to the diversification and rebalancing effect [22].
However, the main limitation concerns the frequency of the rebalancing strategy, and a pertinent
question is whether this frequency is enough to overcome the transactions costs (fees, commis-
sions, taxes). That is, there is a trade-off between the advantages obtained by the Shannon’s De-
mon strategy including lower risk and higher growth and the costs of rebalancing related to the
transaction costs.

2.3.2.2 Equal Risk Contribution Portfolios

Optimal portfolio construction has been a topic of interest in academic literature for decades,
with the mean-variance framework introduced by Markowitz [99] as the foundational method for
efficient wealth allocation. Nevertheless, this framework encounters issues in practical applica-
tion [96], as optimal portfolios often exhibit excessive concentration in a limited subset of assets,
and are highly sensitive to input parameters. Alternative methods, such as portfolio resampling
or robust asset allocation, have been proposed in literature [102, 140] to address these issues but
also possess their own drawbacks [76, 118], including additional computational burden and inferior
out-of-sample performance compared to traditional approaches.

In light of these challenges, investors often prefer heuristic solutions like the minimum variance
and equally-weighted portfolios. The minimum variance portfolio is computationally simple and
robust, as it does not rely on expected returns as a criterion; however, it suffers from portfolio
concentration. The equally-weighted portfolio addresses this concentration issue by assigning
equal weight to all assets considered. Nonetheless, the equally-weighted portfolio may result in
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limited risk diversification if individual risks significantly differ.

Risk-based strategies have proved to be capable of reducing volatility in a way that does not impede
market exposure, while outperforming standard strategies in unsteady markets. Equal Risk Contri-
bution (ERC, also known as Risk Parity) is a well known risk-control strategy that achieves diversi-
fication both within and across asset classes. Its main goal is to bolster the portfolio’s immunity to
unforeseen drawdowns during stressful market periods. In contrast with the equally-weighted allo-
cation scheme, a Risk Parity portfolio aims towards an equal distribution of the overall budget, ex-
pressed in terms of risk rather than capital. Moreover, ERC portfolios ensures a more balanced risk
distribution compared to minimum-variance portfolios, which may lead to an over-concentration
of risk in a limited number of positions [96]. Additionally, optimality arguments lend support to
the ERC approach. Lindberg [93] shows that the solution to Markowitz’s continuous-time portfo-
lio problem, when considering positive drift rates in Brownian motions governing stock prices, is
achieved by equalizing quantities related to risk contributions. Therefore, risk parity approaches
offer a promising alternative to traditional portfolio construction methods, as they provide the di-
versification benefits of equally-weighted portfolios while accounting for individual and joint risk
contributions of assets.

The Risk Parity optimisation problem setting is constituted of N ≥ 2 assets A1, . . . , AN , with µi,
σi and σ2

i representing the expected return, standard deviation and variance of the returns of Ai

respectively and ρij denoting the correlation coefficient of the returns of Ai and Aj for i ̸= j. The
N×N symmetric covariance matrix of returns is defined asΣ = (σij)where σij = ρijσiσj, i ̸= j

and σij = σ2
i , i = j. If xi is the amount to be invested in asset Ai, then the volatility (which is

measured in terms of standard deviation) of the resulting portfolio x = (x1, . . . , xi) is computed
as

√
xTΣx =

∑
i x

2
iσ

2
i +

∑
i

∑
j ̸=i xixjσij .

In the ERC problem, we define the marginal risk contribution of asset Ai as:

∂σ(x)

∂xi

=
xiσ

2
i +

∑
j ̸=i xjσij

σ(x)

If σ(x) =
√
xTΣx denotes the risk of the portfolio, the total risk contribution of asset Ai is given

by σi(x) = xi × ∂xi
σ(x) and, through the Euler decomposition, the risk is expressed as:

σ(x) =
N∑
i=1

σi(x) =
N∑
i=1

xi ×
∂σ(x)

∂xi

,

The desired risk-balanced portfolio is constituted in a way that all components contribute equally
to the overall volatility; therefore σi(x) = σj(x). The general Risk Parity portfolio construction
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problem can be mathematically expressed as:

xERC =

{
x ∈ [0, 1]N : xi × ∂xi

σ(x) = xj × ∂xj
σ(x), ∀i, j,

N∑
i=1

xi = 1

}
.

Through the problem expression, asset classes with reduced levels of volatility or correlation are
favoured since their marginal risk contribution to the portfolio volatility will be lower. In [96], Mail-
lard et al. show that if all correlations are the same then each constituent weight is defined as
the ratio of the reciprocal of its volatility with the sum of the reciprocals of the volatilities of all
constituents:

xi =
σ−1i∑N
j=1 σ

−1
j

, i = 1, . . . , N (2.19)

Similarly, in the bivariate case, the vector of total risk contributions is given by:

1

σ(x)

(
x2
1σ

2
1 + x1x2ρσ1σ2

x2
2σ

2
2 + x1x2ρσ1σ2

)

Therefore, when ρ = 0, the constituent weights will be:

x1 =
σ−11

σ−11 + σ−12

.

In [96], when the correlations are different, the authors propose solving the optimisation problem
defined as

min
x

N∑
i=1

N∑
j=1

(
xi (Σx)i − xj (Σx)j

)2
(2.20)

with xi ∈ [0, 1] and
∑N

i=1 xi = 1. Here (Σx)i denotes the ith entry of the vector resulting from
the product of Σ with x.

2.3.2.3 Mean-Variance Spanning Tests

The process of constituent selection in portfolio construction often raises the question of whether
a set of additional assets can improve the risk-adjusted returns of a base asset set. Huberman and
Kandel [68] address this issue and, given a set of K assets (benchmark assets) and a set of N
additional assets (test assets), they test the hypothesis that the efficient frontier of K is the same
as that of K+N . The concept of mean-variance spanning therefore states that a set of K assets
spans a larger set of N + K assets if the minimum-variance frontier of K assets is identical to
the minimum-variance frontier K +N .

Relevant works in financial literature [42, 77, 90] analyse whether investors, given a set ofK assets,
can benefit through investing in an additional set of N assets. Following the definitions of Kan and
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Zhou [77], we denote with Rt = [R′1t, R
′
2t] the returns of the assets under consideration. Here R′1t

is a vector of length K , with the returns of the K benchmark assets at time t and R′2t is a vector of
length N , with the returns of the N test assets at time t. The expected returns and the covariance
matrix of the N +K assets are given by:

µ = E [Rt] =

[
µ1

µ2

]
, V = Var [Rt] =

[
V11 V12

V21 V22

]
, (2.21)

where E [R1t] = µ1 and E [R2t] = µ2, V11 is the covariance matrix of the K benchmark assets,
V22 is the covariance matrix of the N test assets, V12, V21 represent the covariances of the bench-
mark assets with the test assets. For the mean-variance spanning test setting, R2t is projected on
R1t:

R2t = α + βR1t + ϵt, (2.22)

where E [ϵt] = 0N and E [ϵtR
′
1t] = 0N×K . In Eq. 2.22, α and β are given by α = µ2 − βµ1 and

β = V21V
−1
11 .

In matrix notation, assuming length T for the assets’ time-series, we have:

R = XB + E, (2.23)

where R is the T×N matrix of the test asset returns R2t, X is the T×(K+1) matrix where each
row is given by [1, R′1t] , t ∈ [1, T ], B = [α, β]′ and E is a T ×N matrix where each row is given
by ϵ′t. The residuals ϵt are assumed to be independent and identically distributed as multivariate
normal with zero mean and variance Σ.

Setting δ = 1N − β1K , the null hypothesis for spanning, provided by Huberman and Kandel [68],
is given by:

H0 : α = 0N , δ = 0N (2.24)

The null hypothesis highlights the fact that mean-variance spanning tests are joint tests. Condition
α = 0 tests whether the test assets improve the tangency portfolio and δ = 0 tests whether they
improve the global minimum variance portfolio. The two conditions together imply that adding
the N test assets to the base portfolio of K assets does not shift the efficient frontier signifi-
cantly.

The null hypothesis in Eq. 2.24 can be rewritten as H0 : Θ = 02×N , where Θ = [α, δ]′. In this
case, Θ = AB − C , where

A =

[
1 0′K

0 −1′K

]
, C =

[
0′N

−1′N

]
, (2.25)
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Mean-Variance spanning is presented in [77] as a likelihood ratio test (LR), based on the regres-
sion given by Eq. 2.22, and can accordingly be supplemented with the Wald (W) and the Lagrange
multiplier (LM) tests. We define the estimation matrices

Ĝ = TA (X ′X)
−1

A′, Ĥ = Θ̂Σ̂−1Θ̂′ (2.26)

Σ̂ in Eq. 2.26 is the unconstrained maximum likelihood estimator of the covariance matrix of error
terms Σ. Denoting by B̂ the estimator of B, we have:

B̂ =
[
α̂, β̂

]′
= (X ′X)

−1
(X ′R) , (2.27)

Σ̂ =
1

T

(
R−XB̂

)′ (
R−XB̂

)
. (2.28)

Further denoting by λ1 and λ2 the eigenvalues of ĤĜ−1, with λ1 ≥ λ2 ≥ 0, we obtain the three
test statistics:

LR = T
2∑

i=1

ln (1 + λi)
A∼ χ2

2N , (2.29)

W = T (λ1 + λ2)
A∼ χ2

2N , (2.30)

LM = T
2∑

i=1

λi

1 + λi

A∼ χ2
2N . (2.31)

All three tests have an asymptotic χ2
2N distribution, although we must have W ≥ LR ≥ LM in finite

samples [15, 27]. The three tests might produce conflicting results, with W favoring rejection and
LM favoring acceptance. It is therefore important to perform all three tests when deciding upon
the mean-variance spanning outcome.

The main determinant of the power of the spanning tests is the difference between the risk levels
in the two minimum variance portfolios [77]. That is because, although spanning tests are joint
tests, they weigh the estimates of the two constants according to their accuracy. In this case, the
estimation of δ is statistically more accurate since it does not involve any estimations of expected
returns. Additionally, a statistically significant shift in the minimum variance portfolio might not be
as important to an investor as an improvement to the tangency portfolio. It is therefore suggested
to examine the two parts of the hypothesis in Eq. 2.24 separately. This involves a step-down pro-
cedure which first examines whether α = 0N through an F-test (F1) and secondly the condition
δ = 0N , also through an F-test (F2). A rejection of the F1 test will hint that the two tangency
portfolios are different while the rejection of F2 will indicate a significant difference in the min-
imum variance portfolios. The original hypothesis will be accepted only if both individual tests
are accepted. F1 has a central F-distribution with N and T −K − N degrees of freedom, given
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by:

F1 =

(
T −K −N

N

)(
|Σ̄|
|Σ̂|

− 1

)

=

(
T −K −N

N

)(
α̂− α̂1

1 + α̂1

)
,

(2.32)

where Σ̂ is an unconstrained estimate of the covariance matrix Σ and Σ̄ is an estimate of Σ,
conditional on α = 0N . Additionally, α̂ = µ̂′V̂ −1µ̂, µ̂ = 1

T

∑T
t=1 Rt, V̂ = 1

T

∑T
t=1(Rt − µ̂)(Rt −

µ̂)′, α̂1 = µ̂1
′V̂ −111 µ̂1. Here µ̂ and V̂ represent the maximum likelihood estimates of the expected

return and covariance matrix of the augmented portfolio, respectively.

Similarly, F2 has a central F-distribution with N and T − K − N + 1 degrees of freedom, it is
independent of F1 and is given by:

F2 =

(
T −K −N + 1

N

)(
|Σ̃|
|Σ̄|

− 1

)

=

(
T −K −N + 1

N

)[(
ĉ+ d̂

ĉ1 + d̂1

)(
1 + α̂1

1 + α̂

)
− 1

]
,

(2.33)

where Σ̃ is an estimate of the residual covariance matrix Σ, conditional on α = 0N and δ = 0N ,
b̂1 = µ̂1

′V̂ −111 1K , ĉ1 = 1′K V̂
−1
11 1K , d̂1 = α̂ĉ − b̂2, b̂ = µ̂′V̂ −11N+K , ĉ = 1′N+K V̂

−11N+K and
d̂ = α̂ĉ− b̂2. The mentioned constants will later also assist the geometrical interpretation of the
performed spanning tests.

2.3.3 Fundamental Tools in Quantitative Risk Management

2.3.3.1 Multivariate Stress Testing for Efficient Risk Management

There are several definitions of stress tests in literature. Studer [129] describes stress tests as the
concept of maximum loss over ellipsoidal scenario sets. The stress testing problem is also de-
scribed by Breuer et al. [26] who propose a number of refinements to Studer’s initial approach. Ac-
cording to [26], the quality of the stress test crucially depends on the definition of stress scenarios,
which need to meet three requirements: plausibility, severity and suggestiveness of risk-reducing
actions. Lopez [95] further refers to stress tests as risk management tools that aim to quantify the
impact of unlikely, yet plausible, movements of financial variables on portfolio values.

Stress test design methods vary in practice and are typically divided into two main categories:
univariate and multivariate. While univariate stress tests, also referred to as sensitivity analysis,
are relatively easy to perform, they are considered insufficient, as they fail to incorporate the de-
pendence structure of the identified risk factors. Multivariate approaches examine the effects of
simultaneous changes in more than one variables and are usually scenario-based. Breuer et al.
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[26] highlight the importance of an explicit choice of scenarios while Nyström et al. [109] identify
the main elements of scenario-based risk management:

1. Recording the market value of the portfolio components
2. Generating scenarios based on a calibrated model of the portfolio behaviour
3. Estimation of the returns distribution
4. Application of risk measures in the obtained distribution

Regarding the model calibrations in step 2, Cherubini et al. [34] consider the bivariate equity portfo-
lio case and suggest a univariate model for each of the two marginal distributions of the portfolio’s
risk factors , and one conditional copula approach for the underlying dependence structure.

Stylised facts on autocorrelations and volatility clustering, as proposed by Cont [38], suggest that
(i) linear autocorrelations of returns are expected to be very small, (ii) autocorrelation function of
absolute returns decays slowly as a function of the time lag and (iii) volatility events are stochastic
and appear in clusters. Additionally, we expect (iv) asymmetric and heavy tails in the unconditional
distribution of returns that exhibit power-law or Pareto-like behaviors. When examining conditional
returns that have been corrected for heteroskedasticity, tails are less heavy.

2.3.3.2 Dependence Structure Modeling

In the preceding sections, we explored the application of GARCH models, focusing on how they
help in understanding the volatility dynamics of financial markets through the analysis of GARCH
residuals. These residuals, representing the deviations from the expected returns, provide key
insights into market behavior under different volatility regimes. As we move towards a more holistic
view of risk management, it is essential to extend our analysis beyond individual asset volatility to
the interconnected nature of various assets within a portfolio.

Given a fitted semi-parametric distribution of the GARCH residuals, we have a foundation to simu-
late scenarios and examine the sensitivity of risk to different volatility specifications by adjusting
the individually fitted constants. This approach, however, primarily considers assets in isolation. In
a multivariate risk management context, where portfolio diversification and asset interdependence
play critical roles, it is imperative to address the dependence structure among risk factors. This
is particularly crucial in portfolios where decisions on composition are significantly influenced by
cross-correlations among assets.

This leads us to the concept of copulas, a powerful statistical tool that allows us to model and
analyze the dependence structure between different assets or risk factors. In subsequent chapters
we will utilise the concept of copulas as a tool that allows us to decompose a joint probability
distribution into its marginals. Copulas enable us to understand how assets move in relation to
one another, especially during periods of market stress, thereby providing a more comprehensive
risk assessment framework.
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A d-dimensional copula is a distribution function with standard uniform marginal distributions, that
represents a mapping of the unit hypercube into the unit interval in the form of C : [0, 1]d → [0, 1].
The practicality of copulas in multivariate distribution modelling is highlighted through Sklar’s The-
orem that states that, if F is a joint distribution function with margins F1, . . . , Fd, then there exists
a copula C : [0, 1]d → [0, 1] such that for all x1, . . . , xd in R,

F (x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)).

Conversely, if C is a copula and F1, . . . , Fd are univariate distribution functions, then the function
F is a joint distribution function with margins F1, . . . , Fd. By further denoting with F←(u) =

inf{x : F (x) ≥ u} the generalised inverse distribution function of F , we obtain:

F (F←1 (u1), . . . , F
←
d (ud)) = C(u1, . . . , ud)

Copulas lend themselves particularly useful for settings where the marginal distributions at hand
have been defined in detail. Moreover, as confirmed by the latter expression of Sklar’s Theorem,
they express correlations on a quantile scale, since C(u1, . . . , ud) is the joint probability that each
random value Xi lies below its ui-quantile, allowing us to isolate the dependence of extreme out-
comes, if necessary.

Given a copula C , its cumulative distribution function can be expressed as an integral over its
density function, c(u1, . . . , ud):

C(u1, . . . , ud) =

∫ u1

−∞
· · ·
∫ ud

−∞
c(u1, . . . , ud) du1, . . . , dud

Given this expression, copulas fall into two main categories: implicit and explicit, depending on
whether the integral of the former equation possesses a simple closed-form (although those two
categories are not mutually exclusive). Copulas of the former category do not necessarily have
simple closed-form expressions and are implied by well-known multivariate distribution functions
using Sklar’s Theorem, while the latter possess closed forms.

For this study we consider two implicit copulas; the Gaussian and t-copula. Given a multivariate
normal random vector Y ∼ Nd(µ,Σ), its copula is a Gaussian copula and, under the copula
property of invariance under monotone increasing transformations, it is the same as the copula of
X ∼ Nd(0, P ), where P is the correlation matrix of Y . In two dimensions, the Gaussian copula
is given by:

CG
ρ (u1, u2) = ΦP (Φ

−1(u1),Φ
−1(u2))

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

1

2π(1− ρ2)1/2
exp
(
−(s21 − 2ρs1s2 + s22)

2(1− ρ2)

)
ds1ds2
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where Φ and ΦP denote the standard univariate normal distribution function and joint distribution
function of X respectively, P is the correlation matrix and ρ is the correlation of X1, X2 (unique
parameter of P in the bivariate case).

We can similarly define a 2-dimensional t-copula of X ∼ td(ν,0, P ) by introducing an additional
parameter, namely the degrees of freedom:

Ct
ρ,ν(u1, u2) = tP,ν(t

−1
ν (u1), t

−1
ν (u2))

where tν and tP,ν are the standard univariate t distribution function and joint distribution function of
X respectively with ν degrees of freedom, expectation 0 and variance ν

ν−2 , andP is the correlation
matrix of X1, X2. The degrees of freedom in the t-copula allows to adjust the co-movements of
marginal extremes, and that makes t-copulas a popular choice for applications that aim to stress
the tail dependencies of risk factors.

The estimation of the parameters θ of a parametric copulaCθ is performed through maximum like-
lihood. If F̂1, . . . , F̂d denote estimates of the marginal distribution functions, we can construct a
so-called pseudo-sample of observations from the copula that consists of the vectors Û 1, . . . , Û d,
where

Û t = (Ût,1, . . . , Ût,d)
′ = (F̂1(Xt,1), . . . , F̂d(Xt,d))

′.

The marginal estimate F̂i is obtained by the semi-parametric approach described in Section 2.3.3.3;
the body of the distribution is approached empirically and the tails are given through a generalised
Pareto distribution. The MLE is obtained through maximising:

lnL(θ; Û 1, . . . , Ûn) =
n∑

t=1

ln cθ(Û t)

with respect to θ, where Û t denotes the pseudo-observation from the copula and cθ is the copula
density. A goodness-of-fit test can be further used in order to evaluate whether the data is appro-
priately modelled. This is performed by comparing the empirical copula with a parametric estimate
[53, 113]. We can then sample the vector U t = (Ut,1, . . . , Ut,d)

′ and obtain the marginal distribu-
tions, through quantile transformation, that correspond to a defined dependence structure.

2.3.3.3 Tail Behavior Estimates

Stress scenarios aim to describe how the portfolio would perform under extreme market moves, a
fact that yields the modelling process of the risk factors’ tails crucial. Extreme Value Theory (EVT)
approaches are specifically concerned with the asymptotic behavior of the left and right tails sep-
arately. The key assumption of EVT is that it considers i.i.d. sequences. The propagation of asym-
metric, heavy-tailed characteristics in the GARCH standardised residuals [139] and their strict white
noise behavior, allows for EVT application to the tails of their empirical distribution. Combined with
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a non-parametric method for the centre, we can explicitly provide the filtered residual distribution
for the fitted stochastic models described in Section 2.3.1.1 for further simulations.

There are two main approaches that isolate extreme values, block maxima and threshold exceedance
models, with the latter being more useful in practice. This is due to the fact that the former study
the time series of maxima of consecutive time-series blocks and therefore might disregard large
(and often important) portions of the original dataset. In contrast, threshold exceedance methods
study all events that exceed a specified high threshold.

Given a sequence of i.i.d. random values, the Generalised Pareto cumulative distribution function
is given by:

Gξ,β(x) =

{
1− (1 + ξx

β
)−1/ξ, ξ ̸= 0

1− e−x/β, ξ = 0
(2.34)

where ξ andβ > 0 denote the shape and scale parameters, x ≥ 0when ξ ≥ 0 and 0 ≤ x ≤ −β/ξ

when ξ < 0. Given that ξ < 1, the GPD mean is E(X) = β/(1 − ξ). We further define the
concepts of excess distribution over a threshold u along with the mean excess function, as they
both play an important role in EVT. Given a random value X with a GPD cumulative distribution
function F = Gξ,β , the cumulative distribution function of the excess distribution over threshold
u is given by:

Fu(x) = Gξ,β(u)(x) = P (X − u ≤ x | X > u) =
Gξ,β(u)(x+ u)−Gξ,β(u)(u)

1−Gξ,β(u)(u)
,

where β(u) = β + ξu, 0 ≤ x < ∞ if ξ ≥ 0 and 0 ≤ x ≤ −(β/ξ) − u if ξ < 0. The excess
distribution remains a GPD with the same shape parameter ξ but with a scaling parameter that
grows linearly with the threshold parameter u. The mean excess function of the GPD, describes
the distribution of excess loss over the threshold u, given that u is exceeded, and is given by:

e(u) = E(X − u | X > u) =
β(u)

1− ξ
=

β + ξu

1− ξ
, (2.35)

In this case, 0 ≤ u < inf if 0 ≤ u < 1 and 0 ≤ u ≤ −(β/ξ) if ξ < 0. It can be observed that
the mean excess function is linear in the threshold u, which is a characterising property of the GPD
and will assist with the choice of u in later sections.

Aikaterini Koutsouri Balancing Cryptoassets and Commodities 53



2.4. Research Landscape Background

2.4 Research Landscape
As previously outlined, cryptoassets have gained recognition as viable investment options. Their
unique characteristic of exhibiting minimal correlation with traditional asset classes, as noted
in [10], means that even a modest allocation of cryptoassets in a portfolio can significantly en-
hance risk-adjusted returns, a point underscored by Burniske and Tatar [29]. Beyond enhancing
returns, they also offer potential as a safe haven during financial crises. Despite these advantages,
the cryptoasset market has, until recently, grappled with challenges stemming from unclear regu-
latory guidance. This uncertainty has spanned across various aspects, including the classification
of assets, their tax implications, and responses to unique events within the cryptocurrency domain,
such as forks.

However, the landscape has begun to shift over the past year, marked by the emergence of more
mature and well-defined regulatory frameworks, as highlighted in [64, 121, 134]. This evolution in
regulatory clarity has led to a growing institutional interest in cryptoasset-based financial instru-
ments. Delving into these aspects, this thesis aims to navigate through the intricacies of the cryp-
toasset market, placing a strong emphasis on the development and application of robust financial
tools and methodologies suitable for this dynamic and evolving landscape.

On the investment front, pure-crypto indices such as CRIX [138], CRYPTO20 [40], MVDA5 [105], and
Bloomberg Galaxy Crypto Index [17] have been instrumental in offering broad market exposure.
Yet, these indices are not without their challenges, primarily characterized by volatility levels that
mirror those of individual cryptoassets. This reflects a critical limitation in their design – the lack
of sophisticated risk control mechanisms beyond the basic strategy of diversification across their
highly correlated constituents. Addressing these limitations forms a significant part of the research
and analysis presented in this thesis.

Building on the understanding of the limitations and potential of diversified cryptoasset indices, as
explored in the preceding section, the concept of stress testing emerges as a critical tool in risk
management, especially in the volatile realm of cryptoassets. The origins of stress testing can
be traced back to the early 1990s, predominantly utilized by banks for managing risks associated
with their trading activities. The idea of using stress testing was only standardised in 1996 by the
Basel Committee on Banking Supervision (BCBS) when an amendment was made to the first Basel
Accord (Basel I) [7] that recognised stress testing as an effective way to measure risk. In the second
Basel Accord (Basel II) [8], the BCBS asked banks to conduct internal stress testing. However, by
the time the financial crisis began in 2007, Basel II was not yet fully implemented internationally,
and most stress testing models were still in development.

The financial crisis is an example of a useful stress situation, when banks had to restrict their lend-
ing and the limitations of standard Value-at-Risk methodologies became apparent. At the time,
most banks were not properly prepared to accommodate for this situation, which can be linked
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to the lack of scenario-based risk management planning. Post financial crisis, stress testing has
increased widely in implementation across jurisdictions and is used by banks, international or-
ganisations, national authorities and academics. Stress tests performed by banks are assessing
whether there is enough capital on hand to withstand a potential financial disaster or economic
crisis and the results are required to be made publicly available.

Stress testing is not only applied on evaluating risks from an organisational and industrial level;
it can also be used to test investment portfolios in order to evaluate how they perform under un-
favourable economic scenarios. Developing an adequate stress testing methodology, based on
realistic market models and well-defined scenarios, is critical in understanding a portfolio’s poten-
tial risks. Institutions and investors can then mitigate those risks by planning appropriate policies
in advance.

In the cryptocurrency industry, while there have been numerous studies of price dynamics [35, 46,
82], there has been a lack of research in risk management for cryptocurrency-related investment
products (e.g. cryptocurrency indices, funds, ETPs, etc.). There is, however, a growing awareness
of the importance of this issue in the industry. Additionally, the US Federal Reserve is considering
adding to their stress testing framework the scenario of a bitcoin market crash [18]. Nonetheless,
there is still plenty of work to be done on the already-existing investment products in the cryptocur-
rency market by the product owners and potentially market supervisors. Hence, a further contri-
bution of this thesis lies in introducing a scenario-based risk management framework tailored for
cryptoasset products. We incorporate principles from the existing body of literature in traditional
finance, with the goal of enriching the domain of cryptoasset risk management.

Moving beyond stress testing, an alternative approach to evaluating portfolio resilience is the anal-
ysis of market regime dynamics. This method focuses on understanding and predicting portfo-
lio performance across diverse market conditions, offering a perspective on how investments re-
spond to shifts in market conditions. Use cases of market regime studies span from Investment
Banks who attempt to determine when market regime changes occur (e.g. Morgan Stanley Regime
Switching Index, MSCEEMRI) to Central Banks aiming to estimate the occurrence probability of
high-stress scenarios [44] in order to signal and mitigate financial risk. Methods including estima-
tion of conditional volatilities are key for risk-monitoring processes and, while the original works of
Engle [48] and Bollerslev [20] have been widely adopted and expanded by risk managers, studies
highlight the presence of structural breaks in the dynamics of financial time-series.

The first application of regime switching approaches is found in the works of Hamilton [60] which
examine how economic activity fluctuates between states of expansion and recession. Since then,
Markov-switching approaches have extended to different specifications, with Hamilton and Sus-
mel [61] presenting a conditional hetereoskedasticity (ARCH) setting with a Markov-switching spec-
ification in the state alteration. Other extensions are found in the works of Bauwens et al. [11] and
Haas [59] which investigate stock market indices and categorise time periods according to volatility
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changes. Other applications include attempts to forecast stock prices [62, 145], portfolio allocation
methodologies [39, 108] and univariate Value-at-Risk (VaR) estimations [116].

In the cryptoasset space, previous studies have investigated single-regime generalised conditional
heteroskedasticity (GARCH) model estimations [35, 45]. The highly volatile nature of cryptoassets
has made the original works of Engle [48] and Bollerslev [20] around Generalised Autoregressive
Conditional Heteroskedasticity (GARCH) models, a popular choice when evaluating price fluctua-
tions. GARCH-type models are commonly used in financial time series modeling, in cases where
time-varying volatility and volatility clustering are observed, and earlier studies have examined their
application in the cryptocurrency space as well. Chu et al. [35] examine various specifications of
univariate GARCH-type models for twelve, major at the time, cryptoassets and assess them ac-
cording to their ability to estimate Value-at-Risk. Multivariate settings are also typically considered,
with Katsiampa [78] employing an Asymmetric Diagonal BEKK (named after Baba, Engle, Kraft and
Kroner [49]) multivariate GARCH setting to examine the individual conditional variances as well as
the volatility co-movements of five major cryptocurrencies. Overall, results reject normality and
homoskedasticity and time-varying conditional correlations are persistent and positive. Kim et
al. [81] also utilise multivariate approaches and examine the relationship between Bitcoin, Gold
and the S&P 500 index using a variety of Dynamic Conditional Correlation models (DCC) GARCH
specifications. Results demonstrate a positive time-varying relationship between the examined
markets.

Nevertheless, the weaknesses of single-regime models have been highlighted in existing literature,
with Molnár and Thies [135] detecting structural changes in Bitcoin pricing data. Ardia et al. [5]
address the switch in the Bitcoin returns process through a Markov-switching GARCH model (MS-
GARCH) whose parameters adapt to variations in the unconditional variance. They show that the
2-state MSGARCH approach in volatility modeling improves one–day ahead VaR predictions. Koki
et al. [83] study cryptoasset prices via a Non-Homogeneous Pólya Gamma Hidden Markov (NHPG)
model. Their findings identify two states – high and low volatility, with frequent transitions be-
tween the two – and the proposed model is characterised by good in-sample performance but
poor posterior out-of-sample predictions.

Despite existing research on crypto-market dynamics and the diversification potential of cryptoas-
sets, there remains a gap in understanding how different allocation strategies perform under vary-
ing market conditions and align with individual investor goals. Bridging this gap, another goal of
this thesis is to apply regime-switching models to identify high-risk market states in diversified
crypto portfolios and evaluate the suitability of various strategies for investors with distinct annual
return objectives.

The inclusion of cryptoassets in investment portfolios has also been a point of interest in recent
studies. One of the main steps of portfolio optimisation is selecting a target function that needs to
be optimised. Investors that are interested in mitigating risk, may choose to form a portfolio that is
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constructed through minimisation of the standard deviation. Another popular choice is construct-
ing a portfolio that gives the highest expected return per unit of risk. The Sharpe ratio is a metric
that is used on this occasion, and is defined as the return divided by the standard deviation of the
investment. Maximising the Sharpe ratio produces a “risk-efficient” allocation that is commonly re-
ferred to as the tangency portfolio. While the Sharpe ratio is the most commonly used risk–return
assessment metric by investors, its main disadvantage is that it accounts only for the first two
moments of the returns distribution (average asset return and standard deviation). The Omega
ratio [79], defined as the probability-weighted ratio of gains over losses given a specific level of
threshold return, is an alternative metric that is used in portfolio theory to address the shortcom-
ings of the Sharpe ratio. Asset allocation methods can also follow simplistic approaches, such as
equally-weighted portfolios. Recent studies have examined the applications of the aforementioned
principles of modern portfolio theory in investment strategies that include cryptoassets.

In [94], Liu considers ten major cryptoassets and examines the out-of-sample performance of
commonly-used asset allocation strategies. Results demonstrate that diversifying across the crypto-
market improves risk-adjusted performance, with the equal-weighting scheme achieving the best
results in terms of Sharpe ratio. Brauneis and Mestel [23] also assess the risk-adjusted perfor-
mance of cryptoasset portfolios, based on the traditional Markowitz mean-variance framework.
The authors employ different mean-variance strategies to form diversified portfolios of 500 cryp-
toassets and compare their performance to individual cryptoasset investments. They also consider
two benchmarks for performance comparison, an equally-weighted portfolio and the CRIX [138]
market capitalisation index. In terms of the Sharpe ratio, they conclude that näıvely diversified port-
folios outperform single cryptoasset investments and mean-variance optimised portfolios.

Castro et al. [32] suggest a framework that maximises the Omega ratio. They consider four di-
versified investment portfolios and conclude that, while crypto-exposure improves returns, it also
increases risk. Bedi and Nashier [12] construct diversified portfolios, denominated in USD and
converted to GBP, EUR, JPY and CNY and conclude that CNY, JPY and USD portfolios record sig-
nificantly higher gains if they include Bitcoin. Wu and Pandley [143] also examine the impact of
including Bitcoin in a portfolio of stocks, bonds, currencies, real estate and commodities. Results
confirm that investors can benefit from holding a small amount of Bitcoin in their portfolios. For a
comprehensive overview of cryptocurrency trading-related research, readers can consult the works
of Fang et al. [51]

Henriques and Sadorsky [63] refer to gold as a safe haven asset with important diversification ca-
pabilities and recognise that its elimination from investment portfolios can potentially negatively
impact their risk-return profile. Motivated by the occasional referral to Bitcoin as digital gold, they
examine whether Bitcoin can replace physical gold in traditional investment portfolios and how
such scenario would impact the risk-adjusted returns. Their approach uses multivariate GARCH
models to minimise variance, given a target return and is applied to a US benchmark portfolio
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that includes gold and a portfolio that substitutes gold for bitcoin. They conclude that the bitcoin-
containing portfolio ranks higher in terms of risk-adjusted returns. Nevertheless, their model as-
sumes daily rebalancings with no restrictions on short sales and is limited in historical data up to
2018, therefore disregarding a large portion of recent market dynamics.

The diversification properties of cryptoassets are also examined by Antipova [2]. Empirical results
show that global portfolios display better performance when they utilise the crypto-market as a
diversification mechanism. Additionally, it is shown that better results are achieved when portfo-
lios are exposed to multiple cryptoassets rather than solely Bitcoin. Optimization approaches on
crypto-containing portfolios have also been studied, with Brauneis et al. [24] examining a traditional
mean-variance framework. Castro et al. [32] suggest maximising the Omega ratio when optimising
cryptoasset-based portfolios and consider four investment portfolios, two of which contain stock
market indices in addition to cryptoassets. They conclude that, while crypto-exposure improves
returns, it also increases risk. A detailed, comprehensive overview and analysis of further research
work around cryptocurrency trading is presented by Fang et al. [51].

Notwithstanding past studies on crypto-market dynamics and the diversification properties of cryp-
toassets, their combination with traditional asset classes remains a relatively unexplored topic of
discussion. This thesis will be specifically concerned with examining the diversification benefits of
commodities for the cryptoasset space, ultimately aiming to gain insight into how their inclusion
in cryptoasset portfolios affects the mean-variance frontier.
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Chapter 3

Mitigating Risk in Cryptoasset
Investments

Bitcoin is foremost amongst the emerging asset class known as cryptoassets. Two
noteworthy characteristics of the returns of non-stablecoin cryptoassets are their high
volatility, which brings with it a high level of risk, and their high intraclass correlation,
which limits the benefits that can be had by diversifying across multiple cryptoassets.
Yet cryptoassets exhibit no correlation with gold, a highly-liquid yet scarce asset which
has proved to function as a safe haven during crises affecting traditional financial sys-
tems. As exemplified by Shannon’s Demon, a lack of correlation between assets opens
the door to principled risk control through so-called volatility harvesting involving pe-
riodic rebalancing. In this chapter we ultimately propose an index which combines a
basket of five cryptoassets with an investment in gold in a way that aims to improve
the risk profile of the resulting portfolio while preserving its independence from main-
stream financial asset classes such as stocks, bonds and fiat currencies. We generalise
the theory of Equal Risk Contribution to allow for weighting according to a desired level
of contribution to volatility. We find a crypto–gold weighting based on Weighted Risk
Contribution to be historically more effective in terms of Sharpe Ratio than several alter-
native asset allocation strategies including Shannon’s Demon. Within the crypto-basket,
whose constituents are selected and rebalanced monthly, we find an Equal Weighting
scheme to be more effective in terms of the same metric than a market capitalisation
weighting.

This chapter was published at the 1st International Conference on Mathematical Research for
Blockchain Economy in 2019 [87].
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3.1 Background and Methodology

3.1.1 Motivation
Regardless of the creation of new financial products, many investors still see the crypto market
as being unacceptably risky due to its high volatility – something not unusual for an emerging
asset class. Although volatility poses challenges in terms of increased uncertainty, there are also
benefits to be had from its proper management through diversification and regular rebalancing [22].
This is was exemplified in section 2.3.2.1 by the so-called Shannon’s Demon approach in which two,
ideally uncorrelated, assets – at least one of which is highly volatile – are periodically rebalanced to
maintain an ideal target allocation. The resulting expected growth rate is greater than the arithmetic
mean of the individual expected growth rates, while the variance of the returns is less than the mean
of the individual variances [111, pp. 201–209].

In theory, this strategy would be well-suited for the volatile cryptoasset class and an uncorrelated
wealth-preserving asset class. Although there are plenty of candidates to consider, not all are
properly suited. For example, traditional wealth-preserving assets such as property or museum-
quality fine art are illiquid [115]. An asset such as gold is much more appropriate because of its low
volatility, high liquidity and ability to act as a hedge [10, 25, 45]. Gold is also more suitable in this
context than other precious metals such as platinum or silver, since the latter, unlike gold, have not
historically served as a hedge or safe haven during times of financial turmoil [65].

As reviewed in previous sections, existing pure-crypto indices do not incorporate mechanisms for
effective risk control. By contrast, the purpose of the study presented in this chapter, put forth
jointly by researchers at Imperial College London and CoinShares, is to propose a low-volatility
index that combines an uncorrelated asset (gold) with a basket of cryptoassets, using weighted-
risk contribution as a rebalancing mechanism. By decreasing volatility levels, it yields superior
risk-adjusted returns when compared to a number of alternative strategies, including holding cryp-
toassets or gold alone. Further, the proposed index presents a moderate turnover, which translates
into moderate operating costs.

3.1.2 From Equal to Weighted Risk Contribution Allocations
One potential concern about the Equal Risk Contribution scheme is that, because it belongs to the
family of inverse volatility weighting, it can generate allocations that are too concentrated towards
assets with low volatility or low correlation, causing the undesired effect of low diversification
inside a portfolio when no constraints are introduced.

This has indeed what happened to many Risk Parity funds. When low rates were set by Central
Banks in the most advanced economies, sovereign bonds returns reached an unprecedented low
level of volatility and an unconstrained minimisation resulted in an extremely high weight for this
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asset class. When Central Banks moved on to raise rates, Risk Parity portfolios found themselves
too exposed to that risk and suffered important losses. In this case, when it comes to the weighting
of cryptoassets alone, the risk of a similar scenario is somehow less of a concern, because of the
similar level of volatility between cryptoassets and because of their high level of correlation.

We can address this issue by allowing the proportion of risk contribution by each asset class to be
configurable. As examined in the previous section, following [96], the vector of risk contributions
in the two-asset case given weighting x = (x1, x2) and correlation ρ is:

1
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2
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Considering the case of uncorrelated assets (ρ = 0), and supposing that we desire the risk contri-
bution of asset 1 to be α times the risk contribution of asset 2, we need to solve for x1 in:
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Given xi ∈ [0, 1] and
∑2

i=1 xi = 1 this yields:

x1 =

√
ασ−11√

ασ−11 + σ−12

(3.3)

In the next sections we present how the weighted risk contribution scheme can be utilised in the
creation of an index product, where x1 will represent the proportion of the investment allocated
towards a basket of cryptoassets whose components are equally weighted, while x2 is the propor-
tion invested in gold. The risk contribution ratio is set as α = 4, indicating that 80% of the total
risk emanates from the crypto-basket.
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3.2 Applications

3.2.1 CGCI: Balancing Physical and Digital Gold
CoinShares Gold and Cryptoassets Index The research presented in this chapter led to the
launch of the CoinShares Gold and Cryptoassets Index (CGCI), the first EU Benchmark Regu-
lations (EU BMR) compliant index for the digital asset industry that combines digital assets
and gold. The CGCI is available on Bloomberg and Refinitiv (formerly Reuters) under the ticker
symbol COINCGCI and .COINCGCI, respectively1.

3.2.1.1 Design Goals

In this section we present how the concepts of the previous chapters can be used to design an
index product for the digital asset space. The general aim is to propose a solution for investors
that wish to gain diversified exposure to the cryptoasset space, in a way that yields a superior
risk-return profile when compared to holding such assets in isolation, while being orthogonal to
traditional financial markets. The objective the study is the design and implementation of an index
that should meet the following goals:

1. Provide exposure to the alternative asset space in a way that is orthogonal to traditional fi-
nancial markets;

2. Be comprised of a small number of liquid, investable constituent assets;
3. Exhibit a relatively stable composition in terms of constituents with asset weights that do not

vary dramatically between rebalancing periods, leading to low or moderate turnover;
4. Utilise some means of principled risk control leading to lower volatility;
5. Be specified in a clear and unambiguous manner to facilitate validation and reproducibility;
6. Hold constituent assets on a long-only basis;
7. Not make use of leverage.

In terms of Goal 4, historical volatility of cryptoassets has remained at much higher levels com-
pared to other asset classes while correlation among single non-stablecoin cryptoassets is persis-
tent, displaying some signs of time variability. Therefore, constructing an index constituted only
of cryptoassets offers very little prospect of diversification irrespective of the methodology used
and hence, less prospect of bringing down its volatility. Gold returns, on the other hand, have been
much less volatile than those of cryptoassets and have displayed a very low time varying correla-
tion with cryptoassets (see Fig. 3.1). Gold was therefore the ideal candidate to include alongside
cryptoassets with the purpose of considerably reducing volatility.

1A full index methodology document has been made available online by the index owner, CoinShares (Holdings)
Limited (www.coinshares.com), and the Benchmark Administrator and Calculation Agent, Compass Financial Tech-
nologies (www.compassft.com).
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Figure 3.1: 180-Day Rolling correlation (RC) between daily returns of Bitcoin (BTC) and Gold
(GLD)

3.2.1.2 Constituent Eligibility and Selection

The index is composed of a fixed number of constituents including five cryptoassets and SPDR
Gold Shares (GLD), the largest gold ETF. The cryptoasset constituents of the index are the top five
eligible cryptoassets based on the 6-month rolling mean of free-float market capitalisation. By
restricting the index to the top five cryptoassets we are less likely to encounter liquidity issues.
Selection of constituents occurs on a monthly basis.

We determine whether a cryptoasset is eligible to be selected, based on the following require-
ments:

1. Trades in USD;
2. Is not linked to the value of a fiat currency;
3. Has at least a 6-month history of trading on a reputable exchange;
4. Has been on its native blockchain for at least 6 months;
5. Is not an ERC20 token;
6. Is not a privacy-focused coin (e.g. Monero, ZCash);
7. Has not suffered a major chain reorganisation in the last 6 months, and is not subject to a

forthcoming contentious hard fork before the next selection is due to take place.

3.2.1.3 Constituent Weighting

For the weighting of the constituents, we choose a bi-level approach that involves studying the
historical volatilities of the crypto-basket and gold separately in order to inform the crypto–gold
asset allocation decision. That is because if GLD is added to a basket of five cryptoassets for a
global allocation scheme, the correlation structure between all six assets cannot be ignored and
the constituents’ weighting procedure cannot be performed through Eq. (2.19) directly. Also, in
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order to be able to produce a robust estimation of covariance matrices, the behaviour of the two
asset classes would have to be studied only in time spans where exchanges for both are open. The
bi-level approach on the other hand allows for exploitation of all available market data.

Regarding the formation of the crypto-basket, due to the persistent levels of correlation between
non-stablecoin cryptoassets, any Risk Parity approach is expected to lean towards an Equally
Weighted allocation whose risk level is not significantly improved. Therefore, due to its much more
convenient reproducibility compared to Eq. (2.20) and the fragility of Eq. (2.20) when the covari-
ance matrix is barely positive semi-definite, an Equally Weighted scheme is employed within the
crypto-basket.

Taking into consideration the former, and the lack of a significant correlation between gold and
cryptoassets, the index is calculated following a two-stage allocation scheme that involves:

1. Computation of the historical volatility of (a) the equally weighted crypto-basket, and (b) gold;
2. Asset allocation among the crypto-basket and gold expressed as the bivariate weighted risk

contribution problem presented in Section 3.1.2.

3.2.1.4 Rebalancing Schedule

In order to capture the diversification benefits of the time-varying correlations between gold and
crypto highlighted in Figure 3.1, a monthly rebalancing frequency is chosen. This is coupled with
the monthly reselection of the top five eligible cryptoassets in terms of rolling free-float market
capitalisation. This approach allows the index to represent the rapidly evolving market conditions.
Additionally, the rebalancing frequency is low enough to ensure that there is no dramatic impact
on the turnover of the cryptoasset portfolio and hence transaction costs can be maintained at an
acceptable level.

3.2.1.5 Index Calculation

The Index base level is set on 1 000 on January 1st, 2016:

Index0 = 1000 (3.4)

The Index level on day t from January 2nd, 2016 onwards is calculated as:

Indext =
∑

i∈Nt
Pi,t × xi,t

Dt

(3.5)

where

• Nt is the set of the 6 selected assets (5 cryptocurrencies and gold) on day t
• Pi,t is the closing price for asset i on day t expressed in USD
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• xi,t is the weight of asset i on day t as computed through the WRC allocation scheme at the
beginning of the month

• Dt is the Index Divisor on day t

The Index Divisor is used so that assets weight rebalancing and substitution do not alter the Index
level. It is calculated using the following formula:

Dt =

∑
i∈Nt

Pi,t−1 × xi,t∑
i∈Nt−1

Pi,t−1 × xi,t−1
×Dt−1 (3.6)

The Divisor on January 2nd, 2016 is calculated as:

D1 =

∑
i∈N1

Pi,0 × xi,1

1 000
(3.7)

where

• N1 is the set of the selected assets on January 2nd, 2016
• Pi,0 is the closing price for asset i on January 1st, 2016 expressed in USD
• xi,1 is the weight of asset i on January 2nd, 2016

Equations (3.5 – 3.7) are equivalent to computing recursively the value of the Index using the
weighted average of its constituent’s returns:

Indext =
∑
i∈Nt

Pi,t

Pi,t−1
xi,t ×

∑
i∈Nt−1

Pi,t−1

Pi,t−2
xi,t−1 × · · · ×

∑
i∈N1

Pi,1

Pi,0

xi,1 × 1 000 (3.8)

This implies:
Indext =

∑
i∈Nt

(1 +Ri,t)xi,t × Indext−1, t = 1, 2, . . . (3.9)

where

• Ri,t is the return of asset i from time t− 1 to time t
• Index0 is the base level of the Index set at 1 000 on January 1st, 2016

Figure 3.2 shows how the index value would have evolved over the period January 2016 to April
2019. A detailed breakdown and comparison of index performance is presented in Section 3.2.2.

3.2.1.6 Hard Fork and Airdrop Policy

Hard Fork Policy A ‘Hard Fork’ occurs when a change is made to the transaction validation rules
of a cryptoasset’s underlying blockchain protocol in a way that is not compatible with its earlier
version. Nodes that wish to continue to participate are expected to upgrade to the new version
of the protocol’s software. Usually such a fork is planned and accepted by the overwhelming
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Figure 3.2: Index Value January 2016–April 2019

majority of nodes. However, where the fork is contentious enough that a non-negligible number
of nodes continue to run the old version of the software, a chain split occurs.

The index features a Governing Committee which will evaluate all upcoming hard forks, es-
pecially in light of Rule 7 of Section 3.2.1.2. Treatment of hard forks are led by decisions of
exchanges with respect to the ticker symbols used to represent the resulting cryptoassets and
the markets that they maintain. Concretely, suppose some cryptoasset traded under ticker
symbol T is expected to undergo (or undergoes) a hard fork resulting in an original chain C

with cryptoasset Ca and a modified chain C ′ with cryptoasset C ′a.

There are a few scenarios to consider:

Scenario A Ca continues to trade under ticker symbol T while C ′a starts trading under a
newly-created ticker symbol T ′. The BTC–BCH fork is an example of this scenario. In this
case, Ca continues as a constituent of the index. C ′a is not eligible to become a constituent
of the index (lacking as it does the necessary pricing history), and does not contribute to
the index value. C ′a may be sold by funds tracking the index as an excess return; the precise
decision of when (or whether) to sell will be a matter of judgment for the tracking funds.

Scenario BC ′a now trades under ticker symbolT whileCa starts trading under a new ticker
symbol T ′. The ETH–ETC fork is an example of this scenario. In this case, C ′a replaces Ca

as a constituent of the index. The pricing history forC ′a is taken as being that ofCa prior to
the fork. Ca is no longer a constituent of the index, does not contribute to the index value,
and may be sold by funds tracking the index as an excess return.
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Scenario CC ′a now trades under ticker symbolT while trading inCa is (largely) abandoned.
Hard forks to upgrade the consensus mechanism of Monero usually follow this pattern.
In this case, C ′a replaces Ca as a constituent of the index and the pricing history for C ′a is
taken as being that of Ca prior to the fork.

Scenario D There is substantial disagreement amongst exchanges as to the ticker sym-
bols that C ′a and Ca should trade under. Usually this scenario would arise as the result of
a contentious hard fork. Since cryptoassets due to undergo contentious hard forks before
the next selection date are not eligible for selection, it is expected that this situation would
apply to index constituents only in very rare circumstances. In this case, an extraordinary
meeting of the Governing Committee will be convened in order to decide on an appropri-
ate course of action which may include replacing Ca by the next eligible cryptoasset, or
rebalancing across the remaining constituent cryptoassets.

Airdrop Policy An ‘Airdrop’ occurs when a blockchain project distributes free cryptoassets to in-
vestors in the hopes of attracting more people to use their platform. Occasionally some projects
offer more established cryptoassets to do an Airdrop but most of the time, the project Airdrops
their own native token or cryptocurrency. Requirements to qualify for an Airdrop vary as well;
in some cases the participant has to hold the cryptoasset in their wallet while other times they
have to promote the project on an online forum.

Airdropped cryptoassets are not included in the index. Fund managers tracking the index may
sell these at their earliest convenience, contributing to excess returns over the base index.

3.2.2 Performance Evaluation

3.2.2.1 Methodology and Data Source

In order to evaluate the effectiveness of a Weighted Risk Contribution (WRC) strategy in the cryp-
toasset and gold case, the performance of a respective risk distribution portfolio is measured and
compared against various strategies including buy-and-hold bitcoin (BTC), buy-and-hold gold (GLD),
market capitalisation weighted pure cryptoassets, Shannon’s Demon using bitcoin and gold, and
Equal Risk Contribution (ERC) cryptoassets. The dataset used for the implementation and back-
testing of the described allocation method includes daily values of historical free float market cap-
italisation and USD prices for more than 3 000 cryptoassets, obtained from CoinGecko as well as
daily adjusted USD prices of SPDR Gold Shares (GLD). The backtest that is performed covers the
period between January 2016 and April 2019, a time span that reflects a wide variety of market
conditions for the cryptoasset space. The datasets produce daily returns for both asset classes
and assumes monthly rebalancing for all active strategies.
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Table 3.1 shows the results of monthly selection of cryptoasset constituents that meet the eli-
gibility criteria. Note that only dates where the constituents change are presented. BTC consis-
tently appears as a leading constituent, underscoring its dominance and acceptance in the crypto
market. The entry of ETH in March 2016 is significant, reflecting its rising popularity after its in-
troduction. The subsequent consistent presence of BTC and ETH in the top spots indicates the
market preference for established, well-known assets. Similarly, XRP and LTC maintain a frequent
presence, suggesting their robust positions as well. We further notice some fluctuation in the fifth
constituent, alternating among DASH, ETC, BCH and others. This variability highlights the compet-
itive and volatile nature of the market.

Table 3.1: Top 5 Eligible Cryptoassets – Monthly Reselection

Date Constituent 1 Constituent 2 Constituent 3 Constituent 4 Constituent 5

2016-01-01 Bitcoin (BTC) Ripple (XRP) Litecoine (LTC) Dash (DASH) Dogecoin (DOGE)
2016-03-01 BTC XRP LTC Ethereum (ETH) DASH
2017-02-01 BTC ETH XRP LTC Ethereum Classic (ETC)
2017-04-01 BTC ETH XRP LTC DASH
2017-07-01 BTC ETH XRP LTC ETC
2017-09-01 BTC ETH XRP LTC DASH
2018-03-01 BTC ETH XRP Bitcoin Cash (BCH) LTC
2018-11-01 BTC ETH XRP Stellar (XLM) LTC
2019-01-01 BTC ETH XRP BCH EOS (EOS)

The crypto-basket composition is defined according to an Equally Weighted scheme, whose histor-
ical returns and volatility are studied towards the dynamic allocation between the cryptoassets and
gold. We opt for a WRC allocation scheme between the two classes. Given the historical level of
correlation between gold and crypto assets, an equal risk distribution among the two asset classes
would be expected to be heavily concentrated towards gold as the lower volatility asset. Neverthe-
less, the chosen WRC setting, with a risk ratio that results to 80% of the total risk emanating from
the crypto-basket component (α = 4), ensures a good level of diversification, balancing the two
components in the denominator of Eq. 3.3, as seen in Figure 3.3.

The blue bars in Figure 3.3 represent the risk contribution-based allocation of the crypto-basket to
the overall portfolio. Despite the inherent volatility of cryptoassets, the allocation remains substan-
tial, due to the chosen WRC setting. This highlights the index’s strategic emphasis on cryptoassets,
aligning with the interests of investors seeking to gain exposure to the market. The orange bars
denote the respective derived allocation in gold. While less volatile, gold’s risk contribution is man-
aged to complement that of the crypto-basket, ensuring that it does not dominate the risk profile
of the portfolio despite its inherent stability.

Throughout the observed period there are some fluctuations in the risk contribution weights for
both asset classes. This reflects the dynamic adjustments made in response to changes in market
conditions and volatility across the two asset classes. Despite the fluctuations, the overall strategy
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Figure 3.3: Weighted Risk Contribution Allocation – EW Crypto Basket Base – α = 4

appears consistent with the objective of maintaining a crypto-basket risk contribution of approx-
imately 80%. The strategy’s responsiveness to market conditions suggests that it is designed to
adapt to varying levels of volatility which is particularly important in the crypto market, known for
its rapid changes. Overall, the historical allocations demonstrate the WRC scheme’s ability to adapt
and maintain the desired risk exposure over time.

3.2.2.2 Analysis and Results

The results obtained from the bivariate WRC allocation with an EW crypto-basket base (WRC-EW
Base) are directly compared with the following:

1. Bivariate WRC allocation with a 6-month rolling mean Market Capitalisation weighted crypto-
basket base (WRC-MC Base)

2. Equally-weighted cryptoassets (EW)
3. Market capitalisation weighted cryptoassets (MC)
4. Equal Risk Contribution weighted cryptoassets (ERC)
5. Bitcoin and GLD weighted in accordance with the Shannon’s Demon (SD)
6. Bitcoin only (BTC)
7. Gold only (GLD)

As seen in Table 3.2 and Figure 3.4, the proposed allocation scheme outperforms the rest in terms
of historical risk-adjusted returns, as measured by the Sharpe Ratio, indicating that the risk taken
is well-compensated by the returns.

Moreover, a comparison with a typical index profile of the cryptoasset space, namely the MVIS
Digital Assets 5 Index [105] (MVDA5) – a market capitalisation weighted index which tracks the
performance of the five largest and most liquid cryptoassets – also reveals superiority in terms
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of the risk–return profile. Annualised returns are higher than a buy-and-hold GLD-only investment
while annualised volatility levels are much lower than the crypto-market’s. The ERC and EW present
similar behaviour due to the assets’ correlation structure; similarly, passive bitcoin and Market-Cap
driven strategies do not reveal major differences.

Table 3.2 also reports portfolio turnover, which reflects the total proportion of portfolio value traded
(bought and sold) while rebalancing the portfolio, on an annualised basis as defined in [41]. The
ERC and EW strategies exhibit the highest turnover, implying frequent rebalancing, which could
result in higher transaction costs. This factor should be considered when interpreting their high
returns.

The bivariate WRC allocation’s performance is characterised by significantly lower volatility, and
a more stable risk profile. While some strategies may offer high returns, they often come with
increased volatility and turnover which can impact net performance. Overall, The WRC-EW Base
scheme appears to offer a particularly effective balance of risk and reward.

Table 3.2: Annualised Performance of Allocation Schemes , Jan 2016–Apr 2019

Allocation Scheme Annualised Returns Annualised Volatility Annualised Sharpe Ratio Annualised Turnover
WRC-EW Base 0.4797 0.2411 1.9894 1.6906
WRC-MC Base 0.3199 0.2318 1.3800 1.1196

ERC 0.9878 0.8062 1.2253 2.8512
EW 1.0284 0.8292 1.2252 2.9556
MC 0.6734 0.7560 0.8908 1.2240
SD 0.4085 0.3889 1.0502 1.0800

BTC 0.7629 0.7680 0.9934 0.0000
GLD 0.0812 0.1452 0.5591 0.0000

MVDA5 1.1160 0.8757 1.2744 Not Computed

The stability of the strategy’s performance is further reflected in Figure 3.5. In 2016, ERC and
EW appear to have the highest volatility while GLD exhibits the lowest, which is consistent with
gold’s reputation as a stable asset. The volatility trends seem to continue in 2017, with ERC and
EW showing high volatility. The volatility of BTC has noticeably increased, indicating a turbulent
year for Bitcoin. Similarly in 2018, ERC and EW exhibit high volatility. Most allocation schemes
show increased volatility compared to previous years, possibly suggesting a more volatile market
environment overall.

In terms of annualised returns, the crypto-heavy EW allocation scheme stands out with the highest
returns in 2016, followed by ERC. The WRC-EW Base and WRC-MC Base show modest returns,
while GLD shows very low levels of returns. In 2017, returns for all allocation schemes continue to
be positive, with EW and ERC leading. A drastic change is observed during 2018, where all schemes
except GLD show negative returns, indicating a challenging year for all assets. GLD’s return being
close to zero, could be seen as a relative safe haven during this turbulent period.
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Figure 3.4: Annualised Returns, Volatility & Sharpe Ratio Jan 2016–Dec 2018

In terms of risk-adjusted performance, the WRC-MC Base exhibits the highest Sharpe ratio (albeit
marginally), suggesting a superior performance. All schemes have positive Sharpe ratios, indicat-
ing favorable returns per unit of risk. A similar picture is observed for 2017. The Sharpe ratios
higher lower across all allocation schemes, with WRC-EW Base leading, still by a small margin.
The Sharpe ratios turn negative for all schemes in 2018, with GLD having the least negative ratio.
This indicates that none of the strategies provided positive returns over the risk-free rate, reflecting
a difficult market year.

While 2018 is an interesting period to evaluate, it is important to note that a negative Sharpe ratio is
difficult to interpret because the metric is designed to measure excess returns per unit of risk taken
above the risk-free rate. When the investment’s returns are less than the risk-free rate, resulting
in a negative Sharpe ratio, it suggests that the investment has underperformed on a risk-adjusted
basis, but it does not provide a clear measure of the investment’s risk relative to its negative return.
Moreover, a negative Sharpe ratio does not indicate the magnitude of the underperformance or
risk, making it challenging to use as a comparative tool for investment performance. In the next
chapters we will introduce more robust methodologies to assess performance.

Figure 3.5 displays the performance of the aforementioned strategies over a span of more than
three years, highlighting the trajectories of cumulative returns and the depth of drawdowns. In
terms of returns, the ERC and EW portfolios dominate the chart, highlighting their performance
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Figure 3.5: Cumulative Returns & Drawdown Jan 2016–Apr 2019

through most of the observed period. However, their success comes with the caveat of significant
volatility, as seen in the drawdown portion of the graph, where these strategies also register the
steepest declines from their peaks. On the other hand, gold stands out for its stability. Although it
does not match the soaring highs of ERC or EW, it also does not succumb to the same lows, main-
taining a relatively flat line throughout the period. This reflects gold’s historical role as a safe haven
asset. BTC, true to the crypto-market’s reputation, oscillates dramatically, with sharp increases in
cumulative returns that are susceptible to equally rapid declines.

The WRC-EW Base and WRC-MC Base settings demonstrate a more stable and consistent growth
trajectory with moderate cumulative returns and relatively contained drawdowns. This is further
confirmation that the WRC setting succeeds to smooth out the volatility associated with the cryp-
toasset market.

Aikaterini Koutsouri Balancing Cryptoassets and Commodities 72



3.2. Applications Mitigating Risk in Cryptoasset Investments

3.2.3 Summary
In this chapter we have proposed the construction of an index that offers investors exposure to
alternative assets. By exploiting the characteristics of the two asset classes of cryptoassets and
gold – namely the extremely high volatility of the former, the low volatility of the latter and the
lack of correlation between the two – it is characterised by an attractive ability to reduce price
instability while raising the average return per unit of volatility. By generalising the theory of equal
risk contribution, one can obtain a sophisticated, albeit intuitive, way of tuning the exposure of an
index to uncorrelated asset classes. Another important feature of the index lies in the associated
moderate turnover, which translates into moderate operating costs. Finally, by taking into account a
variety of events unique to the cryptoasset space such as hard forks and airdrops and by proposing
corresponding policies, the end result is an investable product whose distinctive elements make it
a unique form of investment.
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Chapter 4

Stress Testing Cryptoasset Portfolios for
Resilience

Stress testing involves the use of simulation to assess the resilience of investment port-
folios to changes in market regimes and extreme events. The quality of stress testing is
a function of the realism of the market models employed, as well as the strategy used
to determine the set of simulated scenarios. In this chapter, we consider both of these
parameters in the context of diversified portfolios, with a focus on the emerging class
of cryptoasset-containing portfolios. Our analysis begins with univariate modelling of
individual risk factors using ARMA and GJR–GARCH processes. Extreme Value The-
ory is applied to the tails of the standardised residuals distributions in order to account
for extreme outcomes accurately. Next, we consider a family of copulas to represent
the dependence structure of the individual risk factors. Finally, we combine the former
approaches to generate a number of plausibility-constrained scenarios of interest, and
simulate them to obtain a risk profile. We apply our methodology to the presented Coin-
Shares Gold and Cryptoassets Index, a monthly-rebalanced index which comprises two
baskets of risk-weighted assets: one containing gold and one containing cryptoassets.
We demonstrate a superior risk-return profile as compared to investments in a traditional
market-cap-weighted cryptoasset index.

This chapter was published at the 2nd International Conference on Mathematical Research for
Blockchain Economy in 2020 [84].
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4.1 Background and Methodology

4.1.1 Motivation
As mentioned in section 2.4, beyond its traditional use in banking, stress testing has become an
essential tool for assessing investment portfolios. The process of stress testing involves develop-
ing methodologies grounded in realistic market scenarios to assess and mitigate potential risks. In
the cryptocurrency sector, despite extensive research on price dynamics, there remains a notable
void in risk management for cryptoasset investment products. This gap is increasingly recognized
within the industry, with steps like the US Federal Reserve contemplating the inclusion of a bitcoin
market crash scenario in their stress tests. On that note, the primary analysis target in this chapter
is the CoinShares Gold and Cryptoassets Index (CGCI). In the case of the CGCI, the goal is to isolate
its main design principles and propose a framework for scenario-based risk management that is
able to unveil vulnerabilities in certain market conditions.

In the case of CGCI, we identify two main risk factors (the crypto-basket and gold component re-
spectively) and we attempt to model their evolution using stochastic processes. The credibility of
results when we apply risk measures to the portfolio distribution, is heavily dependent on the choice
of model, and as highlighted by Nyström et al. [109], one should consider a series of stylised facts
when simulating the evolution of risk factors. McNeil et al. [100] discuss those stylised facts that
characterise the returns of financial time series which can also be observed in the CGCI compo-
nents. The following sections discuss the design of a stress testing framework, directly applicable
to cryptoasset portfolios.

4.1.2 Multivariate Stress Testing of Cryptoasset Portfolios
The concepts described in Section 2.3 are combined towards a scenario generation framework
that combines sophisticated statistical methods with financial risk modeling techniques. Start-
ing with the construction of a risk factor vector and proceeding to model fitting using asymmetric
ARMA-GARCH models, the framework can capture both typical market conditions and the asym-
metry often observed in financial time series data. By leveraging the flexibility of copulas to model
dependency structures separately from the marginal distributions, the framework can more accu-
rately reflect the complex interactions between different risk factors.

The scenario generation process is particularly notable for its robustness. It employs a Monte
Carlo simulation approach to generate a wide range of potential future states, enabling a thor-
ough exploration of the risks faced by a portfolio over different time horizons. This method also
allows for the empirical estimation of the distribution of returns, taking into account the heavier
tails often encountered in financial return distributions. Once the potential future states of risk
factors are generated, they are translated into standardized innovations to drive the ARMA-GARCH
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models, which then simulate paths for each risk factor. The final step of translating these into
portfolio paths and P&L distributions provides a clear, actionable output for stress testing. Overall,
the framework’s integration of empirical distribution fitting with simulation techniques will offer a
comprehensive tool for assessing and managing financial risk.

The overall framework can be summarised in the following steps:

Model Fitting

1. Define the d-dimensional risk factor vector X t = (Xt,1, . . . , Xt,d)
′, observable at time t,

and obtain the logarithmic returns time series rt = (rt,1, . . . , rt,d)
′

2. Fit an appropriate asymmetric ARMA–GARCH model to rt, and obtain the standardised
residuals Ẑt = (Ẑt,1, . . . , Ẑt,d)

′

3. Estimate the marginal distribution functions F1(Z1), . . . , Fd(Zd) of the i.i.d. standard-
ised residuals, empirically for the body and with a GPD for the tails

4. Transform Ẑt to uniform variates Û t = (Ût,1, . . . , Ût,d)
′ by inversion

5. Estimate parameters θ of an appropriate copula Cθ with MLE, given the pseudo-
observations Û t

Scenario Generation

1. For a given sample size m, horizon n and parameters θ, simulate n × m points of the
random vector U = (Ut,1, . . . , Ut,d)

′, with distribution function Cθ

2. Given the margins F1, . . . , Fd from step 3 of the fitting process, use quantile transforma-
tion to translate to Zt = (F←1 (Ut,1), . . . , F

←
d (Ut,d))

′

3. Provide the n×m standardised innovations matrix pairs to the calibrated ARMA–GARCH
models and simulate m paths for each risk factor, X t,...,t+n

4. Given the risk factor mapping Vt = f(t,X t) and the simulated returns, construct m
portfolio paths and obtain the P&L distribution

In regards to step 2 of the model fitting process, we selected the GJR-GARCH model to capture
volatility, as described in section 2.3. This approach was chosen due to its robust capability in cap-
turing asymmetries and persistence in volatility, phenomena commonly known as volatility clus-
tering.

When examining the credibility of stress test results, plausibility is an important quality criterion
that has been studied extensively by existing literature [26, 104, 136]. The problem setting in the
former studies consists of a set of elliptically distributed risk factors X t, a set of scenarios that
represent factor movements, and a linear P&L function (dependent on a fixed weighting scheme
and the aforementioned scenarios). The Mahalanobis distance is introduced as tool that can re-
strict scenarios, based on a desired level of plausibility, while respecting the elliptical symmetry.
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Authors utilise this concept to define the most likely scenarios given a pre-defined quantile of loss
and extend it to meta-elliptical distributions and non-linear P&Ls.

In this study, the ultimate goal is to observe variations in the P&L distribution on a longer horizon;
we do not examine the intersection of iso-P&L lines with iso-plausibility ellipses. Nevertheless, we
utilise the concept of excluding scenario outliers, as it can bolster the credibility of long-horizon
simulations. To this end, preceding step 5 of the described scenario generation procedure, for each
set X t,...,t+n, we obtain P&L sets PL1, . . . , PLd; we compute the robustly estimated Mahalanobis
distance MD(PLi) and filter out all samples that exceed a pre-specified percentile of the underlying
Chi-Squared distribution of MD.

A schematic diagram that summarises the scenario generation procedure in a 2-dimensional risk
factor environment is presented in Fig. 4.1. This visual summary begins with a copula simulation,
where the fitted two-dimensional copula generates simulated values of the two uniform variates
Ut,1 andUt,2. These are then transformed through their respective marginal cumulative distribution
functions Ft,1 and Ft,2 to obtain the standardised residuals Zt,1 and Zt,2. Residuals are fed into
the separately fitted ARMA–GARCH models to simulate the factor returns, presented in the left and
right sides of the middle row of the diagram.

The central plot combines the two simulated factor returns and forms a baseline scenario. The
baseline scenario plot is enhanced by an overlay of the Mahalanobis distance contours, which
aim to filter out implausible extreme scenarios, ensuring that the simulated paths stay within a
plausible range. Once a cut-off point has been chosen and extreme values have been separately
eliminated, the process leads to the final cumulative distribution function of the P&L, which gives
a visual representation of the likelihood of different levels of portfolio loss or gain.
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Figure 4.1: Scenario generation procedure for 2 risk factors
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4.2 Applications

4.2.1 The Case of the CGCI

4.2.1.1 Index Replication and Risk Factor Mapping

In the case of CGCI, we isolate two risk factors, namely the crypto-basket and the gold compo-
nent. The crypto-basket is formulated as an equally-weighted basket of 5 cryptoassets, each with
a weight of 0.2. The crypto-basket price base level is set on 100 on July 1st, 2015 and on day t from
July 2nd, 2015 onwards is calculated as:

EWt =

1 +
∑
i∈Nc,t

xi,R(t) ×
(

Pi,t

Pi,R(t)

− 1

)× EWR(t) (4.1)

where

• Nc,t is the set of the 5 cryptoassets constituents on day t
• R(t) is the most recent CGCI rebalancing date preceding t

• Pi,t is the closing price for cryptoasset i on day t, expressed in USD
• Pi,R(t) is the closing price for cryptoasset i on the last rebalancing date preceding t, in USD
• xi,R(t) is the weight of cryptoasset i on the last rebalancing date preceding t, equal to 0.2
• EWR(t) is the crypto-basket price level on the last rebalancing date preceding t

The weighting between the crypto-basket and gold in the CGCI is computed through Eq. 3.3. It is
reminded that the Index base level is set on 1 000 on January 1st, 2016 and on day t from January
2nd, 2016 onwards it is calculated as:

Indext =

(
1 +

∑
i∈Nt

xi,R(t) ×
(

Pi,t

Pi,R(t)

− 1

))
× IndexR(t) (4.2)

where

• Nt is the set of the 2 CGCI components (crypto-basket and gold) on day t
• R(t) is the most recent CGCI rebalancing date preceding t

• Pi,t is the closing price for constituent i on day t, expressed in USD
• Pi,R(t) is the closing price for constituent i on the last rebalancing date preceding t, in USD
• xi,R(t) is the weight of constituent i on the last rebalancing date preceding t, equal to the WRC

allocation result
• IndexR(t) is the CGCI price level on the last rebalancing date preceding t

We follow equation Eq. 4.1 and replicate the price time series for both and transform to logarithmic
returns.
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4.2.1.2 Baseline Scenario Generation

In this section we simulate a number of scenarios and evaluate the impact of stress in the main as-
sumptions of the CGCI. We differentiate between three different types the baseline, historical and
hypothetical scenario. The first simulation aims to describe as realistically as possible a recent
index profit and loss profile, without the impact of any stress. This should serve as a benchmark to
evaluate the severity of volatility or correlation shocks in the P&L distribution of the index. The cal-
ibration period for the baseline scenario is chosen to include all daily observations of 2019.

The validity of stylised facts (i)–(iii) presented in Section 2.3.3.1 is verified in Fig. 7.4–7.9 for both
the crypto-basket and gold components of the CGCI; therefore asymmetric ARMA–GARCH pro-
cesses are likely to explain the behaviour of the risk factors’ daily returns X t,c and X t,g. We
assume a t-distribution for the underlying residuals for the ML process, iterate through pair-wise
values of p ∈ [1, 4], q ∈ [0, 4] and choose the combination that yields the minimum AIC. The
results of the ARMA–GJR–GARCH fitting to the crypto-basket and gold returns time series is pre-
sented in Table 4.1.

Next, we estimate the semi-parametric distribution function of the ARMA–GJR–GARCH standard-
ised residuals. As highlighted in Section 2.3.3.3, their i.i.d. behaviour allows the tails to be ap-
proximated by a GDP. The linearity of the mean excess function given by Eq. 2.35 can be used as
a diagnostic to assist the selection of appropriate thresholds for the tails. Since the shape and
scale parameters in Eq. 2.35 will be estimated after the threshold is defined, we use an empirical
estimator for the mean excess function for positive-valued data X1, . . . , Xn, given by:

eEMP(u) =

∑n
i=1(Xi − u)I{Xi>u}∑n

i=1 I{Xi>u}
(4.3)

Based on Eq. 4.3, we inspect the plot
(
Zi, eEMP(Zi)

)
, first for the positive innovations (Upper

tail, Figs. 7.10 and 7.12) and then for absolute values of the negative ones (Lower tail, Figs. 7.11
and 7.13). For each tail, we define the threshold u := Zi for such i, from which the sample be-
comes approximately linear for higher values. Given the thresholds, we obtain the parametric GPD
tails through a negative log-likelihood function. The shape and scale parameters for the baseline
scenario can be found in Table 4.1. Combined with a Gaussian kernel smoothed interior, we obtain
the final semi-parametric distribution function for the baseline scenario’s standardised residuals,
displayed in Figs. 4.2 and 4.3.

In terms of the dependence structure, given the semi-parametric distribution functions Fc, Fg , we
perform inverse transform sampling to the fitted ARMA–GJR–GARCH standardised residuals, and
attempt to fit a copula to the pseudo-sample. The fitting results for considered copulas can be
found in Table 4.1. We proceed with the t-copula for the remainder of this chapter, as it yields the
maximum log-likelihood and provides the means for correlation stress testing through its parame-
ters (ρ, ν).

Aikaterini Koutsouri Balancing Cryptoassets and Commodities 80



4.2. Applications Stress Testing Cryptoasset Portfolios for Resilience

Table 4.1: ARMA-GJR-GARCH, GPD and Copula Parameters and diagnostics

ARMA-GJR-GARCH Fitting

Crypto-basket
Baseline

Crypto-basket
Historical

Gold
Baseline

Gold
Historical

MDVA5
Baseline

MDVA5
Historical

Order
(ARMA)

(GJR-GARCH)
(4, 4)
(1, 1)

(4, 4)
(1, 1)

(4, 3)
(1, 1)

(4, 4)
(1, 1)

(4, 2)
(1, 1)

(4, 2)
(1, 1)

Parameters
(Eq. 2.3)

ϕ1: -0.95408
ϕ2: -0.35581
ϕ3: -1.07815
ϕ4: -0.99300
θ1: 1.03614
θ2: 0.37295
θ3: 1.11033
θ4: 1.06890
ω: 0.000007
α1: 0.02770
γ1: -0.06146
β1: 1.00000

ϕ1: 0.05108
ϕ2: 0.45840
ϕ3: 0.06855
ϕ4: -0.76304
θ1: 0.08024
θ2: -0.42010
θ3: -0.02407
θ4: 0.92655
ω: 0.00267
α1: 0.22360
γ1: 0.10915
β1: 0.13794

ϕ1: -0.90692
ϕ2: -1.00161
ϕ3: -0.72425
ϕ4: 0.01181
θ1: 0.79031
θ2: 1.11737
θ3: 0.74846
ω: 0.000001
α1: 0.06469
γ1: -0.13793
β1: 0.98006

ϕ1: 0.59656
ϕ2: 1.08368
ϕ3: -0.58776
ϕ4: -0.39986
θ1: -0.79959
θ2: -1.00687
θ3: 0.76978
θ4: 0.26998
ω: 0.00000
α1: 0.00000
γ1: -0.00200
β1: 1.00000

ϕ1: -1.21805
ϕ2: -1.19354
ϕ3: -0.19727
ϕ4: 0.02250
θ1: 1.07132
θ2: 1.03795
ω: 0.000002
α1: 0.03245
γ1: -0.06707
β1: 1.00000

ϕ1: -1.93720
ϕ2: -1.12456
ϕ3: -0.12869
ϕ4: -0.02543
θ1: 1.94084
θ2: 1.03890
ω: 0.000003
α1: 0.000001
γ1: 0.08400
β1: 0.94997

AIC -3.6341 -2.7398 -7.2120 -7.4216 -4.0542 -3.2292
Residual

Distribution
Shape

(KS Test p-value)
3.32702
(0.7003)

3.94689
(0.9604)

19.83051
(0.6673)

5.93231
(0.8674)

2.55280
(0.8684)

4.52857
(0.8335)

Generalised Pareto Distribution Fitting

Threshold u
(Upper)
(Lower)

1.10114
-0.60602

0.54891
-0.75895

0.60316
-1.15400

0.75454
-0.61262

0.63667
-0.51043

0.64902
-1.25717

Parameters
(Upper)

(Lower)

ξ: 0.27178
β: 0.39605

ξ: 0.01501
0.64541

ξ: -0.03047
β: 0.62530

ξ: 0.13459
β: 0.57712

ξ: -0.49452
β: 1.10766

ξ: -0.46581
β: 0.82030

ξ: 0.15642
β: 0.53995

ξ: -0.34770
β: 1.02221

ξ: 0.09272
β: 0.59313

ξ: 0.10358
β: 0.52568

ξ: -0.14684
β: 0.66304

ξ: 0.28828
β: 0.59477

LogLik
(Upper)
(Lower)

9.66944
30.58602

28.99699
28.07471

44.36422
8.06560

27.00540
40.44401

33.08554
203.4029

25.21121
27.66995

CGCI Copula Fitting

Gaussian Copula
Loglik

t-Copula
Loglik

t-Copula Parameters
(ρ, ν)

Goodness-of-fit
(p-value)

Baseline Scenario 0.41348 0.61102 (0.05917, 23.62447) 0.7737
Historical Scenario 0.24004 0.58172 (−0.03363, 16.62352) 0.3112

With the fitted ARMA–GJR–GARCH parameters, the cumulative distribution functions and fitted t-
copula for the residuals, and a 3-month simulation horizon, we produce 10 000 paths for each risk
factor,X t,c,X t,q. We filter out all path pairs that yield an MD value that exceeds the 99th percentile
of the underlying MD Chi-Squared distribution, and use the remaining path pairs to producem′ < m

paths for the CGCI. Finally, we compute the P&L at the end of period for each path pair, and get
the empirical P&L distribution function that should serve as risk profile benchmark. The generated
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Figure 4.2: Semi-parametric CDF
Crypto-basket residuals

Figure 4.3: Semi-parametric CDF
Gold residuals

scenarios with the Mahalanobis plausibility bound, and the final baseline P&L distribution can be
found in Figs. 4.4 and 4.5.

Figure 4.4: CGCI baseline scenarios:
Mahalanobis plausibility ellipses

Figure 4.5: CGCI baseline scenarios:
P&L distribution

We can also choose to generate a baseline scenario for single risk factor portfolios. In this case,
the pseudo-random observations of the residuals can be derived directly from the cumulative dis-
tribution functions. We use this approach to generate 10 000 paths of returns for the MVIS Digital
Assets 5 Index [105] (MVDA5) – a market capitalisation-weighted index which tracks the perfor-
mance of the five largest and most liquid cryptoassets – and compare its P&L distribution with
the one derived for the CGCI. The details of the fitting process for the MVDA5 baseline scenario
and the plot of the semi-parametric residual distribution can be found in Table 4.1 and Fig. 7.14
respectively.
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4.2.1.3 Historical and Hypothetical Scenarios

The process described in Section 4.1 can be further modified to support the generation of stress
scenarios that can be compared against the baseline. First, we can change the calibration period
to reflect stressful market conditions. Those historical scenarios are commonly used in practice
because they are based on events that are observed, and therefore likely to reoccur. For the case of
the CGCI, we generate the historical scenarios by calibrating the models in the period of 2018-01-01
to 2018-12-31, as it reflects very large downward price movements in the cryptoasset space.

To this end, we calculate the daily logarithmic returns over the aforementioned stressful period.
We use this sample to fit the ARMA–GJR–GARCH model for both risk factors and obtain the i.i.d.
standardised residuals. Following the same steps as in Section 4.2.1.2, we model the tails and
produce the semi-parametric cumulative distribution functions. Both the new ARMA–GJR–GARCH
and GPD parameters can be found in Table 4.1. We further transform the residuals to uniform
variates and fit an appropriate t-copula (Table 4.1). With the new parameters we can proceed with
the generation of 10 000 paths for each risk factor, filter out implausible pairs, compute the P&L
at the end of the period and obtain the new P&L distribution that corresponds to the historical
scenario. A single-factor approach is also used to produce the MVDA5 historical P&L distribution.
While the historical scenarios can be used to assess the portfolio’s performance under realised
stressful market conditions, it is biased towards past experience and fails to examine plausible
stress events that have not occurred yet.

In order to reveal additional vulnerabilities that historical scenarios fail to capture, we need to gen-
erate a number of hypothetical scenarios that assess the portfolio’s sensitivity to shocks in various
statistical patterns, such as increased volatility or correlation. In order to test the CGCI’s resilience
to a potential increase in correlation between the cryptoasset space and physical gold, we can
choose to increase the correlation parameter ρ of the t-copula when generating pseudo-samples.
We can further choose to decrease the degrees of freedom in order to increase the likelihood of
joints extremes. Additionally, when providing the i.i.d. residuals to the fitted ARMA–GJR–GARCH
model, we can shock the risk factors’ volatilities by changing the constant, ω, in order to produce
very volatile risk factor paths.

For this study, we modify those parameters such that ρ = 0.9, ν = 2 and ω = 10ωb, where ωb

denotes the volatility constant value of the baseline fitted ARMA–GJR–GARCH. The P&Ls that are
derived through the modified copula reflects the new correlation structure, as seen in Fig. 7.15.
The same volatility shock is introduced to the MVDA5 volatility constant to obtain its hypothetical
scenario risk profile.

Fig. 4.6 and Fig. 4.7 present a comparison of the Baseline, Historical and Hypothetical Scenarios
for the case of CGCI and MVDA5.
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Figure 4.6: CGCI P&L Distributions Figure 4.7: MVDA5 P&L Distributions

For CGCI, the P&L curves are closely bunched together, suggesting a strong resilience to market
shocks. The ”Volatility & Correlation Shocked” scenario which can be viewed as the most severe
stress test, indicates only a modest deviation from the baseline scenario. This implies that the
index’s underlying components and weighting methodology are effective in mitigating the impact
of increased volatility and correlation changes, which are common during market turbulence.

In contrast, the MVDA5 index, which is market cap weighted, shows a more pronounced sepa-
ration between the baseline and shocked scenarios. The ”Volatility Shocked” scenario reveals a
substantial shift to the left, indicating a higher probability of negative end-of-period returns. This is
attributed to the inherent concentration risk of market cap weighted strategies, where larger assets
can disproportionately affect the index performance, especially in volatile market conditions.

Additionally, in the case of the CGCI, the slope of the P&L distribution for the historical scenario
is visibly less steep compared to the baseline P&L. The heavier lower tail further confirms the in-
creased risk in the historical scenario. The probability of a positive end-of-period return in the
historical scenario lies around 31% compared to 58% for the CGCI baseline. When it comes to the
volatility-shocked scenario, it does not differ significantly around the mid-section, with the proba-
bility of profit remaining around 58%, but the CDF is slightly heavier on the upper and lower tail.
A single correlation shock impacts the risk profile even less, while a simultaneous shock in both
volatility and correlation bring the probability of profit down to approximately 53%.

In the case of MVDA5, the baseline P&L distribution reveals significantly higher levels of risk, with
no prospect of profit on the 3-month horizon. The historical scenario is more severe, displaying
85% probability of at least a 25% loss on the initial investment. The volatility-shocked MVDA5 on
the other hand is heavier on the upper tail, but the probability of a positive end-of-period return
barely exceeds 1%. Overall, CGCI’s WRC allocation scheme is characterised by a much more stable
risk profile in all the scenarios considered in this study.
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4.2.2 Summary
In this chapter we have proposed a framework for scenario-based risk management and have de-
scribed how it can be applied to assess the risk profile of diversified portfolios with cryptoasset
components. Our approach ensures that the joint evolution of the identified risk factors are mod-
elled in a realistic way and that the analysed scenarios are severe, yet plausible. By taking into ac-
count a variety of plausible future events related to volatility and correlation levels, we demonstrate
the superiority of diversified strategies, such as the CGCI, as a means of mitigating risk. While this
application focuses in generating basic stress scenarios specifically for the case CGCI, it can be
further modified to include arbitrary combinations of risk factor shocks. Additionally, the presented
procedure can potentially be used as a forward-looking portfolio optimisation approach.
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Chapter 5

Cryptoasset Market Regimes
Regime-switching models are frequently used to explain the tendency of financial mar-
kets to change their behavior, often abruptly. Such changes usually translate to struc-
tural breaks in the average means and volatilities of financial indicators, and partition
their time-series into distinct segments, each with unique statistical properties. In this
chapter, we address the problem of identifying the presence of such regimes in the con-
stituents of diversified, cryptoasset-containing portfolios, ultimately to define high-risk
market conditions and assess portfolio resilience. For each portfolio component, we
first consider a Gaussian Hidden Markov Model (HMM) in order to extract intermediate
trend-related states, conditional on the weekly returns distributions. We further apply a
Markov-switching GARCH model to the demeaned daily returns to describe changes in
the conditional variance dynamics and isolate volatility-related states. We combine the
former approaches to generate a number of price paths for each constituent, simulate
the portfolio allocation strategy and obtain a risk profile for each combination of the
trend and volatility regimes. We apply the proposed method to the CoinShares Gold and
Cryptoassets Index, a diversified, monthly-rebalanced index which includes two main
risk-weighted components; a cryptoassets basket and physical gold. Results demon-
strate an overall stable risk-reward profile when compared against the individual com-
ponents and suggest a superior performance in terms of Omega ratio for investors that
target wealth preservation and moderate annual returns. We detect underperformance
regions in bear-low volatility market regimes, where diversification is hindered.

This chapter was published at the Cryptoeconomic Systems Blockchain Journal in 2021 [86].

86



5.1. Background and Methodology Cryptoasset Market Regimes

5.1 Background and Methodology

5.1.1 Motivation
The study of market regimes is important in many fields, including governmental policy, financial
markets and regulation. Different market regimes exhibit different levels of volatility and under-
standing them can help investors and traders to better manage their portfolios, adjusting their po-
sitions and strategies overtime. Identifying them can also improve the portfolio construction pro-
cess. This may involve diversifying across assets that behave differently in various market condi-
tions or employing dynamic asset allocation strategies that adapt to regime changes. Additionally,
regulators and financial institutions can monitor market regimes to identify potential imbalances,
vulnerabilities or systemic risks that may arise from certain market conditions. Policymakers can
also use this information to tailor their policy responses and better address challenges posed by
prevailing regimes to work towards achieving macroeconomic stability.

Notwithstanding past studies on the crypto-market dynamics and the diversification properties of
cryptoassets, it is not clear how traditional allocation strategies (a) behave in relation to different
market conditions and (b) meet individual investor’s expectations. The primary goal of this chapter
is the application of regime-switching models to unveil high-risk market states for the diversifica-
tion strategy employed by the CoinShares Gold and Cryptoassets Index (CGCI) and assess how
appropriate it is for investors with different annual return targets. For this purpose, the index’s
two main market determinants are isolated, namely the crypto-basket and gold. Additionally, we
study the dynamics of their price evolution both in terms of volatility and intermediate trend. In
the proposed setting, there are four trend states and three volatility states for the crypto-basket
and three trend states and three volatility states for gold. In terms of simulation, we produce 1 000
paths for each CGCI component and report the Omega ratio, both in isolation and combined, fol-
lowing the index rebalancing scheme. Finally, the proposed framework allows to detect regions
where the weighting scheme does not improve risk-adjusted returns due to limited diversification
opportunities.

5.1.2 Simulating Market Regimes
The proposed framework for simulating market regimes combines econometric modeling with a
Monte Carlo approach. In the model fitting phase, the process begins with the normalization of
daily logarithmic returns using an AR(1) filter to correct for autocorrelation, which is a common
issue in time-series data that can lead to spurious inference if not addressed. The application of a
regime-switching ARCH model further acknowledges the presence of different volatility regimes in
financial markets, capturing the dynamics of changing market conditions over time. The transition
matrix and ARCH parameters obtained for each state provide an understanding of (i) the possible
states the market can transition into and (ii) the nature of volatility within each state. Moving to
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weekly returns, the framework employs an HMM, which is useful for capturing latent states in the
time series, reflecting the unobserved processes that influence market movements.

In the simulation process, the framework takes the parameters estimated from the regime-switching
ARCH and HMM models to generate daily and weekly return paths. This allows for a granular day-
to-day simulation that is adjusted for weekly trends, providing a more realistic trajectory of returns
that accounts for both short-term fluctuations and longer-term patterns. By offsetting daily returns
by the weekly returns raised to the power of 1/7, the framework bridges the gap between daily and
weekly data, ensuring coherence in the simulation.

The translation of these returns into daily values, provides a simulated path of the index’s value
over the horizon of interest. This approach will offer a comprehensive view of the risk profile by
incorporating the effects of autocorrelation, regime switches, and hidden states. We use an initial
price level to anchor the simulation to a known starting point, allowing for the assessment of the
CGCI’s performance relative to its historical behaviour.

More specifically, we let Vt denote the daily value of a financial instrument at day t and we express
its weekly log-return with Rt = ln (Vt,n/Vt,1), where Vt,1 is the value on the first day and Vt,n is the
value on the last day of the week. The regime-switching models we discussed in Subsection 2.3.1
can be used to describe and simulate the evolution of Vt according to the regime switching be-
haviour of the market, both in terms of volatility and intermediate trend. In the case of regime-
switching volatility, a Markov-switching ARCH(1) model is fitted on the daily logarithmic returns,
while intermediate trend regime changes are observed in the weekly logarithmic returns.

Assuming the specifications of the previous sections and a discrete space of KT distinct trend
states Si, i ∈ {1, . . . , KT} and KV volatility states si, i ∈ {1, . . . , KV }, the fitting and simula-
tion process can be summarised in the following steps:

Model Fitting

1. Given Vt, observable on day t, obtain the daily logarithmic returns rt and demean using
an AR(1) filter to eliminate autocorrelation effects.

2. Fit the regime-switching ARCH(1) model to the demeaned rt and obtain the KV × KV

transition matrix Pv and the ARCH parameter vector θk = [a0,k, a1,k] for each state sk ,
k ∈ {1, . . . , KV }

3. TranslateVt to weekly logarithmic returnsRt and demean using an AR(1) filter to eliminate
autocorrelation effects.

4. Fit the Gaussian HMM to demeaned returns and obtain the KT ×KT transition matrix Pt

and the distribution parameter vector ϕk = [µk, σk] for each state Sk , k ∈ {1, . . . , KT}
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Simulating Process

1. Given a simulation horizon of T days and parameters θk, simulate process yt for t =

1, . . . , T , according to the fitted regime-switching ARCH(1) model, and translate to daily
returns rt according to the previously fitted AR(1)

2. Simulate process Yt for t = 1, . . . , T , according to the Gaussian HMM with distribution
parameter vectorϕk = [µk, σk], and translate to weekly returnsRt through the previously
fitted AR(1)

3. For day t, offset rt by (1 +Rt)
1/7

4. Convert the simulated daily logarithmic returns rt, where t ∈ {1, . . . , T}, to daily values
Vt = V0e

ct , where ct =
∑t

i=1 ri are the daily cumulative logarithmic returns and V0 the
initial price level on day t = 0

The produced time series evolve according to KV ×KT combinations of the volatility states si i ∈
{1, . . . , KV } and trend states Si i ∈ {1, . . . , KT}, with the two Markov processes progressing
independently (Fig. 5.1).

Figure 5.1: Market regime simulation procedure
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5.2 Applications

5.2.1 CGCI Risk Factors: Characteristics andRegime Identification
The aim of this section is to test the resilience of the CoinShares Gold and Cryptoassets Index
(CGCI) [87] during different market regimes. For this purpose, we examine the return profile in rela-
tion to the volatility and trend states of its main market determinants. The CGCI is a low-volatility
index that aims to maintain a prudent risk profile through diversification and regular rebalancing.
The two uncorrelated risk factors driving the value of CGCI are the crypto-basket and the gold com-
ponent, with the crypto-basket being an equally-weighted basket of 5 cryptoassets. The weighting
among the crypto-basket and gold in the CGCI is computed through Eq. 3.3.

The estimation of the regime-switching models is performed on a sample of 1231 price observa-
tions, ranging from July 1st 2015 to May 31st 2020. Both the crypto-basket and gold time series
correspond to the prices used for the calculation of the CGCI, with the crypto-basket price being cal-
culated using historical tick-by-tick trade data provided by Kaiko and the gold price corresponding
to the LBMA Gold Price PM data provided by ICE Benchmark Administration (IBA). For a detailed
view on the full pricing methodology of both the crypto-constituents and the CGCI, readers can
consult the official methodology document.1

5.2.2 Trend Regime Estimation
We denote by Pc,t the price of the crypto-basket component on day t and by Pg,t the daily gold
prices. Both time-series are expressed in USD. For the detection of the trend regimes we compute
the weekly logarithmic returns, Rc,t and Rg,t respectively. As mentioned in previous sections, we
aim to model the weekly return series as an HMM with Gaussian distributions for the observations,
while the regimes change according to a discrete Markov Process. A Durbin–Watson test reveals
the presence of serial autocorrelation in the weekly logarithmic returns of both the crypto-basket
(d = 1.338, p < 0.001) and gold (d = 1.574, p < 0.001) time-series. Therefore, in order
to respect the output independence assumption, Rc,t and Rg,t are demeaned prior to the HMM
fitting, using an AR(1) filter. The same test on the demeaned time series rejects autocorrelation
(Crypto-basket: d = 2.078, p = 0.7347, gold: d = 1.971, p = 0.4080).

In regards to the crypto-basket, taking into consideration that the sample dataset includes the
historic 2017 price run, we assume the presence of Kc,T = 4 states, namely the bear, sideways,
bull and outlier regimes. We expect the former states to reflect a downwards, stable, upwards and
extreme intermediate trend respectively. The parameters of the four regimes and the diagnostics
of the expected log-likelihood maximisation are displayed in Table 4.1. Kolmogorov-Smirnov tests
across all regimes confirm that observations, conditional to the prevailing latent state, are normally

1Available online by the index owner, CoinShares (Holdings) Limited (www.coinshares.com), and the Benchmark
Administrator and Calculation Agent, Compass Financial Technologies (www.compassft.com).
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Figure 5.2: Welch’s ANOVA – Crypto-basket
Trend Regimes

Figure 5.3: Welch’s ANOVA – Gold Trend
Regimes

distributed, as expected by the HMM specification (Bear: D = 0.140, p = 0.1260, sideways:
D = 0.067, p = 0.7901, bull: D = 0.105, p = 0.3385, outlier: D = 0.073, p = 0.9993)

Latent states 1–3 correspond to the bear, sideways and bull market regimes and display a negative,
zero and positive mean respectively. Levene’s test reveals variance homogeneity across the bear
and bull markets (F = 0.973, p = 0.3256), while the variance of the sideways market is slightly
lower, something not atypical for neutral market periods. Welch’s ANOVA test confirms that the
sample’s means differ significantly across regimes (F = 90.423, p < 0.001) (Fig. 5.2). Latent
state 4 corresponds to the outlier regime, and describes the dynamics of the 2017 crypto-market
price run, displaying extreme volatility and a mean similar to the one of the bull regime. Overall, the
bear, sideways, bull and outlier states each constitute 26.46%, 35.02%, 29.96% and 8.56% of the
256 analysed weeks respectively.

For the evolution of gold’s prices we follow the same approach and assume a simple HMM with
Kg,T = 3 states that correspond to bear, sideways and bull market regimes (Fitting diagnostics
in Table 5.1). Response normality across the three regimes is confirmed through Kolmogorov–
Smirnov tests (Bear: D = 0.071, p = 0.9176, sideways: D = 0.073, p = 0.4155, bull:
D = 0.124, p = 0.3736). Welch’s ANOVA test further confirms that the sample means differ
significantly across all regimes (F = 54.548, p < 0.001) (Fig. 5.3) and the bear, sideways and
bull latent states each constitute 22.18%, 20.23% and 57.59% of the 256 analysed weeks respec-
tively.

5.2.3 Volatility Regime Estimation
For the detection of the volatility states in the historical dataset, we transform the constituent
prices Pc,t and Pg,t to daily logarithmic returns, rc,t and rg,t. To account for different specifications
in volatility dynamics of the daily returns, we express them in terms of a Markov-switching ARCH
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model, as specified in Section 2.3.1.4. We assume that the ARCH residuals are Student-t distributed
(as it is commonly used in practice and considered adequate for most financial applications [100]).
Prior to the fitting process, we filter both time-series with an AR(1) filter. A Durbin–Watson test on
the demeaned time series rejects autocorrelation (Crypto-basket: d = 2.001, p = 0.5080, gold:
d = 1.9708, p = 0.4076).

We assume that the crypto-basket time-series contains Kc,V = 3 states, namely the low, mod-
erate and high volatility states. The ARCH parameters of the three regimes and the diagnostics
of the expected log-likelihood maximisation are displayed in Table 4.1. In this case our aim has
been to specify a regime switching set of rules for the daily returns only based on volatility dy-
namics. Indeed, Levene’s test rejects variance homogeneity across the low, moderate and high
volatility regimes (F = 209.52, p < 0.001). Welch’s ANOVA test further fails to reject mean
equality across the specified regimes (F = 1.199, p = 0.3037). The identified low, moderate and
high volatility latent states each constitute 21.88%, 64.59%, 13.53% of the 256 analysed weeks
respectively.

Similarly for the gold prices, we assume a Markov-switching ARCH model with Kg,T = 3 volatility
specifications and Student-t distributed innovations (Table 4.1). Variance homogeneity is rejected
(F = 95.228, p < 0.001) and mean equality across regimes cannot be rejected (F = 0.428, p =

0.653). The low, moderate and high volatility latent states each constitute 59.45%, 37.55%, 3.00%
of the 256 analysed weeks.

Table 5.1: Regime Fitting Parameters and diagnostics

HMM & MSGARCH Fitting

Crypto-basket
Trend Regimes

Crypto-basket
Volatility Regimes

Gold
Trend Regimes

Gold
Volatility Regimes

Transition Parameters
Trend States:

1:Bear, 2:Sideways, 3:Bull,
4:Outlier (Crypto-basket only)

Volatility States:
1:Low, 2:Moderate, 3:High

p1,1 = 0.3887, p1,2 = 0.2049,
p1,3 = 0.4064, p1,4 = 0.0000,
p2,1 = 0.0000, p2,2 = 0.8007,
p2,3 = 0, 1993, p2,4 = 0.0000,
p3,1 = 0.4927, p3,2 = 0.0000,
p3,3 = 0.4523, p3,4 = 0.0551,
p4,1 = 0.0041, p4,2 = 0.0000,
p3,4 = 0.1468, p4,4 = 0.8491,

p1,1 = 0.9575, p1,2 = 0.0425,
p1,3 = 0.0000, p2,1 = 0.0202,
p2,2 = 0.9243, p2,3 = 0.0555,
p3,1 = 0.0000, p3,2 = 0.2268,

p3,3 = 0.7732

p1,1 = 0.0506, p1,2 = 0.1202,
p1,3 = 0.8294, p2,1 = 0.9994,
p2,2 = 0.0006, p2,3 = 0.0000,
p3,1 = 0.1253, p3,2 = 0.2586,

p3,3 = 0.6161

p1,1 = 0.9956, p1,2 = 0.0043,
p1,3 = 0.0001, p2,1 = 0.0000,
p2,2 = 0.9878, p2,3 = 0.0122,
p3,1 = 0.0265, p3,2 = 0.0431,

p3,3 = 0.9304

Parameters
Trend States:
N ∼ (µk, σk)

Volatility States:
ARCH: (a0, a1)

(µ1 = −0.088, σ1 = 0.060)
(µ2 = −0.003, σ2 = 0.027)
(µ3 = 0.057, σ3 = 0.069)
(µ4 = 0.045, σ4 = 0.202)

(a0,1 = 0.0005, a1,1 = 0.0001)
(a0,2 = 0.0022, a1,2 = 0.0000)
(a0,3 = 0.0084, a1,3 = 0.0027)

(µ1 = −0.009, σ1 = 0.008)
(µ2 = 0.001, σ2 = 0.025)
(µ3 = 0.004, σ3 = 0.011)

(a0,1 = 0.0000, a1,1 = 0.0001)
(a0,2 = 0.0001, a1,2 = 0.0001)
(a0,3 = 0.0003, a1,3 = 0.0001)

Convergence
AIC
BIC

Log-Likelihood

AIC : −471.5804
BIC : −390.0413

LL : 261.1289

AIC : −4232.4121
BIC : −4170.9959

LL : 2128.206

AIC : −1436.939
BIC : −1387.252

LL : 732.4695

AIC : −8436.9141
BIC : −8375.5076

LL : 4230.4571

5.2.4 Portfolio Performance Evaluation
Given the fitted model parameters and a 7-year simulation horizon, we produce N = 1000 price
paths for the crypto-basket and gold components, with the initial prices set to the last recorded
prices of the historical dataset on May 31st 2020. We use the weighted risk contribution allocation
scheme (Eq. 3.3) and produce N = 1000 corresponding paths for the CGCI, each one containing
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Figure 5.4: Welch’s ANOVA – Annualised Sharpe Ratios

numerous of the Kc,T ×Kc,V ×Kg,T ×Kg,V = 108 possible combinations of its price determi-
nants’ states. We are ultimately interested in examining both the overall performance of the three
time series as well as the index risk-adjusted return profile in relation to its constituents’ ongoing
trend and volatility regimes.

First, we assess the performance of the CGCI, crypto-basket and gold in terms of their annualised
Sharpe ratio, taking into consideration the entire dataset, regardless of the prevailing trend and
volatility regimes. Fig 5.4 displays a Welch’s ANOVA test comparing the annualised Sharpe Ratios
across the three different investment styles: the CGCI, the crypto-basket and gold in isolation. The
test has yielded a highly significant p-value (p < 0.001), indicating strong evidence of a difference
in the mean annualised Sharpe Ratios between at least two of the groups. From the boxplot, it
is evident that the CGCI strategy has a much higher mean annualised Sharpe Ratio (µ̂ = 0.964)
compared to the crypto-basket (µ̂ = 0.383) and gold (µ̂ = 0.282).

The suitability of gold as a safe-haven asset is underscored, not by its higher mean ratio but by its
tighter interquartile range, suggesting a more consistent risk-adjusted return compared to the other
two. The spread of Sharpe Ratios for the gold is narrower (SD = 0.1982), indicating less variability
in the performance. The crypto-basket has a wider dispersion of outcomes, which reflects higher
risk and less consistency in returns. The lower mean Sharpe Ratio suggests that the risk-adjusted
return of the crypto-basket in isolation is less favorable than CGCI.

The large F-statistic value from Welch’s ANOVA (F = 1422.037) confirms the statistical signif-
icance of the differences in means, while the partial omega-squared (ω2

p = 0.455) indicates a
substantial effect size. The confidence interval for the partial omega-squared, ranging from 0.431
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to 0.477, does not cross over any threshold of triviality, which further strengthens the argument that
the differences observed are not only statistically significant but also meaningful in practice.

Overall, the diversified index strategy yields a superior risk profile, with an average annualised
Sharpe ratio equal to 0.964 (SD = 0.3540) and a positive value for all simulation paths. The
crypto-basket displays a less competitive performance and greater variability, yielding an average
annualised Sharpe ratio of 0.383 (SD = 0.4001). Gold’s risk profile is more stable, with M = 0.282

and SD = 0.1982. Welch’s ANOVA test further confirms the highly significant difference in the
Sharpe ratios (F = 1422.037, p < 0.001).

While the Sharpe ratio is a widely used risk–return assessment metric by investors, its main draw-
back is the fact that it takes into consideration only the first two moments of the returns distribution.
One way to account for all return distribution moments is through the Omega ratio, as introduced
by Keating and Shadwick [79]. The Omega ratio is defined as as the probability-weighted ratio of
gains over losses given a specific level of threshold return (θ). We let X represent the observed re-
turns of an asset and F its cumulative probability distribution function of returns. Given a selected
target return threshold θ, the Omega ratio is given by:

Ω(θ) =

∫∞
θ
[1− F (r)]dr∫ θ

−∞ F (r)dr
(5.1)

When θ is set to be equal to zero, we get the gain–loss ratio of Bernardo and Ledoit [14]. The
Omega ratio is used to rank investments similarly to the Sharpe ratio. The threshold is first chosen
to a desired target level at will and investments can then be ranked accordingly, with higher values
preferred to lower. The metric can further be extended to a portfolio optimisation strategy that
aims to maximise quantity Ω(θ) for a selected value of the returns threshold θ.

In this study we inspect the average annual return of each component. Given a simulated price
path Pi, i ∈ 1, . . . , 1 000, the annualised return is obtained through:

Ri = (Pi,1+l/Pi,1)
365
l − 1, (5.2)

where l denotes the length of the simulated prices expressed in number of days. This yields 1 000
values of annualised returns for the CGCI, crypto-basket and gold respectively.

Fig. 5.5 - 5.6 present the index cumulative distribution function and a graphical representation of
the Omega ratio respectively. Given a benchmark threshold θ = 0.01 (translating to a target return
of 1% annually), the ratio is defined as the ratio of the blue over the red shaded area.

In Fig. 5.5 the slope of the crypto-basket CDF appears visibly less steep compared to the gold and
the index, with significantly heavier tails. Its rightward spread indicates that it still offers the poten-
tial for significant gains, albeit with less consistency than CGCI. The CGCI’s CDF is visibly steeper
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Figure 5.5: Empirical Cumulative
Distribution Functions

Figure 5.6: Omega Ratio Graphical
Interpretation

and also shifts to the right, indicating a higher probability of achieving higher returns compared to
the other strategies. It also crosses the threshold of θ = 0.01 sooner, which suggests that CGCI
reaches higher returns with less probability of loss, a sign of stronger performance in terms of
both risk and return. Gold’s CDF is the flattest, especially near the median, which denotes a higher
likelihood of achieving modest returns with less extreme outcomes either in gains or losses. This
is consistent with gold’s reputation as a conservative investment, less likely to experience wide
swings in returns.

We further investigate the ranking among the three components given different levels of expected
profitability θ. For large negative values of θ, all three Omega ratios tends to infinity, while for large
positive values of θ, they tend to zero. Fig. 5.7 presents on a log scale the Omega ratio of the
CGCI, the crypto-basket and gold as a function of θ. The intersection point of the CGCI and gold
Omega lines reveals that the index strategy is more appropriate for investors aiming for moderate
positive returns up to 10.6% annually. The area for θ < 0 reveals that gold provides protection
against negative market developments more effectively than the other two components. When it
comes to the crypto-basket, it overperforms the index when the target is set higher than a 10.6%
annual return, making it a more appropriate for investors with high risk tolerance. Examining the
three components wealth preserving capabilities, a threshold of value θ = 0 yields an Omega
ratio of Ω(0)CGCI = 1.4018 for the index, and Ω(0)CB = 0.3056, Ω(0)Gold = 0.7747 for the two
components respectively.

5.2.5 Regime-Conditional Performance
Each of the simulated paths is then factorised according to the constituents’ prevailing states and
eventually split into 144 subsets of the original time-series. For each subset we compute the av-
erage monthly return for both the CGCI and its two constituents, across all 1 000 paths. Given
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Figure 5.7: Omega Ratios - Log Scale

the high number of possible regime combinations, especially in the case of CGCI, we expect their
duration to correspond to a few days. The average regime duration for the index is indeed approxi-
mately 3.44 days, with a total ofKc,T ×Kc,V ×Kg,T ×Kg,V = 108 possible regime combinations.
Accordingly, in the case of the crypto-basket, with Kc,T = 4 trend states and Kc,V = 3 volatility
states, we have Kc,T × Kc,V = 12 regime combinations with an average duration of 4.27 days.
Finally for gold, we observe Kg,T × Kg,V = 9 different regime combinations with an average
duration of 9.15 days.

Given the short duration of regimes, we express the return profile of each regime in terms of
monthly return instead of annual. If we denote with ri

j the vector of returns that correspond to
regime j and simulation path i, we divide ri

j in N partitions, each with a duration of 21 days, and
obtain the average monthly return of regime j through:

R̄i
j =

N∑
j=1

(
21∏
t=1

(1 + rj,t)− 1

)
/N, i ∈ 1, . . . , 1 000 (5.3)

We consider the risk-adjusted return profile of each component per regime combination. As men-
tioned before, a main drawback of the Sharpe ratio when assessing the performance, is the fact
that it fails to consider the entire distribution of returns. An additional disadvantage of the Sharpe
ratio is evident in this case because we need to consider the presence of negative returns during
bear market periods. A negative Sharpe ratio is generally problematic to interpret when persis-
tent (during market downturns) because a large amount of volatility, given negative excess returns,
wrongfully insinuates that the examined performance is not as poor as expected. To this end, when
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Figure 5.8: Average Simulated Omega Ratios (Monthly returns, θ = 0.0008)

evaluating the regime-conditional risk-adjusted returns, we use the Omega ratio as well.

For each regime combination, we calculate the Omega ratio through 1 000 values of R̄, correspond-
ing to the 1 000 simulated time-series. We use a benchmark value of θ = 0.0008 for the monthly
returns, which roughly translates to a 1% annual return. The produced heatmap in Fig. 5.8 reveals
high-risk regime combinations for the index diversification and rebalancing strategy. Moreover, it
allows for a comparative analysis between the CGCI, the cryptoasset market and gold. For ease of
exposition, and since we are interested in the three main trend regimes of bear, sideways and bull
market periods, the outlier trend regime is omitted from the heatmap. Overall, the color gradient
reveals that the main driver of the CGCI price is the crypto-basket component.

The heatmaps in Fig. 5.9 display the variability of the CGCI Omega ratio across different regimes,
in comparison with its two components. All Omega ratios are estimated using the same target
return benchmark value, θ = 0.0008. In bull market conditions, all three components perform
better in low volatility regimes. The highest value for the CGCI Omega ratio, ΩCGCI = 23.8387,
is observed when both components experience low volatility and have an upward intermediate
trend. In this case, the Omega ratios for the two index components are ΩCB = 21.1292 and
ΩGold = 3.1493 respectively. In regions that correspond to bear conditions for both the crypto-
asset and gold markets, the CGCI performs best when both components are in a high-volatility
state, with ΩCGCI = 0.3492, ΩCB = 0.0788 and ΩGold = 0.2871. This is in line with the primary
goal of the index to protect against unfavorable market conditions and to control and benefit from
risk through diversification and frequent rebalancing.
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Figure 5.9: Regime-Conditional Average Omega Ratios, Crypto-basket & Gold
(Monthly returns, θ = 0.008)

Likewise, the regions that negatively affect the index performance the most lie around the bottom-
left corner of the heatmap. Those regions correspond to periods when the two components simul-
taneously experience bear markets with low volatilities, therefore, providing limited opportunities
for successful diversification. In this case, the Omega ratios of the CGCI and the crypto-basket lie
closer to zero, ΩCGCI = 0.0079, ΩCB = 0.0053. Gold seems to offer better protection in times of
market decline, with ΩGold = 0.0192.

5.2.6 Summary
In this chapter we have proposed a way to describe the dynamic behavior of the two market de-
terminants of the CGCI. The proposed framework includes a Gaussian Hidden Markov Model to
extract the intermediate trend regimes, given through the weekly logarithmic returns, and a Markov-
switching ARCH approach to describe the variability of the conditional variances, through the de-
meaned daily logarithmic returns. Their combination attempts to produce a realistic set of simu-
lated price paths for the index and its two risk factors, each one containing numerous combinations
of the identified regimes.

Taking into consideration the evolution of the index and its two risk factors, their overall perfor-
mance is reported in terms of Sharpe and Omega ratio and assess their suitability for investors,
according to their individual return targets and willingness to take on certain levels of risk. The
Sharpe ratios across the entire datasets demonstrate the overall superiority of the diversified ap-
proach when seeking exposure in the cryptoasset market. Computations of the Omega ratio for
different values of the target return threshold reveal that the index is more suitable for wealth-
preserving investors and investors who target moderate returns, up to 10.6% on an annual basis.
For investors with higher risk tolerance, portfolios with cryptoasset components only are more ap-
propriate, whereas gold is the best choice when seeking protection against periods of persistently
declining markets.
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Chapter 6

Diversification Benefits of Cryptoassets for
Traditional Asset Classes

The aim for balance between risk and reward in investment portfolios often requires
studying the diversification contribution of its constituents. This objective requires to
specify whether investors can extend their exposure in certain asset classes and benefit
their portfolios in a statistically significant way. In this chapter, we address this issue of
diversification in the context of cryptoasset portfolios and examine whether their risk-
adjusted performance can be enhanced through seeking exposure into the commodities
class. For an equally-weighted portfolio of five cryptoassets, we first consider the ad-
dition of physical gold, as conceptualised by the CoinShares Gold and Cryptoassets In-
dex, a diversified, monthly-rebalanced index that seeks exposure to both asset classes.
We further consider modifying the index composition by replacing physical gold with a
basket of five commodities. Mean-variance spanning tests reveal that the addition of
physical gold in the original cryptoasset portfolio translates to a significant shift in the
efficient frontier, both in terms of the global minimum variance and the tangency portfo-
lios. Additionally, expanding the exposure in the commodity side confirms a statistically
significant improvement, with the diversification benefit arising from a shift in the tan-
gency portfolio. We further generate a number of price paths for the original index, the
modified index and their components, according to a Dynamic Conditional Correlation
GARCH specification, to assess the efficiency of the index weighted risk contribution
scheme. Results demonstrate a superior performance of the two indices when com-
pared against their constituents in terms of Omega ratio. The modified index appears
more appropriate for investors that seek higher annual returns, while the original com-
position would be more appropriate for individuals with moderate annual return goals.

This chapter was published at the IEEE International Conference on Blockchain and Cryptocurrency
(ICBC) in 2021 [85].
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6.1 Applications

6.1.1 Background
The inclusion of risky assets, such as cryptoassets, in investment portfolios requires careful con-
sideration of the impact on the risk-adjusted performance. A key aspect of this understanding
involves analyzing the portfolio’s efficient frontier, which represents a collection of optimal portfo-
lios offering the maximum possible returns for a given level of risk. Graphically, the efficient frontier
is formed by plotting the portfolio’s expected return against its standard deviation and is curved
because each unit of risk added to a portfolio gains a diminishing amount of return. Huberman
and Kandel [68] propose a multivariate test setting that examines the hypothesis that the efficient
frontier of a benchmark set of K assets is the same as the efficient frontier of an augmented set
of K +N assets. Failure to reject the proposed hypothesis would suggest that the initial portfolio
setting cannot be benefited by investing in the additional N assets under consideration. Kan and
Zhou [77] conduct a comprehensive study of tests for mean-variance spanning based on the re-
gression framework of Huberman and Kandel [68] and present in detail the Likelihood Ratio, Wald,
Lagrange multiplier and step-down F tests.

Building on the aforementioned studies, a significant area yet to be fully explored is how the integra-
tion of cryptoassets with traditional asset classes affects portfolio dynamics. This chapter aims
to fill this gap by investigating the diversification benefits that commodities might offer within the
cryptoasset space. Specifically, it seeks to understand how the inclusion of such assets in cryp-
toasset portfolios impacts the mean-variance frontier.

We first consider the case of the CoinShares Gold and Cryptoassets Index and assess the diversifi-
cation benefit of physical gold for a portfolio of five equally-weighted crypto-constituents. We fur-
ther consider a case of diversified commodity exposure by replacing physical gold with a basket of
five commodities and assess whether there exist opportunities to improve the index risk-adjusted
performance. We also isolate the main market determinants of the formed portfolios, namely the
crypto-basket, gold and the commodity basket, and study the dynamics of their conditional cor-
relation. We produce 1 000 paths for each component and report the Omega ratio following the
index rebalancing scheme. Our aim is to investigate how various strategy configurations align with
diverse investor goals.

6.1.2 Datasets
In this chapter, we initially examine the CoinShares Gold and Cryptoassets Index to assess the
diversification benefits of physical gold within a portfolio composed of five equally-weighted cryp-
toassets. We then explore a scenario of diversified commodity exposure, where physical gold
is replaced with a basket of five commodities, to evaluate potential improvements in the index’s
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risk-adjusted performance. Utilizing the concept of mean-variance spanning, as presented in Sec-
tion 2.3.2.3, we aim to determine the validity of the mean-variance spanning null hypothesis and
investigate whether gold (and the commodity basket) influences both the global minimum variance
and tangency portfolios. Additionally, employing DCC-GARCH models, detailed in Section 2.3.1.3,
we will isolate and analyze the primary market determinants of the constructed portfolios—namely,
the crypto-basket, gold, and the commodity basket—and examine the dynamics of their conditional
correlation

Both the estimation of the DCC-GARCH parameters and the mean-variance tests are performed
on a historical dataset of 1 308 price observations ranging from July 2nd, 2015 to November 2nd,
2020. The dataset contains the price time-series of the crypto-basket component of the CGCI
rather than the individual prices of its crypto-constituents because (i) this study is not examining
any alterations in the crypto-basket composition and (ii) the CGCI selection rules around the crypto-
basket composition would make the simulation process unnecessarily complex. The crypto-basket
historical prices are calculated using tick-by-tick trade data provided by Kaiko. The dataset also
contains the time-series of five commodities. Gold prices, under the original CGCI calculations,
correspond to the LBMA Gold Price PM data provided by ICE Benchmark Administration (IBA).
The rest correspond to the respective price observations of iShares Silver Trust (SLV), Aberdeen
Standard Physical Platinum Shares ETF (PPLT), Aberdeen Standard Physical Palladium Shares ETF
(PALL) and West Texas Intermediate Crude Oil (WTI).

6.1.3 Regression-based Spanning Hypothesis Testing
The CGCI is designed based on the premise that the addition of physical gold in a cryptoasset
portfolio improves the risk-return profile of the initial crypto-investment. We will seek to confirm
this diversification benefit as statistically significant through the spanning tests of Section 2.3.2.3.
Since spanning tests are not explicitly concerned with a specific allocation style, but rather examine
the shift of the frontier hyperbola as a whole, we define the benchmark investment universe as the
collection of any cryptoasset c that has historically been a constituent of the CGCI. We denote their
daily logarithmic returns, Rc, RGLD, RSLV, RPPLT, RPALL and RWTI. The regression setting for the tests
is given by:

Ri = α+
K∑
j=1

βjRj + ϵ, (6.1)

where Rj is the set of constituents comprising the cryptoasset-only benchmark portfolio and Ri

denotes the test asset under consideration for addition. In this first case, the test asset Ri corre-
sponds to physical gold. All three tests of spanning reject the null hypothesis, with LR = 3160, p <

0.001, W = 27723, p < 0.001 and LM = 891, p < 0.001, W ≥ LR ≥ LM. We conclude that
the benchmark portfolio does not span the augmented portfolio and the diversification benefit is
statistically significant.
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Figure 6.1: Spanning Test 1: Efficient FrontiersFigure 6.2: Spanning Test 2: Efficient Frontiers

The constants that describe the efficient frontier hyperbola on the (σ̂, µ̂) space of the benchmark
portfolio of K assets are α̂1 = µ̂1

′V̂ −111 µ̂1, b̂1 = µ̂1
′V̂ −111 1K , ĉ1 = 1′K V̂

−1
11 1K and d̂1 = α̂ĉ − b̂2.

Accordingly, the constants that define the location of the efficient frontier of the augmented port-
folio of N+K assets are, α̂ = µ̂′V̂ −1µ̂, b̂ = µ̂′V̂ −11N+K , ĉ = 1′N+K V̂

−11N+K and d̂ = α̂ĉ− b̂2,
where µ̂ = 1

T

∑T
t=1Rt and V̂ = 1

T

∑T
t=1(Rt−µ̂)(Rt−µ̂)′. Here µ̂ and V̂ represent the maximum

likelihood estimates of the expected return and covariance matrix of the augmented portfolio and
µ̂1 and V̂11 represent the maximum likelihood estimates of the expected return and covariance
matrix of the benchmark assets. We denote the global minimum variance and tangency bench-
mark portfolios by GMVP1 and TP1 and the global minimum variance and tangency augmented
portfolios by GMVP and TP. The slopes of the asymptotes to the efficient hyperbolae of the bench-
mark and augmented portfolios are given by

√
d̂1/ĉ1 and

√
d̂/ĉ respectively. Figure 6.1 displays

the two frontier hyperbolae for the first round of spanning tests, where the benchmark portfolio
only contains cryptoassets, while the augmented portfolio corresponds to the CGCI. The diver-
sification benefit of gold is mainly attributed to a significant reduction of risk. The augmented
global minimum variance portfolio corresponds to a risk level of 0.85 ∗

√
252 = 13.5% annu-

alised volatility, compared against 4.73 ∗
√
252 = 75.1% for the cryptoasset-only benchmark. In

terms of Sharpe ratio, the benchmark tangency portfolio is characterised by an annualised Sharpe
value of 1.83, while the diversified portfolio presents an average simulated annualised value of
2.0. The efficient hyperbolae are characterised by asymptotes with slopes

√
d̂1/ĉ1 = 0.0051 and√

d̂/ĉ = 0.0115.

Following the rejection of the joint spanning hypothesis and the geometrical interpretation of the
two portfolios, we follow the step-down procedure described in Section 2.3.2.3 and derive the F1,
F2 statistics and their p-values. The separation of the two tests therefore allows us to isolate the
reasons for rejection if the original null hypothesis is rejected. If the rejection derives from F1, we
can conclude that there is a statistically significant difference between the two tangency portfolios,
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while a rejection of F2 will indicate that a significant difference is observed between the two global
minimum variance portfolios. Another benefit of the step-down procedure is that it allows us to
adjust the significance levels of the two tests, according to the perceived economical significance
of each. Given that investors are typically interested in risk-adjusted returns rather than solely
volatility, and since a statistically significant shift in the tangency portfolio is much more difficult
to detect [77], it is generally advisable to set the significance level of F1 higher and that of F2 lower.
Nevertheless, the interpretation of the p-values in the separated tests is not a trivial task. For the
purposes of this study, where the tangency portfolio shift is of great economical significance, we
will accept the F1 test for p-values that exceed a value of 0.15 and reject the F2 null for p-values
falling below 0.0005. This difficulty in interpreting the F1 test results becomes specifically relevant
in this case where, despite the improvement of the annualised Sharpe ratio from 1.83 to 2, we would
fail to reject the null given a 5% significance level. For this case, we derive F1 = 2.12, p = 0.146

and F2 = 27432, p < 0.0001 and recognise a significant statistical shift both in the tangency
and global minimum variance portfolio.

An additional interest of this study is to examine whether further diversification on the commodity
side can benefit the CGCI. Here we denote by Rj the set of all the CGCI constituents (both cryp-
toassets and physical gold), while Ri denotes the four additional commodities, SLV, PPLT, PALL
and WTI. All three tests of spanning reject the null hypothesis again at a significance level of 0.05,
with LR = 27.3, p = 0.0006, W = 27.5, p = 0.0006 and LM = 27, p = 0.0006, W ≥ LR ≥ LM.
We conclude that the benchmark portfolio does not span the augmented portfolio and is signifi-
cantly benefited by the four additional commodities. Figure 6.2 displays the two frontier hyperbo-
lae, where the benchmark portfolio corresponds to the CGCI setting, while the augmented portfolio
corresponds to a CGCI portfolio that uses a commodity-basket rather than physical gold only. In
this case, the diversification benefit of the commodity basket is attributable to an increase in ex-
pected returns. The augmented global minimum variance portfolio corresponds to a risk level of
13.3% volatility and does not drift away from the benchmark, which lies around the same level.
In terms of the Sharpe ratio, the augmented tangency portfolio has managed to drive the risk-
adjusted performance up to 2.5, compared to the previous value of 2. The slope of the hyperbola
of the augmented portfolio increases to

√
d̂/ĉ = 0.0207 compared to its previous benchmark of√

d̂1/ĉ1 = 0.0115.

We follow up the joint hypothesis testing with the step-down approach. For this case, F1 =

2.03, p = 0.0889 and F2 = 4.78, p = 0.0008 and recognise a significant statistical shift only in
the tangency portfolio. The p-value of the F2 test in this case similarly highlights the importance
of adjusting the significance levels of the step-down approach. A significance level of 0.05 would
in this case indicate a significant shift in the global minimum variance portfolio, even though the
test assets merely reduce its annualised standard deviation from 13.5% to 13.3%.
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6.1.4 DCC-GARCH Estimations
The spanning test results from the previous section confirm that the addition of commodities in
cryptoasset portfolios significantly shifts the efficient frontier. In this section, we examine how this
diversification benefit is reflected in the WRC weighting scheme. We compare the risk-performance
profiles of a cryptoasset-only portfolio, a portfolio that adds gold, following the CGCI weighting
scheme, and a portfolio that replaces gold with five commodities, also following the CGCI weighting
scheme. We denote the daily value of a given financial instrument i at time t by Vi,t and its daily
logarithmic returns by ri,t. We first form a monthly-rebalanced commodity-basket, similarly to the
crypto-basket component of the CGCI. The commodity-basket base level is set on 100 on July 1st,
2015 while the price level on day t from July 2nd, 2015 onwards is calculated as:

CoBt =

1 +
∑
i∈Nc,t

xi,R(t) ×
(

Vi,t

Vi,r(t)

− 1

)× CoBR(t), (6.2)

In Eq. 6.2, Nc,t is the set of 5 commodities constituents on day t, R(t) is the most recent rebal-
ancing date preceding t, and similarly Vi,R(t) is the value of commodity i, xi,R(t) is the weight of
commodity i, equal to 0.2, and CoBt is the commodity-basket price level on the last rebalancing
date preceding t. The crypto-basket daily price observations are formed using the same formula
and are denoted with CrB. All prices are expressed in USD. The DCC-GARCH is estimated on the
three main components of interest, CrB, CoB and Gold. Table 6.1 contains the fitted model param-
eters.

6.1.5 Omega Ratio Comparison
Given the fitted model and a 5-year simulation horizon, we produce N = 1000 price paths for the
CrB, CoB and gold, with the initial prices set to the last recorded prices of the historical dataset on
November 2nd, 2020. We use the WRC allocation scheme (cf. Eq. 3.3) and produce N = 1000

paths for the CGCI, and N = 1000 paths for the modified CGCI, where the CoB replaces physical
gold. We are ultimately interested in examining the individual baskets’ risk-adjusted return profiles
compared against the two diversified strategies.

Following the examination of the tangency portfolio shift, we also examine the risk-adjusted per-
formance of the different portfolio specifications. We let X represent the returns of an asset and
F its cumulative probability distribution function of returns. It is reminded that, given a selected
target return threshold θ, the Omega ratio is given by:

Ω(θ) =

∫∞
θ
[1− F (r)]dr∫ θ

−∞ F (r)dr
(6.3)

In this study we inspect the average annual return of each component. Given a simulated price path
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Table 6.1: DCC-GARCH Parameters and diagnostics

DCC-GARCH Fitting

Crypto-basket Commodity basket Gold

ARMA-GJR-GARCH
Parameters

(Eq. 2.3)

ϕ1: 0.9669
θ1: -0.9521
ω: 0.00003
α1: 0.1168
γ1: -0.06346
β1: 0.9140

ϕ1: 0.5044
θ1: -0.4797
ω: 0.00002
α1: 0.1925
γ1: -0.0397
β1: 0.7345

ϕ1: -0.7792
θ1: 0.7960
ω: 0.000001
α1: 0.0669
γ1: -0.0259
β1: 0.9323

Residual
Distribution

Shape
(Kolmogorov-Smirnov Test p-value)

3.3128
(1.0000)

4.5797
(0.8000)

5.3186
(0.7170)

Information Criteria
Akaike
Bayes

-14.784
-14.670

Spanning Tests Results

LR W LM F1 F2

CGCI Scenario
Benchmark Assets (K):

Crypto-basket
Test Assets (N ):

Physical Gold

3160
(≤ 0.001)

27723
(≤ 0.001)

891
(≤ 0.001)

2.12
(0.1461)

27432
(≤ 0.0005)

Modified CGCI Scenario
Benchmark Assets (K):

Crypto-basket
Test Assets (N ):

Commodity-basket

27.3
(0.0006)

27.5
(0.0006)

27
(0.0006)

2.03
(0.0889)

4.78
(0.0008)

Pi, where i ∈ 1, . . . , 1 000, the annualised return is obtained through Ri = (Pi,1+l/Pi,1)
365
l − 1

where l denotes the length of the simulated prices expressed in number of days. This yields 1 000
values of annualised returns for the CGCI, crypto-basket and gold respectively.
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Figure 6.3: Empirical Cumulative Distribution
Functions Figure 6.4: Omega Ratios - Log Scale

Fig. 6.3 presents a comparison of annual return distributions for the four different investment
styles. The slope of the crypto-basket cumulative distribution function appears visibly less steep
compared to the rest of the components, with significantly heavier tails. Both physical gold and
the formed commodity basket display a reduced profit and loss range, with the commodity basket
presenting signs of slightly heavier tails.

The two mixed portfolios that follow the CGCI weighting schemes appear to be relatively robust
against the crypto-market’s potential severe losses, while at the same time they display much
higher chances of profit when compared against the commodity market. The CDF for the original
CGCI is notably steep and progresses rapidly towards 1, crossing the θ = 0.01 threshold quickly.
The modified CGCI shows a CDF very close to the original, suggesting that the modifications do
not significantly alter the return distribution. There is a slight shift to the left, indicating a marginal
increase in the likelihood of lower returns compared to the original CGCI.

We also plot the Omega ratio as a function of the expected profitability parameter θ, to investigate
the ranking among the five portfolios given different levels of target returns. For large negative
values of θ, all three Omega ratios tend to infinity, while for large positive values of θ, they tend to
zero. Fig. 6.4 presents on a log scale the Omega ratio of the CGCI, the modified CGCI, the crypto-
basket, the commodity-basket and gold as a function of θ and allows us to rank the portfolios
according to the intersection points of the five curves.

In the graph, the threshold θ is set at 0.1, consistent with the previous CDFs, serves as a benchmark
to evaluate how much reward an investor gets for each unit of risk taken beyond the 10% annualised
return threshold. The higher the Omega Ratio, the more favorable the trade-off between gains and
risks. From the graph, the CGCI strategy exhibits a higher Omega Ratio at the θ = 0.1 point, indi-
cating a better return per unit of risk compared to the other strategies. The Modified CGCI, while
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close to the original, shows a slightly lower Omega Ratio, therefore suggesting that the modifica-
tions have led to a minor reduction in the risk-reward measure. Both versions of CGCI outperform
the other strategies at this particular point.

The intersection point of the CGCI and gold Omega lines reveals that the original index strategy is
more appropriate for investors aiming for moderate positive returns up to 29.6% annually. Accord-
ingly, gold is more effective in providing protection against negative market developments. The
intersection point of the crypto-basket and original CGCI curves confirms that complete exposure
to the crypto-space is appropriate for risk-tolerant investors who target annual returns that exceed
29.6%. When it comes to the modified CGCI setting, it manages to extend the range of overperfor-
mance. Specifically, the modified CGCI appears more appropriate for investors aiming up to 50.7%
annual returns. When it comes to selecting between the two index methodologies, the original
setting is more appropriate for investors who are interested in wealth preservation and moderate
annual returns up to 12.3%, while the modified methodology is better suited for less risk-averse indi-
viduals that set a target annual return at up to 50.7%. Both physical gold and the commodity-basket
are wealth-preservation tools, with the commodity basket displaying a more volatile profile.

6.1.6 Summary
In this chapter we have examined the diversification properties of the commodity class from the
perspective of a cryptoasset investor. We utilise the concept of mean-variance spanning tests and
examine how the addition of commodities in cryptoasset portfolios shifts the efficient frontier in
a statistically significant way. A step-down approach using two separate F tests further allows
us to examine changes in the global minimum variance and tangency portfolios. We first take
into consideration the setting of the CoinShares Gold and Cryptoassets Index and confirm that the
addition of physical gold to a basket of five equally-weighted cryptoassets translates to a significant
shift in the mean-variance frontier, in both of the efficient portfolios. We also consider a second
setting where gold is replaced by a basket of five commodities. The spanning tests reject the null
hypothesis and the rejection is found to be due to a significant shift in the tangency portfolio.

We have additionally taken into consideration the two portfolio compositions and compared the
two approaches in terms of their suitability for investors. The evolution of the portfolio risk factors
have been described using a dynamic conditional correlation model, which is used to generate
1 000 different price paths. Computations of the Omega ratio for different values of the target
return threshold reveal that the original index composition is more suitable for wealth-preserving
investors and investors who target moderate returns. For investors with higher return expectations,
up to 50.7%, the modified index approach is more appropriate.
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Chapter 7

Conclusions
This thesis has presented a comprehensive approach to creating novel, investable indices for the
cryptoasset space, in a way that offers exposure to alternative assets while balancing risk and
return. To compliment the index design arguments, we have provided a scenario-based risk man-
agement framework which highlights the superiority of diversified strategies in mitigating risk. We
have further examined the diversification properties of commodities from a cryptoasset investor’s
perspective, confirming that their addition to a basket of cryptoassets significantly shifts the mean-
variance frontier.

This chapter summarises the findings of Chapter 3, Chapter 4, Chapter 5 and Chapter 6 and dis-
cusses some topics that can be considered for future work.
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7.1 Conclusions

7.1.1 Summary of Contributions
In this thesis, we have developed and analysed an innovative investment approach that combines
alternative assets, specifically cryptoassets and commodities, to offer investors exposure to a di-
versified and risk-adjusted product. We have extended the the equal risk contribution theory to-
wards a weighted risk contribution scheme and have taken into account unique events in the cryp-
toasset space. The resulting product showcases a balance between price instability reduction and
average return per unit of volatility, with moderate operating costs.

To further validate this approach, a framework for scenario-based risk management was devel-
oped, demonstrating the effectiveness of diversified indices - such as the CoinShares Gold and
Cryptoassets Index (CGCI) - in mitigating risk. The framework can be adapted to accommodate
various risk factor shocks, both in terms of volatility and correlation.

In order to describe the dynamic behavior of the CGCI and its market determinants, a combination
of Gaussian Hidden Markov Model and Markov-switching ARCH approach was utilized. This en-
abled the production of realistic simulated price paths for the index and its risk factors, ultimately
revealing the superiority of diversified strategies in terms of Sharpe and Omega ratios. It was de-
termined that the CGCI is more suitable for wealth-preserving investors and those targeting mod-
erate returns, while portfolios with only cryptoasset components or gold are preferable for those
with higher risk tolerance or seeking protection against declining markets, respectively.

Finally, the diversification properties of commodities from a cryptoasset investor’s perspective
were investigated, highlighting the statistically significant shift in the efficient frontier when com-
modities are added to a cryptoasset portfolio. The original index composition was deemed more
suitable for wealth-preserving investors and those with moderate return targets, while the modified
index approach was more appropriate for investors with higher return expectations.

The research presented in this thesis ultimately led to the release of a family of novel indices for
the cryptoasset space:

1. CoinShares Gold & Cryptoassets Index (CGCI, Fig. 7.1), the first EU Benchmark Regula-
tions (EU BMR) compliant index for the digital asset industry that combines cryptoassets
and gold and a risk and return profile that is superior to holding gold or cryptoassets alone.

2. CoinShares Equally Weighted Crypto Index (CECI, Fig. 7.2), designed to provide a diver-
sified exposure to the five most liquid cryptoassets.

3. CoinShares Gold and Bitcoin Index (CGBI, Fig. 7.3), which employs the same asset allo-
cation mechanism as the CGCI and the crypto-basket is composed of Bitcoin only rather
than a basket of the top five cryptoassets.
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The full index methodology documents have been made available online by the index owner, Coin-
Shares Limited, at www.coinshares.com/index-strategies/ and the calculation agent, Compass Fi-
nancial Technologies, at www.compassft.com/indices/.

Figure 7.1: CoinShares Gold & Cryptoassets Index (CGCI)

Figure 7.2: CoinShares Equally Weighted Crypto Index (CECI)
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Figure 7.3: CoinShares Gold and Bitcoin Index (CGBI)

7.1.2 Future Work
Possible extensions of the topics covered in this thesis include:

Exploring Alternative Assets Classes One possible extension of the presented work is to expand
the proposed methodologies to additional asset classes. This could include an array of traditional
asset classes such as equities, fixed income, commodities, and real estate, along with emerging
asset types like green bonds, and technology-based securities. The aim would be to explore the
interdependencies between those diverse assets and focus on how cryptoassets interact within
the broader financial ecosystem. It also includes studying the influence of broader factors such
as global economic policies, significant technological advancements and important geopolitical
events.

Dynamic Constituent Allocation The proposed framework provides an application example of the
weighted risk contribution scheme, with a fixed risk contribution ratio parameter (α). An exciting
avenue for further work would be to investigate the use of a dynamic portfolio weighting approach,
where such parameters are time-varying. This would lead to an innovative family of adaptive risk
parity schemes that optimize the allocation of assets in response to changing market conditions
and investor risk preferences. Furthermore, this family of adaptive models can be tuned to take
into consideration more complex correlation structures. In the setting presented in this thesis, the
correlation between cryptoassets and commodities is assumed to be equal to zero, an assumption
that can break down when extending to other asset classes or when market conditions change,
such as during periods of economic recession, market turmoil, or regulatory changes.
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Investment Universe Expansion Another possible extension is to examine the possibility of cre-
ating a family of sub-indices that include a wider variety of cryptoassets, such as tokens from
emerging blockchain projects or DeFi platforms and evaluate the potential improvements in risk-
adjusted returns and the overall stability of the portfolio.

Environmental, Social & Governance (ESG) Considerations Finally, an additional area for further
research would be to assess the potential integration of ESG factors into the index construction
process to promote responsible investing and evaluate the impact on portfolio performance and
risk characteristics.
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Figure 7.4: Crypto-basket log-returns Figure 7.5: Gold log-returns

Figure 7.6: ACF of Crypto-basket returns Figure 7.7: ACF of Gold returns
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Figure 7.8: ACF of Crypto-basket returns
(absolute values)

Figure 7.9: ACF of Gold returns
(absolute values)

Figure 7.10: Crypto-basket mean excess plot
Positive residuals

Figure 7.11: Crypto-basket mean excess plot
Absolute of negative residuals

Figure 7.12: Gold mean excess plot
Positive residuals

Figure 7.13: Gold mean excess plot
Absolute of negative residuals
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Figure 7.14: MVDA5 residuals baseline CDF Figure 7.15: CGCI hypothetical scenarios
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