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ABSTRACT
The proliferation of the internet has created new opportuni-
ties to study the mechanisms behind the emergence and dy-
namic behaviour of online popularity and celebrity. In this
paper we examine how common epidemic models, specif-
ically SIR and SEIR models, can be applied to model the
evolution of outbreaks of celebrity interest on the internet. A
major challenge when using such models is to parameterise
them to fit data as an outbreak unfolds over time, with-
out knowing the initial number of susceptibles in the target
population. We present a methodology capable of fitting the
model’s parameters from a single trace, while the outbreak
unfolds, and of forecasting the epidemic’s progression in the
coming days. We present results on three kinds of data:
simulated epidemic data, data from a real Influenza virus
outbreak and data from music artists BitTorrent download
and YouTube video views activity.
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1. INTRODUCTION
n. Ce-leb-ri-ty A person who has a prominent profile and

commands a great degree of public fascination and
influence in day-to-day media.

Celebrities pervade our social existence and media, not
only as the faces of popular culture but also as the focus
of intense public interest. In the information age, celebrity
is born and spreads relatively quickly thanks to the rapid
dissemination of information via multiple channels, many
of them internet-based (e.g. social networks, video websites
and peer-to-peer file sharing networks). For the same rea-
son, outbreaks of celebrity tend to be very ephemeral as
public interest is at first excited and then dissipates as focus
shifts. Indeed, Andy Warhol’s famous prediction that “in
the future, everyone will be world-famous for 15 minutes”
[34] seems to becoming reality.
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Similar to a disease’s behaviour, an outbreak of celebrity
interest starts with a few susceptible individuals who are
exposed to an originating event and some of whom become
“infected”. These individuals then interact with others, pass-
ing on the disease or information. Eventually the infected
individuals recover/lose interest and the outbreak dies out.

By way of example, let us consider the outbreak of pub-
lic interest following the death of the music artist Whit-
ney Houston. The left side of Figure 1 presents Whitney’s
YouTube music videos’ views as recorded immediately af-
ter her death. We observe a rapid surge in interest which
remains particularly high for 7 days, and then gradually be-
gins to drop down to previous levels. The right-hand side
of Figure 1 presents occurrences of Influenza-like Illness in-
cidents as reported in 2013 in Kansas [12]. The two curves
appear to share a similar shape profile.

As noted in [15], until very recently, the study of celebrity
was widely held in“serious”academic circles to be a marginal
pursuit. However, in the last two decades, many disciplines,
from sociologists to computer scientists, have begun to ac-
tively study this ubiquitous modern status phenomenon.

Despite numerous qualitative analyses of celebrity [15, 30,
4], there is very little quantitative understanding of the ori-
gin and evolution of celebrity. While some researchers have
developed quantitative models of the popularity dynamics
of certain items of online content such as Wikipedia articles
[28] and YouTube video views [18], quantitative studies of
celebrity are still at an early stage [10, 32].

By contrast, in the domain of disease modelling, there has
been a large amount of work on epidemiology (e.g. [26, 3,
36, 25]). Our research aims to explore to what extent the
lessons learnt in epidemiology can be used in a study of the
way celebrity spreads on the Internet. It turns out there is
no direct translation, because this kind of research comes
with some extra challenges, such as not knowing the initial
number of susceptibles in an online user population.

The main contribution of this paper is the study of how
epidemiological models can adapted for modelling and pre-
dicting the spread of celebrity. Two classical infectious dis-
ease models, namely the SIR and SEIR models, are used
within a model parameter fitting framework that takes as
input a truncated dataset describe some “outbreak” of on-
line activity following an event involving a celebrity. Given
an outbreak, a prediction technique is developed for the on-
line fitting of infectious disease model parameters using an
optimization method that employs the Nelder–Mead algo-
rithm with a least-squares-based objective function.



Figure 1: Whitney Houston’s YouTube views and Influenza-like Illness (ILI) incidents reported

A novel aspect of this research is connected to one of the
major challenges: not knowing or being able to estimate
from past data the initial number of susceptibles in the pop-
ulation. As this is one of the initial conditions, it causes
potentially large uncertainties in the estimation procedure.
Under these conditions, this paper is validated using syn-
thetic and real disease data as well as real data describing
online activity related to music artists.

The rest of this paper is organised as follows. Section
2 presents related research. Section 3 describes the main
optimisation methods used for fitting the models, estimating
the parameters and a metric for quantifying the goodness of
our fits, namely the coefficient of determination. Section
4 gives the results of our analysis on the studied datasets.
The paper concludes with a summary of the results and a
discussion on future work.

2. RELATED WORK

Celebrity Studies

“A celebrity is a person who works hard all his life to
become known, then wears dark glasses to avoid being

recognized”, Fred Allen.

While the topics of fame and celebrity were ignored by
sociologists for many years, it has recently been taken up by
both theorists and empirical researchers in sociology and a
variety of related fields (e.g. [6, 15, 20]).

A famous person turns into a celebrity through narratives.
Narratives have entertainment value and represent the lives
lived by people who capture our interest and the interest
of the media. Celebrity is suspenseful as it is constantly
unwinding and as it is the product of a process [31]. One
needs a performer, a personal life, a narrative and fans [30].
In other words, one needs an audience to appreciate the
narrative and admire its star. The audience is represented
by the internet population that can capture and share the
narratives over Online Social Networks [20].

Social Network Analysis
Social Networks represent online environments in which a
user can have an online presence via their individual profile,
make links and interact with other users in various ways [9].

Data published on Facebook’s website state that Facebook
alone has over 500 million users and that it is now used by
1 in every 13 people on earth, with over 250 million that log
in on a daily basis. The average active adult internet user
has about 130 friends. 53% of all the adult internet users
follow a brand, while 32% follow a celebrity [23].

Much of the researchers’ interest can be attributed to the
appealing focus of OSN analysis on relationships among so-
cial entities, and on the patterns and implications these re-
lationships have on content spreading dynamics. Internet
users promote viral information dissemination and create
powerful electronic word-of-mouth (WoM) effects [35] that
result in the creation of online trends [1]. Data coming from
Social Networks and search engine queries offer significant
insight into predicting and controlling infectious diseases,
such as measles and influenza [5, 8].

Computational Epidemiology and Social Modelling
Computational epidemiology is an interdisciplinary area set-
ting its sights on developing and using computer models to
understand and predict the diffusion of disease through pop-
ulations [19]. In 1964, Goffman and Newill were the first to
bring a social context to epidemiology, as their work em-
phasized that a mathematical model for the spreading of
rumours can be constructed depending on the mechanism
postulated to describe the growth and decay of the spreading
process [3]. More recently, Tweedle and Smith attempted
to apply mathematical models for the dynamics of emerg-
ing infectious diseases to data acquired from Google Trends.
Specifically, they modeled music artist Justin Bieber’s pop-
ularity based on user search queries [32]. Other works of
Social Phenomena Modelling consider the problem of find-
ing the graph on which an epidemic spreads, given only the
times when each node gets infected [22]. The probability of
an infection in a social context is defined as the likelihood
of a user tweeting on a topic (contagion), shortly after hav-
ing himself been exposed to it. Several models have been
developed that determine the probability of a user adopting
a content based on what other content (s)he was previously
exposed to [21] and hence to determine the ideal times at
which to spread a message in order for it to go viral (e.g. [13,
11]). Also, the early prediction of trending topics has been
previously studied by comparing a recent activity signal for



a topic to a large collection of historical activity signals for
trending and non-trending topics [7], as well as the popular-
ity life-cycle of YouTube videos which has been studied ei-
ther by examining their popularity distribution versus their
age [2] or by analyzing early measurements of view data [17].

3. METHODOLOGY

3.1 Modelling Epidemic Processes
We are developing optimisation-based frameworks based

on traditional epidemiological models [33], in order to shed
light on the following question: Given a snapshot of a social
behaviour with some behaviour occurrences (i.e. an emerg-
ing trend), how early on in the outbreak will we be able to
predict aspects of its future evolution? We study the rela-
tionship between popularity dynamics and virus infectivity
by calculating certain time points of interest. As illustrated
in Fig. 2, these are: the time when the epidemic reaches its
peak in terms of number of infectious individuals, the time
by which at least half of those individuals have recovered,
and the time when the epidemic ends.

Figure 2: Sample infectious disease outbreak data
with marked points of interest.

3.1.1 The SIR model
An epidemic is said to arise in a community when cases

of a disease or other health-related events occur in excess
of normal expectancy. We define an outbreak as an event
in a celebrity’s career or personal life that has attracted the
interest of the media, such as a TV appearance, a gig, a
release of a new single/album, or even larger events such as
a marriage, divorce, scandal or death.

Kermack and McKendrick’s classical models of 1927 have
suggested the use of Ordinary Differential Equations (ODEs)
[14] as an appropriate modelling formalism. The most basic,
the SIR model, counts the number of susceptible, infected,
and recovered individuals in a population. The SIR model
and other derived infectious disease models (e.g. [25, 26]),
allow us to answer questions such as how many people need to
be vaccinated to prevent an epidemic? or how many people
will be infected at a particular point in time? Given a closed
population of individuals, we define three subpopulations:

• S(t) the number of individuals who are susceptible to
become infected by the disease at time t,

Figure 3: Sample run of the SIR model with pa-
rameters β = 0.001, γ = 0.1 and initial conditions
S0 = 500, I0 = 10 for 50 days.

• I(t) the number of individuals who are infected by the
disease at time t with rate β,

• R(t) the number of individuals who have recovered
from the disease at time t. We assume that the rate
of recovery γ is constant and therefore the infectious
period follows the exponential distribution.

The initial values of SIR need to satisfy the conditions:

S(0) = S0 > 0 (1)

I(0) = I0 > 0 (2)

R(0) = 0 (3)

To illustrate how the SIR model evolves, we solve the sys-
tem of differential equations above for chosen input values:
β = 0.001, γ = 0.1 with initial conditions S0 = 500, I0 = 10.
Consider the resulting numbers of the susceptibles, infec-
tious and recovered individuals through time in Fig. 3. Note
how the equality N = S + I +R is preserved throughout.

3.1.2 The SEIR model
The main difference the SEIR model has compared to the

SIR model, is an additional subpopulation, the Exposed E,
consisting of individuals who are infected but not yet in-
fectious. If we assume that the sojourn time of individuals
in the latent period follows an exponential distribution with
expectation α−1, the differential equations for the model are:

dS(t)

dt
= −βS(t)I(t) (4)

dE(t)

dt
= βS(t)I(t) − αE(t) (5)

dI(t)

dt
= αE(t) − γI(t) (6)

dR(t)

dt
= γI(t) (7)

Fig. 4 presents a sample evolution of the SEIR model with
pre-supplied parameters. Compared to the SIR model’s evo-
lution, the SEIR model’s curve is more platykurtic and its
infectious peak is reached later in time.



Figure 4: Sample run of the SEIR model with pa-
rameters β = 0.001, α = 0.5, γ = 0.1 and initial condi-
tions S0 = 500, E0 = 0, I0 = 10 for 50 days.

3.2 Model Fitting Procedure
An important application of mathematical models is to

estimate parameters that cannot be measured directly. Here
we discuss how we fit the parameters of our models in the
context of ongoing outbreaks. We particularly consider the
challenge of estimating the initial number of susceptibles in
populations where this quantity is not known, and there is
no principled way for estimating it. Traditional methods
for estimating parameters in SIR/SEIR models involve only
the estimation of β, γ and (where applicable) α. This is
because the initial number of susceptibles has traditionally
been considered to be a known quantity or one that can be
readily estimated from the context [24, 29, 33].

3.2.1 Isolating Outbreaks
Isolating an outbreak from background trend data re-

quires rules which define the start and end of an outbreak.

Figure 5: Outbreak detection in action (vertical
line) on downloads of Etta James’ songs.

While it is often obvious in retrospect to link the start of
an outbreak to some particular activity or event, such a link
may not be obvious at the time, and/or may not always
be present. For the purposes of this paper, we deem an
observation to mark the beginning of an outbreak if the next

observation exceeds the mean of the observations so far by
three standard deviations (cf. Fig. 5). We regard a particular
outbreak as having ended when the standard deviation of a
sliding window formed from the most recent k observations
falls to or below the level observed just before the start of
the outbreak.

3.2.2 Online Model Fitting
We attempt to make predictions while each outbreak un-

folds, over time. For that reason, we apply our fitting method-
ology on truncated datasets. For each dataset, we start by
taking the first 3 observations of the outbreak. We then
create a new truncated dataset by adding 1 more new ob-
servation at a time, until the end of the outbreak.

Parameters need to be estimated for each truncated dataset.
The vector of parameters that needs to be estimated for SIR
models is β, γ and S0 and for SEIR models β, γ, α and S0.
For technical reasons to do with the optimisation method
employed and the fact that all rates are known to be pos-
itive, we actually work in log space and fit log(β), log(γ),
log(α) (where applicable) and log(S0).

3.2.3 Searching the Parameter Space
In order to perform a search of the parameter space for the

set of model parameters which gives the best least-squares
fit to the data, we make use of the Nelder–Mead method.
The Nelder–Mead algorithm is a method for multidimen-
sional unconstrained optimization that does not require the
calculation of derivatives. It is widely used to solve parame-
ter estimation and maximum likelihood problems, where the
objective function is not smooth [16].

In our case we make use of a least-squares-based objective
function that characterises how well a candidate model fits
the real data. That is, our approach produces a solution
that minimizes the sum of squared residuals. Algebraically
this corresponds to minimising

S =
∑

(yi − f(xi,θ))2 (8)

where yi is the observed value, and the model is f(xi,θ)
where θ is the vector of unknown parameters. The model
fits are performed by solving first-order ODEs using the R
package lsoda. Note that it is important to specify a small
number for the absolute error tolerance, which determines
the error control performed by the solver. Alternatively, one
can specify the maximum value for the integration step-size.

Regarding initial conditions, we take I0 to be the number
of infectious individuals on the first day of the outbreak,
while R0 is assumed to be 0. In the case of the SEIR model,
we also assume E0 to be 0.

To mitigate the likelihood of the Nelder–Mead optimisa-
tion procedure becoming trapped in a local minimum, we
restart it with 20 different random initial parameter vectors
(sensibly constrained such that γ > β > 0 for example),
and select as our final candidate that vector which yields
the lowest S across all runs.

3.2.4 Assessing Goodness of Fit
In order to assess how well a chosen parameter vector fits

a truncated dataset, we make use of the coefficient of deter-
mination, denoted as R2. Normally reported in the context
of techniques such as regression, R2 describes the proportion
of the total variation present in the observations explained
by the model. Assuming that yi are the observed data points



and fi are the model predictions, the mean of the observed
data is given by ȳ = (

∑n
i=1 yi)/n . Then we calculate the to-

tal sum of squares, SStot, which is proportional to the sam-
ple variance, and the residual sum of squares SSres, which
gives a measure of how far the estimated values are from the
observed. The formulae are the following:

SStot =

n∑
i=1

(yi − ȳ)2 (9)

SSres =

n∑
i=1

(yi − fi)
2 (10)

Then the coefficient of determination is given by

R2 = 1 − SSres

SStot
(11)

Normally, the value of R2 will be in the range between 0
and 1. The closer R2 is to 0 the least improvement our model
has made over the simple model of taking the average of the
observed data as our fitted value. The closer R2 is to 1 the
better our model explains the variability in the data. As can
be observed by the formula above, if SSres > SStot, then
R2 can have negative values as well. In such situations, the
mean of the data provides a better estimate than the model
fitted values, thus meaning the model should be discarded.

3.2.5 Confidence Intervals on Model Trajectories
The evolution of any realised trajectory of an epidemic

process is stochastic in nature. We therefore use multiple
independent runs of Gillespie’s Stochastic Simulation algo-
rithm [27] in order to capture the possible variation in the
number of infected individuals observed at every time step
given our best-guess model parameterisation.

Specifically, for the set of simulation generated observa-
tions at each time point t and a confidence level of (100−c)%,
we report the lower end point of the confidence interval as
the cth percentile of the observations and the upper end
point of the confidence interval as the (100− c)th percentile
of the observations.

Naturally, this formulation does not take into account
the additional uncertainty that may be associated with the
model parameterization itself. We acknowledge that this is-
sue is important and needs to be considered in future work.

3.3 Data Sources

3.3.1 Synthetic SIR/SEIR Data
Synthetic datasets generated by SIR and SEIR models

with known parameters were generated using stochastic sim-
ulation. A number of packages are suitable for this purpose
including R, Dizzy and Matlab. The purpose of using syn-
thetic datasets is to evaluate the ability of our methodology
to recover model parameters using a single trace for which
the ground truth is known.

3.3.2 Real Influenza Data
Influenza is one of the most common infectious diseases

in humans, with regular annual outbreaks. One institution
that reports on the impact of flu in the US is the Center for
Disease Control and Prevention (CDC). From the CDC’s

FluView Web Portal1, we obtained a dataset of influenza
positive tests (summed over all subtypes of the flu virus)
reported to the CDC for the 2012/2013 Influenza season.

3.3.3 MusicMetric Data
We were able to gather time-series data for BitTorrent

downloads and YouTube video views of various music artists
using the MusicMetric API. This is an online artist analytics
toolbox that contains detailed information on fan trends and
popularity for particular artists.

4. RESULTS
In this section, we present results illustrating the applica-

tion of our online model fitting methodology to our different
datasets. We use the coefficient of determination as a metric
to assess the efficacy of our models.

4.1 Synthetic datasets

SIR Data
The artificial dataset used in this section is shown in Fig.
6 and is generated from the SIR model with parameters
β = 0.001, γ = 0.1 and initial conditions S0 = 500, I0 = 10.
At a very early stage, and operating on a single set of only 8
observations, our model manages to predict with surprising
precision not only that in 4 days there will be a peak of
infectiousness, but also the number of infectious individuals
at that point. As time progresses, our fit becomes more and
more stable and adjusts only slightly with the addition of
new observations. Finally, we can see that the estimated
best fit parameters are very close to their true values, the
curve fits the data points well and the confidence intervals
are providing a good indication of the predicted values.

SEIR Data
Similarly, we generate synthetic data from the SEIR model
as shown in Fig. 7, with parameters β = 0.001, α = 0.5, γ =
0.1 and initial conditions S0 = 500, E0 = 0, I0 = 10. We
manage to predict the curve and the peak before it actu-
ally occurs with a good precision. Note that because of
the extra parameter we initially observe that the curve is
much smoother and changes much more with additional ob-
servations. However, after observing 25 data points, the fit
manages to predict the tail well.

4.2 Actual Influenza outbreak dataset

SIR Data
This data set is taken from reports of the US Center for
Disease Control (CDC) for the 2012-2013 Influenza season
and provides the number of individuals testing positive for
flu over time. As seen in Fig. 8, we manage to predict the
peak in infectious individuals from only 7 observations to be
around day 10 and of magnitude around 6 800. In reality,
it occurs to be only 1 day later, with slightly more peo-
ple infected, about 7 000. The accuracy of predicting from
partial information on a single trace the time of the peak,
the magnitude of the peak and the tail of the infection is
remarkable.

1http://gis.cdc.gov/grasp/fluview/
fluportaldashboard.html
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Figure 6: SIR Model fit to a synthetic data set with known parameters at various time points.

0 20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

Days after outbreak = 5 
 Infectious Individuals = 55

beta = 0.012042 alpha 0.076 
gamma = 0.026 S_0 = 320.5 

R^2 =  1

In
fe

ct
io

us
 In

di
vi

du
al

s

●
●

●

●

●

oo
o
o
o

o
o
o

o

o

o

oo
oo

o
ooo

oo
o
o
o
o

oo
o
o
o
oo

o
o
oooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

●

●

Fitted Data
Infectious Data (I) − truncated set
Confidence Intervals
Infectious Data (I) − all

0 20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

Days after outbreak = 13 
 Infectious Individuals = 195

beta = 0.000623 alpha 3.23 
gamma = 0.167 S_0 = 756.6 

R^2 =  1

In
fe

ct
io

us
 In

di
vi

du
al

s

●
●

●

●

●

●

●

●

●

●

●

●

●

oo
o
o
o

o
o
o

o

o

o

oo
oo

o
ooo

oo
o
o
o
o

oo
o
o
o
oo

o
o
oooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

●

●

Fitted Data
Infectious Data (I) − truncated set
Confidence Intervals
Infectious Data (I) − all

0 20 40 60 80

0
50

10
0

15
0

20
0

25
0

30
0

Days after outbreak = 25 
 Infectious Individuals = 147

beta = 0.00104 alpha 1.586 
gamma = 0.077 S_0 = 405 

R^2 =  1

In
fe

ct
io

us
 In

di
vi

du
al

s

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●
●

●

●

●

●

oo
o
o
o

o
o
o

o

o

o

oo
oo

o
ooo

oo
o
o
o
o

oo
o
o
o
oo

o
o
oooooooooo

ooooooooooooooooooooooooooooooooooooooooooooooooooo

●

●

Fitted Data
Infectious Data (I) − truncated set
Confidence Intervals
Infectious Data (I) − all

Figure 7: SEIR Model fit to a synthetic data set with known parameters at various time points.
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Figure 8: SIR Model fit to actual daily Influenza positive tests reported to the CDC at various time points.



4.3 Case Studies of Music Artists

Whitney Houston’s death, SIR model of YouTube views
Fig. 9 is based on an SIR model fit to YouTube video plays
of Whitney Houston’s songs online immediately after her
death on 11 February 2012. Note the huge jump in views on
the day after the event, where views skyrocket from around
2 000 to 53 000 in only a day. We speculate that this effect
is due to the intense social media activity and saturation
news coverage surrounding the event. In fact our model
does not manage to predict the peak before it occurs, as
it is very early on on the outbreak. Also, while there is
reasonable qualitative agreement between the fitted model
and the data overall, the limitations of our current strategy
for generating confidence intervals without due regard for
parameter uncertainty become very apparent.

Whitney data, SEIR model of BitTorrent Downloads
Fig. 10 presents a SEIR model fit to the daily BitTorrent
downloads of Whitney Houston’s music shortly after her
death. The extra parameter allows for good flexibility in
the model fit. Indeed, the fitted curve follows the data
points fairly closely from day 14 of the outbreak. The fit
remains relatively stable with the addition of new observa-
tions, which allows us to predict the tail of the outbreak
with a good amount of certainty.

Etta James SEIR BitTorrent downloads after her death
Turning now to an SEIR model of the BitTorrent downloads
following the death of soul and blues singer Etta James on
20 January 2012, we observe in Fig. 11 that from day 5 of the
outbreak the model is able to accurately predict the landing
point of the downloading epidemic.

5. CONCLUSIONS
This paper represents a preliminary attempt to under-

stand the origins and dynamic evolution of celebrity on the
internet by drawing on, and extending, the classical theory
of the epidemiological modelling of infectious diseases. It is
promising that the proposed framework appears to be able
to successfully recover the parameters of synthetic datasets
at an early stage, and is flexible enough to be applied with
some success to real data ranging from BitTorrent music
download traffic and YouTube video views to Influenza in-
cidence.

This effort forms part of a broader framework which aims
to be able to answer questions such as: What sort of ac-
tions create the greatest outbreaks of public interest? How
long will a given increase of public interest last? and At
what point in time the public interest will reach a peak?.
Further, by applying quantitative models to the domain of
modern music, we want to shed light on how the internet
affects our preferences and evolving tastes in music artists.
Wider application areas are also worthy of investigation, e.g.
prediction of computer virus spread and mobile application
downloads.
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Figure 9: SIR Model fit to Whitney Houston YouTube video views per day at various time points after her
death.
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Figure 10: SEIR Model fit to Whitney Houston music BitTorrent downloads per day at various representative
timepoints after her death
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Figure 11: SEIR Model fit to Etta James’ music BitTorrent downloads per day at various representative
timepoints after her death.
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