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ABSTRACT
Epidemics of a biological and technological nature pervade
modern life. For centuries, scientific research focused on bio-
logical epidemics, with simple compartmental epidemiologi-
cal models emerging as the dominant explanatory paradigm.
Yet there has been limited translation of this effort to ex-
plain internet-based spreading phenomena. Indeed, single-
epidemic models are inadequate to explain the multimodal
nature of complex phenomena. In this paper we propose a
novel paradigm for modelling internet-based spreading phe-
nomena based on the composition of multiple compartmental
epidemiological models. Our approach is inspired by Fourier
analysis, but rather than trigonometric wave forms, our com-
ponents are compartmental epidemiological models. We show
results on simulated multiple epidemic data, swine flu data
and BitTorrent downloads of a popular music artist. Our
technique can characterise these multimodal data sets util-
ising a parsimonous number of subepidemic models.
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1. INTRODUCTION
Human existence has always been driven by interactions be-
tween humans and between humans and their environment.
Spreading processes of various kinds arise as an inevitable
consequence of these interactions. Where the spreading is
rapid and widespread, the resulting outbreak is termed an
epidemic. Epidemics occur in and impact on almost every
domain from biology (e.g. infectious diseases) to technology
(e.g. computer viruses and social networks). For this reason,
the study of epidemics and spreading processes has been a
vital scientific endeavour throughout history.

Since physiological well-being is one of the most basic hu-
man needs [15], it is natural that the study of spreading
processes focused for many centuries on disease propagation
and biological epidemics in populations. The last two cen-
turies witnessed the emergence of the evidence–based scien-
tific study of disease we know today as epidemiology. Over
the same time period, increased industrialization, mass tran-
sit and technological developments have increased not only
the potential for the activation of a broad class of spreading
processes but also the rates of transmission, increasing the
likelihood that they manifest themselves as epidemics.

It has long been recognised that it is not only diseases that
are subject to spreading processes. Amongst others, Dawkins
has suggested the theory of memes i.e. ideas that spread like
“mind-viruses” [8]. A key assumption of our present research
is that there are many similarities between the way diseases
spread and the way internet-based spreading mechanisms –
such as tweeting and sharing of online content – operate.
That is, an outbreak of interest starts with a few suscep-
tible individuals who are exposed to an originating event
and some become “infected”. These individuals then inter-
act with others, passing on the “infection”. Eventually the
infected individuals recover/lose interest and the outbreak
dies out. We consequently adopt epidemiological models to
describe the dynamics of internet–based phenomena.

A model of a single epidemic is inadequate to characterise
the multimodality that emerges from many complex internet-
based spreading phenomena. We speculate that this is be-
cause mono-epidemic-based modelling efforts cannot account
for the potential influence of multiple underlying spreading
mechanisms, each of which may initiate at a different time.
Consider for example YouTube video views. Views may be
due to sharing of the content on social media platforms such
as Facebook and Twitter, links on other websites, the con-
tent being featured and/or recommended in a news article
or by YouTube itself, notifications to channel subscribers
etc. Ideally we require a model that is able to adapt to
the sudden activation of any of these mechanisms, rapidly
updating itself to enable near-term predictions of reason-
able quality, without detailed knowledge of the underlying
spreading mechanisms involved.



Figure 1: The proposed synthedemic modelling and prediction framework.

We propose a novel modelling and prediction framework
based on the analysis and synthesis of multiple epidemic
models as shown in Figure 1. Given a composed signal
which is presumed to represent the aggregated observable
manifestation of multiple underlying epidemics, the frame-
work breaks down the incoming signal into its fundamental
components and selects the disease spreading models that
best explain each component. These models are resynthe-
sized in order to predict the future evolution of the signal.

Our approach is inspired by Fourier analysis, but instead
of trigonometric wave forms our components are compart-
mental epidemiological models. There are several challenges
inherent in our approach, not least in determining the num-
ber of epidemics to be fitted, and in selecting appropriate
epidemiological models and parameters for each component.

The remainder of this paper is organised as follows. Sec-
tion 2 presents relevant background of the theory and anal-
ysis of disease propagation, and an overview of contempo-
rary epidemiology-based social network analysis. Section 3
lays out our synthedemic decomposition algorithm which is
implemented in a prototype version of our framework. Sec-
tion 4 presents our case study results on simulated multiple
epidemic data, swine flu data and BitTorrent download ac-
tivity from artists that went viral in recent years. Lastly,
Section 5 concludes and considers avenues for future work.

2. BACKGROUND

Disease Propagation Theory and Predictive Analytics
In ancient times, and throughout the Dark and Middle ages,
the predominant explanations for disease propagation in-
cluded the supernatural, superstition and miasma theory,
which held that diseases were caused by“bad air”. A notable
exception was Hippocrates who correctly identified the role
of human behaviours and environmental factors [1].

Progress towards a more scientific and data–based approach
began to be made from 1600 onwards with the collection
of the first public health statistics, by John Graunt (1620–
1674) [12] and others. One of the most famous studies now
regarded as the foundation of this discipline was by John
Snow of the 1854 London Cholera epidemic [20] in which he
identified a particular water pump on Broad Street as the
likely source of the outbreak.

Predictive mathematical models for epidemics were rela-
tively slow to develop, despite their tremendous utility in
understanding, managing and forecasting the progression
of epidemics. One of the earliest was in 1766 by Daniel
Bernoulli who carried out a study of the effects of smallpox
vaccination. However, arguably the most significant break-
through in this context was that of compartmental disease
models based on Ordinary Differential Equations (ODEs),
as proposed by Kermack and McKendrick in 1927 [14].

A variety of compartmental disease models are currently
used in practice [22]. The most well-known of these, the
Susceptible-Infected-Recovered (SIR) model features a closed
population of individuals divided into three evolving sub-
populations: S(t) tracks the number of individuals who are
susceptible to become infected by the disease at time t, I(t)
tracks the number of individuals who are infected by the dis-
ease with rate β and R(t) tracks the number of individuals
who have recovered from the disease at rate γ.

Epidemiology-based Social Network Analysis
Goffman and Newill were the first to bring a social con-
text to epidemiology, with their mathematical model for the
spreading of rumours [13]. The rise of the internet, partic-
ularly search engines and Online Social Networks (OSNs),
led to two classes of studies: those designed to augment
conventional epidemiology (e.g. [6, 9]), and those applying
epidemiological or diffusion process principles to model the
dissemination of information (e.g. [2, 3, 5, 11, 16]). The for-
mer includes detection of real physical disease outbreaks by
assuming a relationship between online searches and the real
number of infected individuals [9]. The latter includes the
work of Tweedle and Smith, who applied an SIR-inspired
model to pop star Justin Bieber’s popularity based on Google
Trends data [21]. Very recently, Coviello et al. published a
controversial study which measured the contagion of emo-
tional expression amongst Facebook users [7].

A recent study explored the potential for epidemiology to ex-
plain certain outbreaks of internet-based information spread-
ing [18]. The authors were able to progressively fit and
to parameterise simple epidemiological models from single
data traces of BitTorrent downloads and YouTube views.
Subsequently they investigated confidence intervals on the
outbreak parameter values as the outbreak unfolded over
time [19]. Another work explored the dynamics of interact-
ing epidemics in multiple overlapping populations [17].



3. METHODOLOGY
The synthedemic1 methodology is designed to fit composed
epidemic models to outbreak datasets that are regularly aug-
mented with new observations (so as to facilitate potentially
real-time operation). We start with a small truncated data
set and at each step we add one new data point to the trun-
cated dataset until we reach the end of the time frame to be
considered. Initially we start by fitting no epidemics, and
dynamically incorporate more epidemics when it becomes
necessary to improve the fit.

It is clearly important to chose a set of compartmental model
types which are appropriate for the context within which the
synthedemic framework is deployed. It transpires that fol-
lowers of online phenomena have noticed that there appear
to be two types of content diffusion: growth, characterised by
organic spreading of content in communities (initially by in-
fluencers), and spike, which represents a sudden “explosion”
of sharing activity sparked by some (mass-media) event that
is then followed by a gradual decay [10]. Here we propose
to model the former by an SIR process, and the latter by
an IR (Infected-Recovered) process consisting of an initial
impulse followed by exponential decay. That is,

• An SIR epidemic starting at time t0 is characterised
by the initial number of infected individuals I0, the
initial number of susceptible individuals S0, the initial
number of recovered individuals, the infection rate β
and the recovery rate γ. The SIR model dynamics are:

S′(t) = −βI(t)S(t),

I ′(t) = βI(t)S(t)− γI(t)

R′(t) = γI(t)

for t > t0 with [S(t0), I(t0), R(t0)] = [S0, I0, R0] and
with I(t) = R(t) = S(t) = 0 for t < t0.

• An IR (spike) epidemic starting at time t0 is charac-
terised by the initial number of infected individuals I0
and the decay rate γ. The IR model dynamics are:

I ′(t) = −γI(t) ,

for t > t0 with I(t0) = I0 and with I(t) = 0 for t < t0.

Synthedemic Methodology Overview
Let M be the class of subepidemic models that we are con-
sidering and let M(k) be the set of vectors with k subepi-
demics. Generally the set M can contain any type of epi-
demic model but here we restrict ourselves to the 2 types of
epidemics introduced above. In view of the parameter sets
of these processes, elements of M take the form,

sir(t0, I0, S0, β, γ) or ir(t0, I0, γ) .

Note that we do not include the initial number of recovered
individuals in the parameter set of the SIR, as the number
of recovered individuals does not influence the evolution of
the number of infected individuals. For further use, we also
introduce the type base(t0, I0)

.
= ir(t0, I0, 0), which corre-

sponds to a constant infection level I0 starting at t0.

1A portmanteau term from synthesised epidemic

For any m ∈M, let fm(t) be the number of infected individ-
uals at time t of model m. With a slight abuse of notation
and assuming that epidemics are additive, we associate with
every vector E of elements of M, the multiple epidemic,

fE(t) =
∑
E∈E

fE(t) .

Let yi be the ith data point which is collected at time ti,
and let t and y be the vectors with elements ti and yi,
respectively. Moreover, let ti be the vector with elements t1
to ti. yi is defined likewise. We aim to find a sequence of
vectors of subepidemics {E(i) : E(i) ⊂ ∪kM(k)} such that
E(i) maximizes the coefficient of determination for the data
up till time ti, whereby the number of subepidemics is upper-
bounded. The bound is chosen such that a target coefficient
of determination r2target can be attained. The coefficient of
determination for a vector of epidemics E and data points
y collected at epochs t, is defined as,

r2(E,y, t) = 1− |y − fE(t)|2

|y − ȳ|2

where | · | and ȳ = 1
`(y)

∑`(y)
k=1 yk denote Euclidean distance

and sample mean, respectively. We also introduce the nota-
tion `(y) for the number of elements in a vector y and the
vector fE(t) with elements fE(ti) for ease of notation.

The general optimisation problem can be formulated as,

E(i) = argmax

F⊂M(k
−
i

)

r2(F,yi, ti) = argmin

F⊂M(k
−
i

)

|yi − fF(ti)|2

with

k−i = min
{
k ∈ N0

∣∣∣ ∃F ∈M(k) : r2(F,yi, ti) ≥ r2target
}
.

The bound k−i on the number of subepidemics allows for
achieving r2target with a parsimonious model. Without such
bound the optimisation problem would be trivial. In that
case, the optimal fit is to have a spike with infinite (or very
large) decay rate at every data point. As the formulated
optimisation problem is numerically involved, we formulate
a heuristic optimisation approach in the next section.

Practical Implementation Issues
In order to improve the speed and stability of our online
fitting procedures, we constrain the search space for finding
E(i) as follows:

• We add or subtract at most one epidemic at each t.

• In updating the vector of epidemics at time ti, the
start times and types of all currently-fitted subepi-
demics are assumed to be fixed. Other parameters
of subepidemics are free and can be updated.

• If an epidemic is added, we use a heuristic to determine
its type based on the residual process prior to adding
this epidemic.

• SIR-type processes are assumed to start with a sin-
gle infected individual. Henceforth this parameter is
suppressed in the notation.



In view of the former assumptions, let Nδ(E) denote the δ-
neighbourhood of subepidemic E. For a SIR process, this
neighbourhood is defined as,

Nδ(sir(t0, S0, β, γ)) =

{sir(t, s0, b, g) | t ∈ (t0 − δ, t0 + δ), s0 > 0, b > 0, g > 0} ,

whereas for the IR and baseline, the neighbourhood is,

Nδ(ir(t0, I0, γ)) =

{ir(t, i0, g) | t ∈ (t0−δ, t0+δ), i0>0, g>0} ,

and,

Nδ(base(I0)) = {base(i0) | t = 0, i0 > 0} ,

respectively. With a slight abuse of notation, the neighbour-
hood of vector of epidemics is defined as

Nδ([E1, E2, . . . , Ek]) =

[N0(E1),N0(E2), . . . ,N0(Ek−1), Nδ(Ek)] .

Notice that we only allow changes of the start time for the
epidemic which was added last and keep the start time of
the preceding epidemics fixed.

Our practical experience to date is that a value of δ = 20
yields good results; this corresponds to a large enough win-
dow to provide start time flexibility while maintaining com-
putational feasibility.

With the notation introduced above, our heuristic online
fitting algorithm is shown in Algorithm 1. Here ite(cond,a,
b) is an if-then-else function that returns a when cond is true
and b otherwise. Informally, the algorithm can be described
as follows. First, as there is insufficient information if only
the first few data points are known, we set

E(0) = {base(0)} .

For each additional data point, we do the following.

1. We first check if the target coefficient of determination
can be attained by parametrising the current set of
epidemics. The optimal set is

Ê(i) = argmax
F∈Nδ(E(i−1))

r2(F, ti,yi) ,

and the corresponding coefficient of determination is

r̂2(i) = r2(Ê(i), ti,yi)

2. If r̂2(i) ≥ r2target, we try to reduce the number of epi-
demics. Therefore, we try to attain the target coeffi-
cient of determination without the last epidemic (pro-
vided that there is more than one epidemic).

Ẽ(i) = argmax
F∈Nδ(E`(E(i−1))−1(i−1))

r2(F, ti,yi) ,

and the corresponding coefficient of determination is

r̃2(i) = r2(Ẽ(i), ti,yi) .

If r̃2(i) ≥ r2target, we can reduce the number of epi-

demics and set E(i) = Ẽ(i). If not then we set E(i) =

Ê(i) and move on to the next data point.

3. If r̂2(i) < r2target, we consider adding an epidemic. To
determine the type of the epidemic (sir or ir), we first
calculate the residual vector

zi = yi − fÊ(i)(ti) .

Let µ(i) be the sample mean of zi and let σ(i) be the
sample standard deviation of zi. As the new epidemic
should be located at the end of the residual, let zi−κ+1:i

be the last κ data points in zi.

• The new epidemic type is sir if the minimum
value in zi−κ:i exceeds µ(i) + 2σ(i). In our exper-
iments, we found that κ = 2 yields good results.

• The new epidemic type is ir, if the most recent
residual exceeds µ(i) + 6σ(i).

• if neither ir nor sir are detected, we set E(i) =

Ê(i), and issue a warning that r2target can not be
attained at ti due to no epidemic being detected.

If an epidemic is detected, we extend Ê(i) with the de-

tected epidemic E(d) started at time ti, and let Ĕ(i) be
the optimal vector of epidemics in the neighbourhood
of this extended vector,

Ĕ(i) = argmax
F∈Nδ([Ê,E(d)])

r2(F, ti,yi) .

The corresponding coefficient of determination is

r̆2i = r2(Ĕ(i), ti,yi) .

If r̆2(i) > r2target then we add the new epidemic and set

E(i) = Ĕ(i). If not then r̆2i is below the target value;
however, we may still be able to improve on the current
fit. So we check if r̆2i > r̂2, if this is the case we set
E(i) = Ĕ(i) and issue a warning that r2target could not
be attained at time ti, even though an epidemic has
been added. Finally, if r̆2i ≤ r̂2, then the new epidemic
did not improve the fit; in this case we set E(i) = Ê(i)
and issue a warning that r2target could not be attained
at time ti.

4. RESULTS
We demonstrate our technique’s applicability on a synthetic
data trace (derived by composing two time-shifted SIR model
traces to produce a double epidemic model) and real data
including swine flu data and BitTorrent downloads of music
artist Robin Thicke. The BitTorrent download data were
retrieved by the MusicMetric API (an online artist analyt-
ics toolbox that contains detailed information on fan trends
for particular artists).

Synthetic Double Epidemic Model (2 SIR models)
This dataset was created by the superposition of two time-
shifted stochastic simulation trajectories of SIR epidemics
with known parameters:

β(1) = 0.001, γ(1) = 0.05, S
(1)
0 = 400, I

(1)
0 = 1

β(2) = 0.001, γ(2) = 0.01, S
(2)
0 = 400, I

(2)
0 = 1

The combined epidemic was then used as input to a proto-
type implementation. As observed in Figure 2, on day 56 the
fit of the epidemic component is proceeding well (r2 = 0.999)
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Figure 2: Synthedemic fit at days 56 and 103 to synthetic data with 2 subepidemics (r2target = 0.99).
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Algorithm 1 Fitting Process

1: function onlineFitting(t, y)
2: E← [base(0)]
3: for i = 1 to `(y) do

4: Ê← argmaxF∈Nδ(E) r
2(F, ti,yi)

5: r̂2 ← r2(Ê, ti,yi)
6: if r2 ≥ r2target then

7: Ẽ← argmaxF∈Nδ(E`(E)−1)
r2(F, ti,yi)

8: r̃2 ← r2(Ẽ, ti,yi)

9: E← ite(r̃2 ≥ r2target, Ẽ, Ê)
10: else
11: z← yi − fÊ(ti)

12: µ← 1
i

∑i
k=1 zk

13: σ ←
√

1
i−1

∑`(z)
k=1(zk − µ)2

14: r̆2 ← 0
15: if min(zi−κ:i) ≥ µ+ 2σ then

16: Ĕ← argmaxF∈Nδ([Ê,sir(ti,1,1,1)]) r
2(F, ti,yi)

17: r̆2 ← r2(Ĕ, ti,yi)
18: else if zi > µ+ 6σ then
19: Ĕ← argmaxF∈Nδ([Ê,ir(ti,1)]) r

2(F, ti,yi)

20: r̆2 ← r2(Ĕ, ti,yi)
21: end if
22: if r2 ≥ r2target then

23: E← Ĕ
24: else
25: print r2target not attained at time ti

26: E← ite(r̆2 > r̂2, Ĕ, Ê)
27: end if
28: end if
29: print ti, E
30: end for
31: end function

and the short term prediction quality is good as the model
matches the forthcoming decay of the epidemic. The esti-
mated parameters are close to the known parameters. The
estimated parameters become even closer to the actual pa-
rameters as the data points move towards the introduction
of the second epidemic on day 91. Our framework realises
the need for a second epidemic and begins the fitting proce-
dure again. On day 103 the quality of the fit to past data is
good (as r2 = 0.999) and the model predicts the downward
trend. By the end of the epidemic, the model fitted the data
and estimated the parameters of both epidemics well.

Swine flu 2009 reported cases in the UK
In 2009, there was a global outbreak of a new strain of in-
fluenza A virus subtype H1N1 (colloquially called swine flu)
which was termed a pandemic by the World Health Orga-
nization. We use weekly reported swine flu cases in 2009 in
England as provided by the Health Protection Agency [4],
and successfully fit a double epidemic. On week 9 in Fig-
ure 3 the model has detected and fitted the swine flu data
with past r2 = 0.916. On week 22, the model detects with
a good precision the subsequent downwards evolution of the
second outbreak. Investigating the biological interpretation
of our model would be an interesting exercise, but one which
is beyond the scope of the present paper.

Figure 4: Monoepidemic SIR model fit to Robin Thicke Bit-
Torrent download data

Robin Thicke BitTorrent Downloads
This dataset begins with the release of Robin Thicke’s album
Blurred Lines, the title track of which was the best-selling
song of 2013 in the UK and the second best-selling song
of 2013 in the US. Each data point represents the number
of daily downloads of Robin Thicke’s songs, and it is these
downloads that we presume are the manifestation of a num-
ber of underlying epidemic spreading processes.

Figure 4 presents a monoepidemic fit in the style of the work
described in [18] which clearly demonstrates the inability of
a single-epidemic model to reflect adequately the complexity
of this kind of data set. Indeed the r2 value is just 0.485.

As illustrated in Figure 5, the synthedemic model fit with
r2target = 0.9 fares much better. On day 94 the model not
only fits the historical data extremely well but also pre-
dicts the peak of the initial growth phase accurately, al-
beit that the model tends to overestimate near-term future
download counts. On day 135 a sudden peak in the data
is observed corresponding to Robin Thicke’s performance of
Blurred Lines on the TV show Jimmy Kimmel Live. The
model not only detects this as a second epidemic, but also
predicts the downward trend with good accuracy. On day
206, we observe a new short and sharp outbreak which is de-
tected and fitted well. This corresponds to the infamous live
performance of Blurred Lines by Robin Thicke and Miley
Cyrus at the 2013 MTV Video Music Awards. Last but not
least, our model has successfully detected the outbreak on
day 254 corresponding to Robin Thicke’s live performance
on the X Factor results show.

We note there is clear potential to improve historical fit and
prediction quality through the application of appropriate
residual refinement techniques e.g. use of an autoregressive
(AR) process to characterise the variability of residuals.
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5. CONCLUSION
This paper has proposed a novel framework for quantitative
modelling and prediction based on the analysis and synthesis
of multiple epidemic models. Using a surprisingly low num-
ber of synthesised epidemics, a prototype implementation of
this framework is able to adequately characterise the evolu-
tion of an artificially-generated data set and real-world data
sets based on swine flu data and daily BitTorrent downloads.
Model fitting can be performed in an online manner as an
outbreak of interest unfolds, and the short-term model pre-
dictions are generally pleasing although they have not been
subjected to rigorous quantitative analysis in the present
work and there is scope to improve predictions using resid-
ual refinement techniques.

There are several possible directions for future work. Firstly,
although we have focused on internet-based phenomena, we
anticipate that our methodology may be readily applied in
many other domains that might arguably be driven by un-
derlying epidemic-like phenomena, such as computer viruses
and retail sales. To facilitate this, we believe our prototype
implementation could be extended in order to support epi-
demic model selection from a broader range of candidate
models, as well as to support negative epidemic terms.

We also plan to incorporate event prediction with prior knowl-
edge of upcoming events (where applicable) in order to im-
prove predictive ability. We also plan to investigate how
appropriate confidence intervals can be computed on syn-
thedemic model predictions. Last but not least, we would
like to explore the range of potential dependencies between
epidemics and their host populations and what implications
these may have for the synthedemic paradigm.
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