
Passage-time Computation and Aggregation Strategies for Large
Semi-Markov Processes

Marcel C. Guenther, Nicholas J. Dingle∗, Jeremy T. Bradley, William J. Knottenbelt

Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2BZ, United Kingdom

Abstract

High-level semi-Markov modelling paradigms such as semi-Markov stochastic Petri nets and pro-
cess algebras are used to capture realistic performance models of computer and communication
systems but often have the drawback of generating huge underlying semi-Markov processes. Ex-
traction of performance measures such as steady-state probabilities and passage-time distributions
therefore relies on sparse matrix–vector operations involving very large transition matrices. Pre-
vious studies have shown that exact state-by-state aggregation of semi-Markov processes can be
applied to reduce the number of states. This can, however, lead to a dramatic increase in matrix
density caused by the creation of additional transitions between remaining states. Our paper
addresses this issue by presenting the concept of state space partitioning for aggregation.

We present a new deterministic partitioning method which we term barrier partitioning. We show
that barrier partitioning is capable of splitting very large semi-Markov models into a number of
partitions such that first passage-time analysis can be performed more quickly and using up to
99% less memory than existing algorithms.

Key words: Semi-Markov processes, Aggregation, Passage-time analysis

1. Introduction

Semi-Markov processes (SMPs) are expressive tools for modelling a wide range of real-life systems.
The state space explosion problem, however, hinders the analysis of large finite SMPs, as it does
for many stochastic and functional modelling disciplines. One approach to addressing this problem
is to use aggregation techniques to remove single states or groups of states and aggregate their
temporal effect into the remaining states.

Many techniques exist in the Markovian domain for exact and approximate aggregation (e.g.
lumpability [1], aggregation/disaggregation [2], aggregation of hierarchical models [3]). Sumito and
Rieders [4] present a generalised lumpability result for SMPs, although, as with the application
of Markovian lumpability, there is a strict structural condition on the underlying semi-Markov
process. A form of aggregated semi-Markov process was first defined in Çinlar [5, 6] as a so-called
filtered or restricted process. Until recently though, work on efficient algorithms for semi-Markov
aggregation to match that on Markov processes has been very limited.

In prior work [7, 8], we present an aggregation algorithm for semi-Markov processes that realises
the filtering process envisaged by Çinlar [5]. The technique operates on each state of the SMP indi-

∗Corresponding author
Email addresses: mcg05@doc.ic.ac.uk (Marcel C. Guenther), njd200@doc.ic.ac.uk (Nicholas J. Dingle),

jb@doc.ic.ac.uk (Jeremy T. Bradley), wjk@doc.ic.ac.uk (William J. Knottenbelt)

Preprint submitted to Elsevier October 30, 2010

vidually, producing a smaller SMP which preserves passage-time distributions across the process.
Our analysis in [8] suggests that the primary limitation of this technique is that the computational
cost and memory requirements become very large as increasing numbers of states are aggregated
and the transition matrices representing the SMP consequently get less sparse.

In this paper we introduce a new barrier partitioning strategy. We demonstrate how this enables
passage-time analysis to be conducted in less time and using up to 99% less memory than before.

The remainder of this paper is organised as follows. Section 2 summarises background theory
on the calculation of passage times in semi-Markov processes from [9]. Section 3 presents the
barrier partitioning technique and evaluates the improvements in the memory and time required
to analyse large semi-Markov models that barrier partitioning offers. Finally, Section 5 concludes
and suggests directions for future work.

1.1. Motivation: Avoiding a Density Explosion

We consider a semi-Markov model of a

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 0 20 40 60 80 100

N
um

be
r

of
 tr

an
si

tio
ns

 in
 tr

an
si

tio
n

m
at

rix

Percentage of states aggregated

Flat
PaToH2D 6 Partitions

Fig. 1. The effect of partition aggregation compared to flat ag-
gregation of the 4 050 state Voting model.

voting system from [9], described in de-
tail in Section 4. A population of vot-
ers interact with a voting system to cast
their vote. A typical measure of inter-
est is a first passage-time representing
the length of time it takes for all the
voters to vote once.

The underlying semi-Markov model is
generated from a semi-Markov stochas-
tic Petri net [10] model. In the particu-
lar version of the system that we use in
this illustration, the semi-Markov pro-
cess is 4 050 states in size with a tran-
sition matrix containing approximately
15 000 non-zeros (representing a transi-
tion matrix that is 0.1% dense).

In this example, we wish to shrink the
size of the semi-Markov process by state-wise aggregation, so as to highlight explicit start and end
states of the passage-time measure and make the passage-time analysis faster. The complexity of
sparse passage-time analysis of semi-Markov processes [9] is approximately O(n2 log n) for an n
state process, so any reduction by a factor of α in the number of states in an SMP will result in
a reduction of α2 in the time to complete a first passage-time analysis in the limit of n.

Fig. 1 shows the number of non-zeros in the transition matrix as the matrix is aggregated. The
lines show the density of the transition matrix as it is being aggregated by the original state-wise
algorithm outlined in [7] using two different strategies. The large upper red peak in Fig. 1 illustrates
the problem encountered in applying the exact state-by-state aggregation algorithm sequentially
across the flat state space of an SMP. The transition matrix, initially containing 15 000 non-zeros,
increases to have nearly 350 000 (about 48% dense) after approximately 80% of the states have
been aggregated. Therefore, the sparsity of the matrix has clearly been sacrificed even though the
dimension of the matrix has been reduced dramatically. As we are potentially dealing with semi-
Markov processes with many millions of states, which are by themselves memory-consuming to
store and manipulate, we wish to avoid at all costs any significant increase in storage requirement
that aggregation may bring.

In this paper, we investigate the idea that we can avoid this so-called density explosion by first
partitioning the semi-Markov transition matrix and then aggregating the partitions one by one.

2

The slightly varying lower blue line in Fig. 1 shows how the non-zero density varies as the parti-
tioned transition matrix is aggregated, one partition at a time. Each small peak in the blue line
represents a small increase in transition density as each of the partitions is individually aggregated.
Since the partitioning tool (in this case PaToH2D [11]) has found loosely coupled partitions, the
effect of increased density on the overall system can be substantially reduced.

This is important since it is the absolute number of non-zero entries in the transition matrix
that determines the storage requirement and run-time performance of our passage-time analysis
algorithm.

However, the argument is not quite as

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 0 20 40 60 80 100

E
st

im
at

ed
 n

um
be

r
of

 n
on

-z
er

o
el

em
en

ts
 in

 tr
an

si
tio

n
m

at
rix

Percentage of states aggregated in 106540 states voting model

Row striping 30 Partitions
MeTiS 7 Partitions

MeTiS 10 Partitions
PaToH2D 7 Partitions

PaToH2D 10 Partitions

Fig. 2. The density progression of a 106 540 Voting model during
aggregation, as partitioned by three types of partitioner.

straightforward as this; we cannot just
arbitrarily apply a partitioning algorithm
and aggregate the resulting partitions.
As can be seen from Fig. 2, where we
have partitioned a 106 540 state version
of the Voting model using various parti-
tioners (including METIS [12] and Pa-
ToH2D [11]), the type of partitioning
and number of partitions can have a
dramatic effect on the density of the
transition matrix during aggregation.

In this case, a näıve row-striping par-
titioner produces by far the worst be-
haviour during aggregation, but this is
not necessarily always the case. On dif-
ferent models, we have observed row-
striping behave well while the PaToH
partitioner produces the highest density.

Knowing in advance which partitioner to use and how many partitions to produce is not obvious
and a lot of computational effort can be wasted producing such partitions fruitlessly. This paper
explores a new style of barrier partitioning and aggregation which is tailored to passage-time
analysis and produces consistently low transition matrix density behaviour during aggregation.

2. Background

2.1. Semi-Markov Processes

Semi-Markov Processes (SMPs) are an extension of Markov processes which allow for generally
distributed sojourn times [13, 14]. Although the memoryless property no longer holds for state
sojourn times, at transition instants SMPs still behave in the same way as Markov processes (that
is to say, the choice of the next state is based only on the current state) and so share some of their
analytical tractability.

Consider a Markov renewal process {(χn, Tn) : n ≥ 0} where Tn is the time of the nth transition
(T0 = 0) and χn ∈ S is the state at the nth transition. Let the kernel of this process be:

R(n, i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i)

for i, j ∈ S. The continuous time semi-Markov process, {Z(t), t ≥ 0}, defined by the kernel R, is
related to the Markov renewal process by:

Z(t) = χ
N(t)

where N(t) = max{n : Tn ≤ t} is the number of state transitions that have taken place by time
t. Thus Z(t) represents the state of the system at time t. We consider only time-homogeneous

3

SMPs in which R(n, i, j, t) is independent of n:

R(i, j, t) = IP(χn+1 = j, Tn+1 − Tn ≤ t | χn = i) for any n ≥ 0

= pijHij(t) (1)

where pij = IP(χn+1 = j | χn = i) is the state transition probability between states i and j, and
Hij(t) = IP(Tn+1 − Tn ≤ t | χn+1 = j, χn = i) is the sojourn time distribution in state i when the
next state is j. An SMP can therefore be characterised by two matrices P and H with elements
pij and Hij respectively.

2.2. Aggregate semi-Markov Processes

Numerical analysis of semi-Markov process is a computationally expensive process and any reduc-
tion in the size of the SMP can drastically lower the analysis time. Typically for first passage-time
analysis, we are only explicitly interested in initial and target states of the analysis. In this sec-
tion, we define an observer process to the original SMP, which focuses on an arbitrary subset of
states in the original SMP, as in [5, 6]. It is a nice property of semi-Markov processes that this
observer process is itself a semi-Markov process, which is something that is not true, for instance,
of Markov processes unless a lumpable condition is found.

We wish to construct an aggregate process which only observes arrival instants by the original
process at states in D ⊆ S. We do so by constructing a sequence of random variables Ni that
capture the ith arrival at a state in D in terms of the transition number of the original SMP.

N0 = 0

N1 = inf{n > 0 : χn ∈ D}
...

Ni = inf{n > Ni−1 : χn ∈ D} (2)

We can now define the aggregate process (χ̂n, T̂n) where:

χ̂n = χNn
, T̂n = TNn

(3)

for n > 0. In [5], the process (χ̂n, T̂n) is called the restriction of (χn, Tn) to D. We assume for
simplicity in this paper that our original SMP is irreducible and that Ni <∞ for all i (although
a straightforward extension exists if the original SMP is transient).

This is the theoretical grounding for previous aggregation algorithms on semi-Markov processes [7,
8]. In this paper, we will be looking at aggregating whole partitions of the state-space and, in
these terms, constructing a restriction on the SMP that observes only entry and exit states to the
partition from the remainder of the process. The actual computation of sojourn times between
entry and exit states relies on an iterative passage-time algorithm, outlined below.

2.3. Iterative Passage-time Algorithm

In this section we define the first passage-time random variable used throughout the paper. We also
summarise from [9] an iterative algorithm for calculating first passage-time density in semi-Markov
processes.

In manipulating semi-Markov processes to extract passage-time distributions, the Laplace trans-
forms of sojourn time distribution functions are used. This reflects the previous analysis of semi-
Markov processes carried out by Pyke [13, 14], Çinlar [5, 6] and many others. One reason for this
is that the Laplace transform of the convolution of two random variables is easily represented by
the product of the respective Laplace transforms of the distribution functions.

4

However, in the case of numerical representation of general distributions and calculation of passage
times in SMPs, we also work with samples of Laplace transforms. The specific sample points are
dictated by the numerical Laplace transform inversion technique that is ultimately deployed (for
instance the Euler technique [15]). Further details of this style of numerical representation can be
found in [9].

From now on, we consider a finite, irreducible, continuous-time semi-Markov process with N states
{1, 2, . . . , N}. Recalling that Z(t) denotes the state of the SMP at time t (t ≥ 0) and that N(t)
denotes the number of transitions which have occurred by time t, the first passage time from a
source state i into a non-empty set of target states ~j (for a stationary time-homogeneous SMP) is
defined as:

Pi~j = inf{u > 0 : N(u) ≥Mi~j} (4)

where Mi~j = min{m ∈ ZZ+ : χm ∈ ~j | χ0 = i} is the transition count of the terminating state of
the passage. Pi~j picks the least time point at which this transition occurs, which in turn defines
the passage time. This formulation of the random variable Pi~j applies to an SMP which contains

immediate transitions.1 If such transitions are not present, then the passage time simplifies to:

Pi~j = inf{u > 0 : Z(u) ∈ ~j,N(u) > 0, Z(0) = i} (5)

Pi~j has an associated probability density function fi~j(t). The Laplace transform of fi~j(t), Li~j(s),
can be computed by means of a first-step analysis. That is, we consider moving from the source
state i into the set of its immediate successors ~k and must distinguish between those members of
~k which are target states and those which are not. From [9], this calculation can be achieved by
solving a set of N linear equations of the form:

Li~j(s) =
∑
k/∈~j

r∗ik(s)Lk~j(s) +
∑
k∈~j

r∗ik(s) : for 1 ≤ i ≤ N (6)

where r∗ik(s) is the Laplace–Stieltjes transform (LST) of R(i, k, t) of Eq. (1) and is defined by:

r∗ik(s) =

∫ ∞
0

e−st dR(i, k, t) (7)

Eq. (6) has matrix–vector form Ax = b, where the elements of A are general functions of the
complex variable s. For example, when ~j = {1}, Eq. (6) yields:

1 −r∗12(s) · · · −r∗1N (s)
0 1− r∗22(s) · · · −r∗2N (s)
0 −r∗32(s) · · · −r∗3N (s)
...

...
. . .

...
0 −r∗N2(s) · · · 1− r∗NN (s)




L1~j(s)

L2~j(s)

L3~j(s)
...

LN~j(s)

 =


r∗11(s)
r∗21(s)
r∗31(s)

...
r∗N1(s)

 (8)

We now describe an iterative algorithm for generating passage-time densities that creates succes-
sively better approximations to the SMP passage-time quantity Pi~j of Eq. (5). We approximate

Pi~j as P
(r)

i~j
, for a sufficiently large value of r, which is the time for r consecutive transitions to

occur starting from state i and ending in any of the states in ~j. We calculate the density of P
(r)

i~j
by

constructing and then numerically inverting its Laplace transform L
(r)

i~j
(s), using techniques from

for example [15].

1Passages which terminate on a state which has no timed out-transitions are not well defined in Eq. (5) as Z(t)
is not well defined. Mi~j , which instead counts the number of state transitions until a target state is entered, is able

to distinguish such target states. More details can be found in [9].

5

Recall the semi-Markov process Z(t) of Section 2.1, where N(t) is the number of state transitions
that have taken place by time t. We formally define the rth transition first passage time to be:

P
(r)

i~j
= inf{u > 0 : Mi~j ≤ N(u) ≤ r} (9)

which is the time taken to enter a state in ~j for the first time having started in state i at time 0
and having undergone up to r state transitions.

P
(r)

i~j
is a random variable with associated Laplace transform L

(r)

i~j
(s). L

(r)

i~j
(s) is, in turn, the ith

component of the vector:

L
(r)
~j

(s) = (L
(r)

1~j
(s), L

(r)

2~j
(s), . . . , L

(r)

N~j
(s))

representing the passage time for terminating in ~j for each possible start state. This vector may
be computed as:

L
(r)
~j

(s) = U(I + U′ + U′
2

+ · · ·+ U′
(r−1)

) e~j (10)

where U is a matrix with elements upq = r∗pq(s) and U′ is a modified version of U with elements

u′pq = δp 6∈~j upq, where states in ~j have been made absorbing. Here, δp 6∈~j = 1 if p 6∈ ~j and 0

otherwise. The initial multiplication with U in Eq. (10) is included so as to generate cycle times

for cases such as L
(r)
ii (s) which would otherwise register as 0 if U′ were used instead. The column

vector e~j has entries ek~j = δk∈~j , where δk∈~j = 1 if k is a target state (k ∈ ~j) and 0 otherwise.

From Eq. (5) and Eq. (9):

Pi~j = P
(∞)

i~j
and thus Li~j(s) = L

(∞)

i~j
(s)

This can be generalised to multiple source states ~i using, for example, a normalised steady-state
vector α calculated from π, the steady-state vector of the embedded discrete-time Markov chain
(DTMC) with one-step transition probability matrix P = [pij , 1 ≤ i, j ≤ N], as:

αk =

{
πk/

∑
j∈~i πj if k ∈~i

0 otherwise
(11)

The row vector with components αk is denoted by α. The formulation of L
(r)
~i~j

(s) is therefore:

L
(r)
~i~j

(s) = αL
(r)
~j

(s) =

r−1∑
k=0

αUU′
k

e~j (12)

The sum of Eq. (12) can be computed efficiently using sparse matrix–vector multiplications with a

vector accumulator, µn =
∑n

k=0 αUU′
k
. At each step, the accumulator, initialised as µ0 = αU,

is updated as µn+1 = αU + µnU′.

In practice, convergence of the sum L
(r)
~i~j

(s) =
∑r−1

k=0 αUU′
k

can be said to have occurred if, for a

particular r and s-point:

|Re(L
(r+1)
~i~j

(s)− L(r)
~i~j

(s))| < ε and |Im(L
(r+1)
~i~j

(s)− L(r)
~i~j

(s))| < ε (13)

where ε is chosen to be a suitably small value, say ε = 10−16.

Further details of this technique can be found in [9] and a formal proof of convergence can be
found in [16].

6

3. Barrier Partitioning

3.1. Atomic partition aggregation

Compared to flat state-by-state aggregation, a partition-by-partition aggregation approach reduces
the transition matrix fill-in drastically. However, there is still the problem that the maximum
number of transitions generated during the aggregation of a partition is much higher than the
final number of transitions in the aggregated state space. Indeed, there is also the problem that
the final number of non-zeros in the aggregated state space can be higher than in the initial
unaggregated one. Such density peaks are undesirable because it requires a significant amount
of memory to store all temporary transitions, and the fill-in also slows down the aggregation of
states as we need to perform more aggregation operations to remove states when the sub-matrix
of a partition becomes dense. This observation prompted us to investigate an approach inspired
by first passage-time analysis which avoids these peaks by aggregating an entire partition in one
go. We term this atomic aggregation.

The basic premise is derived from Çinlar’s restricted SMP, discussed in Section 2.2. Assume we
define the set of states ~i to be those states that have transitions into a given partition, T , and the
set of states ~j to be those states that have predecessor states in the transition. We can effectively
eliminate the partition altogether by performing a series of passage-time computations: finding
Lij(s) for all i ∈ ~i, j ∈ ~j and incorporating these passage-times as transition sojourn times in a
new process that does not include the partition. This calculation can be accelerated by including
all the start states in ~i in the linear system of Eq. (8), but even this improvement results in a
calculation of |~j| sets of |~i|+ |T | linear equations to obtain the necessary passage times.

3.2. Barrier Partition Aggregation

In this section we introduce a type of atomic partitioning called barrier partitioning, which does not
require the high number of individual passage-time computations of a näıve atomic aggregation.
This technique takes advantage of common features of the passage-time calculation to improve
the partition quality and still permit exact passage-time analysis.

To perform first passage-time analysis on an SMP with n states we need to solve n linear equations
to obtain L~i~j(s) (see Section 2.3). We observe that first passage-time analysis can be done forward,
that is, from each source state to the set of target states, as usual, as well as in the reversed
process (from the set of target states to the individual source states) to get an identical result.
The transition matrix of the reversed process can be obtained by transposing the forward SMP
transition matrix and swapping source and target states in the passage time specification. The
barrier partitioning method exploits this duality between the forward and reverse calculation of
the first passage-time distribution and allows us to split the first passage-time calculation into two
separate calculations. Although the overall number of passage-time iterations is the same, the
combined computational cost of doing the two separate calculations is much less than the cost of
the original first passage-time calculation. This is because the two separate calculations require
only half the amount of memory as the original and can be performed independently and thus
also in parallel.

Assume we have an SMP with a set of start states~i and a set of target states ~j. If any state is both
a source and a target state, it can be split into separate source and target states, with a connecting
immediate transition between them. Any in-transitions to the state become in-transitions to the
target state and any out-transitions become out-transitions from the start state. This does not
change any passage-based measure defined on the SMP, but we make this change prior to any
partitioning. We are now in a position to define a barrier partitioning, a schematic representation
of which is shown in Fig. 3.

7

~i ~j~bSP TP

Fig. 3. A barrier partitioning, showing a set of start states~i and target states ~j for a passage-time calculation. The
remainder of the state space is split into a source partition SP , a target partition TP which contains the barrier,
~b. Passages from SP to TP have to pass through ~b and cannot return, except via the target set, ~j.

Definition 1 (Barrier partitioning). A (2-way) barrier partitioning consists of state-space par-
titions SP and TP . SP contains all source states and a proportion of the intermediate states
such that any outgoing transition from SP to TP goes through a set of barrier states ~b in TP .
Furthermore the only outgoing transitions from states in TP to states in SP are from target states
~j to source states ~i. Note that ~b and ~j may intersect.

We proceed to show that a system-wide passage-time calculation can be split into two separate
and smaller passage-time calculations across the partitions created by the barrier partitioning.
Assume that we can divide the state space S of a connected SMP graph into two partitions such
that the resulting partitioning is a barrier partitioning. Clearly we have ~i ∩~j = ∅, SP ∪ TP = S.
We denote the set of source states as ~i, the set of barrier states as ~b and the set of target states as
~j.

In the proposition below, LR
ib(s) denotes a restricted first passage-time distribution from state i

to state b ∈ ~b, the barrier states, where all states in ~b are made absorbing for the calculation of
LR
ib(s). This ensures that we only consider paths of the form i → k1 → · · · → km → b, with

kr ∈ SP . In other words we do not consider paths through TP for the calculation of LR
ib(s).

Proposition 1. The result of a first passage-time calculation from a source state i to the set of
target states ~j is the same as the result obtained by summing the first passage-times from i to
b ∈ ~b convolved with the first passage-time from the barrier state b to the set of target states ~j.
In the Laplace domain this translates to:

Li~j(s) =
∑
b∈~b

LR
ib(s)Lb~j(s) (14)

Proof. Restricting our set of equations to consider passage times from states i ∈ SP to the target
set ~j, by Eq. (6) we have:

Li~j(s) =
∑

k∈(SP∪TP)\~j

r∗ik(s)Lk~j(s) +
∑
k∈~j

r∗ik(s)

hence:
Li~j(s) =

∑
k∈(SP∪TP)

r∗ik(s)Lk~j(s) (15)

where Lk~j(s) is equal to 1 if k ∈ ~j. We can rewrite k ∈ SP ∪ TP since k ∈ SP ∪~b as there is no

8

transition from any state in SP to any state in TP\~b by construction of the barrier.

Li~j(s) =
∑

k∈(SP∪~b)

r∗ik(s)Lk~j(s)

=
∑
b∈~b

r∗ib(s)Lb~j(s) +
∑
k∈SP

r∗ik(s)Lk~j(s) (16)

also by construction of the barrier partitioning and the fact that target states are absorbing states
we know that once we have entered TP (i.e. reached a state in ~b) we cannot find a path back to
a state in SP . Hence:

Li~j(s) =
∑
b∈~b

r∗ib(s)Lb~j(s) +
∑
k∈SP

r∗ik(s)
∑
b∈~b

LR
kb(s)Lb~j(s)

=
∑
b∈~b

[(∑
k∈SP

r∗ik(s)LR
kb(s) + r∗ib(s)

)
Lb~j(s)

]
(17)

by definition
∑

k∈SP r
∗
ik(s)LR

kb(s)+r∗ib(s) is the restricted first-passage time from state i to barrier
state b. Therefore:

Li~j(s) =
∑
b∈~b

LR
ib(s)Lb~j(s) (18)

The following result demonstrates the separability of the passage-time calculation, an aspect that
facilitates divide-and-conquer parallel computation. We will also need the following result to ease
the extension to the k-way partition. We define LR

i~j
(s) to be the passage time from i to ~j restricted

by making all the states in ~j absorbing, a natural extension of LR
ij(s), defined earlier.

Corollary 1.1.

LR
i~j

(s) =
∑
b∈~b

LR
ib(s)L

R
b~j

(s) (19)

Proof. We have, for all states b in the barrier set, ~b:

LR
b~j

(s) = Lb~j(s) (20)

since target states are absorbing states by assumption and because none of the outgoing transitions
of non-target barrier states go into SP . Furthermore:

LR
i~j

(s) = Li~j(s) (21)

as the restricted first passage-time distribution on the entire state space is by definition also the
standard passage-time distribution. The result follows from Eq. (18).

We can similarly extend this separable result to cover passage-times from multiple sources states,
~i, to multiple target states, ~j. Let LR

~i~b
(s) = {LR

~ib1
(s), . . . , LR

~ibl
(s)}, where LR

~ibm
(s) = {α1L

R
i1bm

(s) +

· · ·+ αlL
R
ilbm

(s)} and L~b~j(s) = {Lb1~j
(s), . . . , Lbl~j

(s)}.

Corollary 1.2. In steady-state, we have:

L~i~j(s) =
∑
b∈~b

LR
~ib

(s)Lb~j(s) = LR
~i~b

(s) · L~b~j(s) (22)

9

Proof. Let α1, α2, . . . , αl be the normalised steady-state probabilities of the source states ~i =
(i1, i2, . . . , il) as defined in Eq. (11). By Eq. (12) we have:

L~i~j(s) = α1Li1~j
(s) + α2Li2~j

(s) + · · ·+ αlLil~j
(s)

=
∑
b∈~b

(
α1

(
LR
i1b(s)Lb~j(s)

)
+ · · ·+ αl

(
LR
ilb

(s)Lb~j(s)
))

=
∑
b∈~b

(
α1L

R
i1b(s) + · · ·+ αlL

R
ilb

(s)
)
Lb~j(s)

= LR
~i~b

(s) · L~b~j(s)

3.3. Barrier Partitioning in Practice

To compute the first passage-time distribution of a model whose state space has been split into
partitions SP and TP , we start by calculating L~i~b(s) using iterative first passage-time calculation.
For this the source states remain unmodified, but the barrier states become absorbing target states.
Also as this calculation is part of the final first passage-time calculation we need to weight the
source states by their normalised steady state probabilities. Having calculated L~i~b(s) we use it as
our µ0 (see Section 2.3) in the subsequent first passage-time calculation from the set of barrier

states ~b to the set of target states ~j.

This technique reduces the amount of memory that we need for a first passage-time calculation
as we only have to keep either the sub-matrix of the source partition or the target partition in
memory at any point in time. Another advantage of barrier partitioning is that we can easily find
barrier partitions in large models at low cost.

Algorithm 1 describes a general method for finding balanced barrier partitionings given a transition
matrix of a semi-Markov or Markov model. Firstly, since we are doing first passage-time analysis
we can discard the outgoing transitions from all target states. Secondly, we explore the entire
state space using breadth-first search, with all source states being at the root level of the search.
We store the resulting order in an array. To find a barrier partitioning we first add all non-target
states among the first m states in the array to our source partition. Note that m has to be larger
than the number of source states in the SMP. We then create a list of all predecessor states of
the resulting partition. In the next step we add all predecessor states in the list to the source
partition and recompute the list of predecessor states. We repeat this until we have found a source
partition with no predecessor states. Since we discarded all outgoing edges of the target states,
this method must give us a barrier partitioning. In the worst case this partitioning has all source
and intermediate states in SP , while TP only contains the set of target states.

3.4. k-way Barrier Partitioning

The idea of barrier partitioning described in the previous section is a huge improvement to the
straightforward passage-time calculation, as it reduces the amount of memory needed for the
passage-time computation while introducing very little overhead. In this section we investigate
the idea of k-way barrier partitioning. In practice a k-way barrier partitioning is desirable since
it allows us to reduce the amount of memory needed to perform passage-time analysis on Markov
and semi-Markov models by even more than 50%.

Definition 2 (k-way Barrier Partitioning). In a k-way barrier partitioning, partition P0 contains
the source states, partition T the target states. There are k− 2 intermediate partitions and k− 1
barriers in total. In general partition Pm is sandwiched between its predecessor partition Pm−1

10

Define Make target states absorbing(matrix, target states);1

Define Find breath-first ordering(matrix, source states);2

Define Get number of rows(matrix);3

Define Get first m non-target states(array, stopIndex);4

Define Get predecessor states(matrix, partition, target states);5

Define Merge arrays(array, array);6

Define Count number of transitions(matrix, optional array);7

input : Sparse SMP transition row matrix matrix, source states ~s, target states ~t
output: Barrier source partition

Make target states absorbing(matrix, ~t);8

bforder = Find breath-first ordering(matrix, ~s);9

numSourceStates = |~s|;10

numStates = Get number of rows(matrix);11

m = numStates / 2;12

mStep = numStates / 4;13

partition = ∅;14

foundBalancedBarrierPartitioning = false;15

while foundBalancedBarrierPartitioning == false && mStep > 1 do16

partition = Get first m non-target states(bforder, m);17

predecessors = Get predecessor states(matrix, partition, ~t);18

while predecessors is not empty do19

partition = Merge arrays(partition,predecessors);20

predecessors = Get predecessor states(matrix, partition, ~t);21

end22

SPTPBalance = Count number of transitions(matrix,partition) / Count number of23

transitions(matrix);
if SPTPBalance < 0.45 then24

m += mStep;25

end26

else if SPTPBalance > 0.55 then27

m -= mStep;28

end29

else30

foundBalancedBarrierPartitioning = true;31

break;32

end33

mStep = mStep / 2;34

partition = ∅;35

end36

return partition;37

Algorithm 1: Automatic balanced barrier partitioning

and its successor partitions Pm+1 and T . There are no transitions from partition Pn to Pm if
n > m, hence the barrier property is satisfied in the sense that once we have reached Pm the only
way to get back to any state in Pm−1 is to go through T . T is the only predecessor partition of P0.
The barrier states of partition Pm are the union of T and the states of Pm+1 that have incoming
transitions from states in Pm.

Definition 2, shown in Fig. 4, generalises Definition 1. The latter definition corresponds to a 2-way
barrier partitioning. In Definition 1 we did not define the set of barrier states to be the union of
states that separate SP from TP and the set of states in T . However, this generalisation has no
impact on Proposition 1 as we assumed that B and T may intersect.

The difference between the standard 2-way barrier partitioning and the general k-way barrier
partitioning with k > 2 is the way we compute the passage time on the transition matrix of a
model that has been partitioned into k barrier partitions. The following proposition verifies the
correctness of the passage-time analysis on a k-way barrier partitioning. In the proposition below,
mi is the size of the ith barrier set and we drop the s-parameter from the Laplace transforms for
brevity.

11

S

T

P0

P1

P2

P3

P4

Fig. 4. A schematic representation of a k-way barrier partition

As before, we now look to construct the system-wide passage time in terms of the smaller inter-
barrier passage time calculations. In Proposition 2, LR

i~b1
is the 1 ×m1 row vector containing the

Laplace transforms of the restricted passage-time analysis from start state i to the states in the
first barrier ~b1. LR

~bk−1
~j

is a mk−1 × 1 column vector of the Laplace transforms of the passage time

from the states in the (k − 1)th barrier to the set of target states ~j and:

MR
~bn−1

~bn
=


LR
~bn−1,1

~bn

LR
~bn−1,2

~bn
...

LR
~bn−1,mn−1

~bn

 =


LR
~bn−1,1

~bn,1
. . . LR

~bn−1,1
~bn,mn

...
...

LR
~bn−1,mn−1

~bn,1
. . . LR

~bn−1,mn−1
~bn,mn


mn−1 × mn matrix containing the Laplace transform samples from the restricted passage-time
analysis from barrier n− 1 to barrier n for each pair of barrier states, i.e. pairs (a, b) where a lies
in barrier n− 1 and b in barrier n. Note that if state k is a target state then LR

~bn−1,k
~bn,k

= 1 and

LR
~bn−1,k

~bn,l
= 0 for all l 6= k as k must be an absorbing state.

Proposition 2. We can compute the aggregate passage-time distribution as the product of the
inter-barrier passage times as follows:

Li~j = LR
i~b1

MR
~b1~b2

· · · MR
~bk−2

~bk−1
LR
~bk−1

~j
(23)

Proof. First we show that:
LR
i~b2

= LR
i~b1

MR
~b1~b2

by Corollary 1.1 we have

LR
ib2,n =

m1∑
l=1

LR
ib1,l

LR
b1,lb2,n

then

LR
i,~b2

=

(
m1∑
l=1

LR
ib1,l

LR
b1,lb2,1

, . . . ,

m1∑
l=1

LR
ib1,l

LR
b1,lb2,m2

)
= LR

i~b1
MR

~b1~b2
(24)

12

using this argument repeatedly reduces Eq. (23) to:

Li~j = LR
i~bk−1

LR
~bk−1

~j

=

mk−1∑
l=1

(
LR
ibk−1,l

LR
bk−1,l

~j

)
(25)

which holds by Proposition 1 since
LR
bk−1,l

~j
= Lbk−1,l

~j

as target states are absorbing states during first passage-time analysis.

Corollary 2.1.
L~i~j = LR

~i~b1
MR

~b1~b2
· · · MR

~bk−2
~bk−1

LR
~bk−1

~j

Proof. Similar argument as in Corollary 1.2.

We now describe how sequential passage-time analysis can be performed on a k-way barrier par-

titioning. The basic idea is to initialise µ
(0)
0 (see Section 2.3) with the α-weighted source states,

compute LR
~i~b1

= µ
(1)
0 using µ

(0)
0 and subsequently use µ

(1)
0 as the new start vector for the calcu-

lation of LR
~i~b2

= µ
(2)
0 until we obtain L~j = µ

(k)
0 (see Section 2.3). L~i~j(s) is computed by summing

the Laplace transforms which make up this vector as in Eq. (10).

Intuitively this approach makes sense because µ
(n)
0 always contains the Laplace transform distri-

bution from the initial set of source states to the states of the nth barrier, and when this is used
as the start vector for the next iterative restricted passage-time analysis we obtain the Laplace
transform of the distribution from the set of source states to all states that lie in the nth partition
and the states of the (n+ 1)th barrier.

3.5. Constructing a k-way Barrier Partitioning

There are various ways of creating k-way barrier partitionings for SMPs. One way is recursive bi-
partitioning to split sub-partitions into two balanced barrier partitions at each step. Alternatively
we can modify our barrier partition algorithm to obtain the maximum number of barriers for a
given transition matrix. The modified partitioner works as follows. First we make all target states
absorbing. We then add the source states and all their predecessor states to the first partition.
Subsequently we add the predecessor states of the predecessor states of the source states to the
partition and so on. Once we have no more predecessor states we have found the first partition.
The non-target successor states, i.e. non-target barrier states, of that partition are then used
to construct the second partition in the same manner. However, we now only consider those
predecessor states of the non-target barrier states that have not been explored yet, i.e. those that
have not been assigned to any partition. We continue partitioning the state space until all states
have been assigned to a partition.

We claim that this partitioning approach yields the maximum number of barrier partitions for a
given transition graph as we only include the minimum number of states in every barrier partition.
We call this a kmax -way barrier partitioning, but we will also refer to it as a max-way barrier
partitioning. Suppose kmax -way partitioning does not yield the maximum number of partitions.
Then it must be possible to join N adjacent barrier partitions in the kmax -way partitioning and
split them into N + 1 barrier partitions where N ≥ 2 is minimal. Let the predecessor partition
of the joint partition of these N partitions be partition P and the successor partition be partition
S. Now if we use the successor states of partition P as the seed states to create the first of the
N + 1 partitions out of the joint partition then this partition is exactly the same as it was before

13

the merger and hence it must be possible to split the joint partition made out of N − 1 partitions
into N partitions. But this is not possible as N was chosen to be minimal. Hence the seed states
of the successor partition R of P have to be changed so that R has a different set of seed states
than it had in the original kmax -way partitioning. For this to be true, states are added or taken
away from the seed set of R.

If we add states to the set of seed states of R then partition R must contain at least the same
amount of states which it had in the original kmax -way partitioning and R will also have at least
the same amount of successor states as it did in the kmax -way partitioning. The successor partition
of R thus covers at least the same set of states that it covered in the original kmax -way partitioning.
Similarly for all other successor partitions and hence we cannot generate more than N partitions
from the joint partition.

So in order to create N + 1 partitions we need to take away states in the set of seed states of R.
However the seed states of R in the kmax -way partitioning only contains states that are non-target
successor states of P and thus we cannot take away states from the seed set without violating the
barrier property of the partition. This argument holds all the way down to the source partition
which also contains the minimum number of seed states, namely the source states. Hence it is not
possible to split N adjacent barrier partitions into N + 1.

Note that from the max-way partitioning we can generate any k-way partitioning with k < kmax

since joining two neighbouring barrier partitions creates a new larger barrier partition. The
kmax -way barrier partitioning also minimises the maximum partition size among the barrier par-
titionings.

4. Evaluation

We demonstrate the applicability of our barrier partitioning method to large semi-Markov models.
We discuss the complexity of computing the partitioning itself and compare the run-times of
passage-time analysis on aggregated and unaggregated models.

4.1. Semi-Markov Case Studies

Semi-Markov processes are particularly useful for capturing realistic generally-distributed sojourn
times in software and hardware models. However, where general distributions are concurrently
enabled, a probabilistic selection is used to choose which is executed. This is useful, for example,
where a concurrent program is running on a single-threaded architecture, e.g. a Java Runtime
Environment on a single core processor. The task switching between the threads can be captured
by probabilistic selection of generally-distributed activities.

A second use for semi-Markov models is in the modelling of mutual exclusion, e.g. failure–recovery
modes, where normal concurrent operation is suspended and a single recovery process is repairing
the system. This recognises the fact that the modeller will still want to have proper Markovian
concurrency at their disposal. Markov processes are a strict subset of SMPs and thus it is possible
to let the modeller have true Markovian or phase-type concurrency when there are no general
distributions enabled.

The evaluation of our barrier partitioning approach is discussed in the context of two semi-Markov
models of concurrent systems. Both models are represented in a high-level Semi-Markov Stochastic
Petri Net (SM-SPN) [10] form, from which semi-Markov processes of varying sizes can easily be
generated. Further details of this formalism can be found in [10, 17].

The Voting model is a model of a distributed voting system with CC voters, MM failure-prone
voting booths and NN failure-prone central servers [18, 9]. Voting agents vote asynchronously,

14

Fig. 5. The Voting Model SM-SPN [18].

moving from place p1 to p2 as they do so. A restricted number of polling units which receive their
votes transit t1 from place p3 to place p4. At t2, the vote is registered with as many central voting
units as are currently operational in p5. Both polling units and central voting units can suffer
breakdowns, represented by transitions t3 and t6, from which there are soft recovery mechanisms,
t4 and t7. The system is considered to be in a failure mode if either all the polling units have
failed and are in p7 or all the central voting units have failed and are in p6. If either of these
complete failures occur, then a high priority repair is performed, which resets the failed units
to a fully operational state. If some (but not all) the polling or voting units fail, they attempt
self-recovery. The system will continue to function as long as at least one polling unit and one
voting unit remain operational.

The Web-server model in Fig. 6 represents an SM-SPN model of a web server with RR clients
(readers), WW web content authors (writers), SS parallel web servers and a write-buffer of BB
in size [9]. Clients can make read requests to one of the web servers for content (represented by
the movement of tokens from p8 to p7). Web content authors submit page updates into the write
buffer (represented by the movement of tokens from p1 onto p2 and p4), and whenever there are
no outstanding read requests all outstanding write requests in the buffer (represented by tokens
on p4) are applied to all functioning web servers (represented by tokens on p6). Web servers can
fail (represented by the movement of tokens from p6 to p5) and institute self-recovery unless all
servers fail, in which case a high-priority recovery mode is initiated to restore all servers to a fully
functional state. Complete reads and updates are represented by tokens on p9 and p2 respectively.

4.2. Complexity of Barrier partitioning

In both the Voting and the Web-server model it is possible to compute a 2-way barrier parti-
tioning such that each partition contains roughly 50% of the total number of transitions. Even
more surprisingly, we easily found balanced partitions (those where SP and TP contain a similar
number of transitions) for large versions of the Voting and Web-server models with several million
transitions. In addition our barrier partitioning algorithm is very fast. The computation of a
balanced barrier partitioning for the 1 100 000 state Voting model takes less than 10 seconds on an
Intel Core2 Duo machine with two 1.8GHz processors and 1Gbyte of RAM. By comparison, the
computation of a 2-way partitioning with the PaToH2D hypergraph partitioner takes about 60
seconds on the same machine, but the resulting partitioning is not suitable for atomic aggregation
as both partitions have large numbers of predecessor and successor states.

15

Fig. 6. The Web-server Model SM-SPN [9].

We also tested the kmax -way partitioning method on the 1 100 000 state Voting model and the
1 000 000 state Web-server model. In the Voting model we found a 349-way barrier partitioning,
whose largest partition contains only 0.6% of the total number of transitions. In the Web-server
model a 332-way barrier partitioning exists in which the largest partition contains about 0.5%
of the total number of transitions. For both models it is thus possible to compute the exact
first-passage time while saving 99% of the memory needed by the standard iterative passage-time
analysis that works on the unpartitioned transition matrix. This is because of the fact that our k-
way barrier partitioning algorithm only ever has to hold the matrix elements of one single partition
in memory.

The general kmax -way barrier partitioning method is very fast. For the 1 100 000 state Voting
model the max-way barrier partitioner needs 72 seconds on an Intel P4 3GHz with 4Gbyte of
RAM to find the barrier partitioning with the maximum number of partitions. In the 1 000 000
state Web-server model the partitioner takes 35 seconds to find the max-way barrier partitioning.

The complexity of barrier partitioning is linear in the number of state transitions, and our results
bear this out as the Voting model has about twice as many transitions as the Web-server model.
Hence barrier partitioning does not only allow us to save an enormous amount of memory during
passage-time analysis but also the partitioning method itself has a much lower complexity than, for
instance, graph and hypergraph partitioners. The computation of a 2-way partitioning with the
PaToH2D hypergraph partitioner takes about 60 seconds on the same machine for the Web-server
model, but the resulting partitioning is not even suitable for atomic aggregation.

Another important thing to note is that the partitioner is very memory efficient as we never have
to hold the entire matrix in memory during the partitioning process. A disk-based partitioning
approach is also feasible as we only have to scan every transition twice: once when we look for
the predecessor states of a state and a second time when we look for its successor states. This is
a huge advantage compared to our 2-way barrier partitioning algorithm, for which a disk-based

16

solution is less feasible, since we need to scan large parts of the matrix multiple times in order to
create two balanced partitionings.

4.3. Run-times and Accuracy

 1e+08

 1e+09

 1e+10

 1e+11

 1e+12

 1e+06 500000 250000 100000

A
bs

ol
ut

e
nu

m
be

r
of

 c
om

pl
ex

 m
ul

tip
lic

at
io

ns
 fo

r
F

P
T

A

Number of states in model (FPTA with precision 1e-16)

Voting: No Barrier
Voting: 2-way Barrier
Voting: k-way Barrier

Web-server: No Barrier
Web-server: 2-way Barrier
Web-server: k-way Barrier

Fig. 7. Log–log comparison of the absolute number of multiplications required under different barrier aggregation
strategies in the Voting and Web-server models.

The log–log plot in Fig. 7 compares the number of complex multiplications needed for our different
aggregation methods to calculate the 165 Laplace transform samples required to compute 5 t-
points that are representative of the distribution. It is interesting to observe that the Barrier
methods generally seem to require fewer complex multiplications than the NoBarrier method in
both models.

Secondly, we compare the running times of first passage-time calculations under different barrier
partitionings. Tab. 1 shows the times taken to barrier partition and analyse two specific models
on an Intel Core2 Duo 2.66GHz. In the Voting model the kmax -way barrier partitioning was a
349-way partitioning, while in the Web-server model it was a 332-way partitioning. In both cases
165 Laplace transform samples were calculated with a convergence precision ε = 10−16. The
results show that the kmax -way barrier approach is faster than both the unpartitioned and 2-way
barrier approaches in both models investigated. In the Web-server model, the kmax -way barrier
passage-time analyser is nearly ten times faster than the unpartitioned solver, while in the Voting
model it is approximately two-and-a-half times faster. 40-way partitioning is slightly faster than
kmax -way partitioning in these models because the smaller number of barriers results in a lower
overhead in the construction of lookup tables for each barrier.

An important consideration is the effect that barrier partitioning has on the accuracy of the
final passage-time result. The final column in Tab. 1 compares the first 32 decimal places of the
samples of the first passage-time distributions produced under the various aggregations using the
Kolmogorov–Smirnov (K–S) statistic (maximum absolute difference) against the corresponding

17

Voting model (1 100 000 states)
Method Complex mults. Run time (s) K–S error

No Barrier 90 953 967 754 6 400 0
2-way Barrier 87 544 776 992 6 706 2.32602e-13
40-way Barrier 23 085 035 695 2 062 1.77547e-12
kmax -way Barrier 14 675 308 020 2 447 1.00372e-11

Web-server model (1 000 000 states)
Method Complex mults. Run time (s) K-S error

No Barrier 287 181 545 505 26 921 0
2-way Barrier 160 559 878 808 16 230 2.63041e-13
40-way Barrier 29 768 374 425 2 635 1.25518e-12
kmax -way Barrier 17 070 767 235 2 722 1.48844e-12

Tab. 1. Computational cost, run-times and accuracy for partitioning and subsequent first passage-time analysis
for two different models with varying number of barriers.

results from the unaggregated model (the No Barrier case). We conclude that, for these examples,
there is negligible loss of accuracy, even with the largest number of partitions.

4.4. Very Large SMPs

We now compare the run time of the barrier-partitioned iterative passage-time analysis with that
of the parallel implementation of the iterative algorithm previously presented in [9, 17] for very
large SMPs.

The parallel scheme was implemented in the Semi-Markov Response Time Analyser (SMARTA) [17].
The SMARTA results presented here were produced on a Beowulf Linux cluster with 64 dual-
processor nodes. Each node has two Intel Xeon 2.0GHz processors and 2GB of RAM. The nodes
are connected by a Myrinet network with a peak throughput of 2Gbps. The barrier partition-
ing and analysis was executed on one core of a machine with a four-core AMD Opteron 1.9GHz
processor and 32GB of RAM.

For the 10 991 440 state Voting model, the passage-time distribution was calculated at 31 values
of t and this required L~i~j(s) to be evaluated at 1 023 s-points. Using SMARTA this took 15
hours and 7 minutes on 64 processors, for a total cost of just over 455 processor-hours. This
excludes the time taken to partition the state space using the ParMETIS parallel graph partitioning
library [19] prior to computation. In contrast, it took 3 hours and 12 minutes to calculate a 599-way
barrier partition of the same model and a further 4 days and 32 minutes to solve for the required
distribution t-points on a single processor, for a total cost of just over 99 processor-hours. With
barrier partitioning, therefore, the solution time was approximately 6.5 times longer than that of
SMARTA but required only one sixty-fourth of the number of processors and cost approximately
4.5 times less in processor-hours. The maximum absolute difference between calculated passage-
time distribution results was 3× 10−6.

5. Conclusion

In this paper we have presented barrier partitioning, which deterministically partitions the SMP’s
state space into a number partitions and allows first passage-time analysis to be conducted saving
up to 99% of the memory required for the unaggregated SMP. Our results show that it also saves
a considerable amount of time compared with the calculation of results on the unpartitioned state
space. We have demonstrated that this can be achieved on SMPs with up to 10.9 million states.
Barrier partitioning is suitable for population-based passage-time definitions in SMPs of models

18

with large populations of similarly operating cooperating components. In the case of the models
presented here, the passage times were defined in terms of a percentage of the population of
components having evolved to a completed state. The progression of component populations was
an explicit feature of the Web-server and Voting models and is often a common feature of large
SMP models, derived from higher-level formalisms. However, where this is not an explicit feature,
modellers can still encode global passage-time questions by embedding counting sub-models in
Petri nets and process algebras (for example, by using stochastic probes [20]). These augmented
models would in turn be amenable to passage-time analysis via barrier partitioning.

For the future, we would like to explore to extent to which k-way passage-time computation can
be conducted in parallel. Recall from Section 3 that passage-time calculations can be conducted
in both the forward and reverse directions. For the 2-way barrier case, this suggests a simple
parallelisation scheme where one machine calculates LR

~i~b
(s) and the other L~j~b(s), with the final

result calculated according to Corollary 1.2. We cannot simply extend this to the use of k machines
in the k-way case, however, as calculation of the Laplace transforms of passage-time distributions
across the (n + 1)th partition (except for the source and target partitions) requires the Laplace
transform of the passage-time across the previous nth partition as its starting point. Instead we
envisage the use of two groups of machines, each performing passage-time analysis in parallel.
One group does the forward passage-time calculation starting from the start states, the other one
does the reverse passage-time calculation starting from the target states. Just as in the 2-way
barrier case, the two groups of processors will stop when they have reached the middle barrier.
This would have the advantage of being able to deal with very large partitions whose state spaces
could not be held within the memory of a single machine; such partitions could arise from the
analysis of extremely large SMPs with global state spaces of perhaps billions or even trillions of
states.

Acknowledgements

We would like to acknowledge the very diligent efforts of our three anonymous referees, who helped
us substantially improve the paper.

Bradley and Knottenbelt are supported in part by the EPSRC on the Analysis of Massively Parallel
Stochastic Systems (AMPS) project, EP/G011737/1. http://aesop.doc.ic.ac.uk/projects/

amps/. Dingle is supported by the EPSRC on the Intelligent Performance Optimisation of Vir-
tualised Data Storage Systems (iPODS) project, EP/F010192/1. http://aesop.doc.ic.ac.uk/
projects/ipods/.

References

[1] J. G. Kemeny and J. L. Snell, Finite Markov Chains. Van Nostrand, 1960.

[2] W.-L. Cao and W. J. Stewart, “Iterative aggregation/disaggregation techniques for nearly
uncoupled Markov chains,” Journal of the ACM, vol. 32, pp. 702–719, July 1985.

[3] P. Buchholz, “Hierarchical Markovian models: Symmetries and aggregation,” Performance
Evaluation, vol. 22, pp. 93–110, 1995.

[4] U. Sumita and M. Rieders, “First passage times and lumpability of semi-Markov processes,”
Journal of Applied Probability, vol. 25, pp. 675–687, Dec. 1988.

[5] E. Çinlar, “Markov renewal theory,” Advances in Applied Probability, vol. 1, no. 2, pp. 123–
187, 1969.

[6] E. Çinlar, “Markov renewal theory: A survey,” Management Science, vol. 21, pp. 727–752,
Mar. 1975.

19

[7] J. T. Bradley, “A passage-time preserving equivalence for semi-Markov processes,” in Lec-
ture Notes in Computer Science 2324: Proceedings of the 12th International Conference on
Modelling, Techniques and Tools (TOOLS’02), (London), pp. 178–187, Springer-Verlag, April
14th–17th 2002.

[8] J. T. Bradley, N. J. Dingle, and W. J. Knottenbelt, “Strategies for exact iterative aggregation
of semi-Markov performance models,” in Proceedings of International Symposium on Perfor-
mance Evaluation of Computer and Telecommunication Systems (SPECTS’03), (Montreal,
Canada), pp. 755–762, July 20th–24th 2003.

[9] J. T. Bradley, N. J. Dingle, W. J. Knottenbelt, and H. J. Wilson, “Hypergraph-based parallel
computation of passage time densities in large semi-Markov models,” Linear Algebra and its
Applications, vol. 386, pp. 311–334, 2004.

[10] J. T. Bradley, N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt, “Performance queries on
semi-Markov stochastic Petri nets with an extended Continuous Stochastic Logic,” in Pro-
ceedings of 10th International Workshop on Petri Nets and Performance Models (PNPM’03),
(Urbana-Champaign IL, USA), pp. 62–71, September 2nd–5th 2003.

[11] U. V. Catalyürek and C. Aykanat, “PaToH: A multilevel hypergraph partitioning tool,” Tech.
Rep. BU-CE-9915, Version 3.0, Department of Computer Engineering, Bikent University,
Ankara, 06800, Turkey, 1999.

[12] G. Karypis and V. Kumar, METIS: A Software Package for Partitioning Unstructured
Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices,
Version 4.0. University of Minnesota, September 1998.

[13] R. Pyke, “Markov renewal processes: Definitions and preliminary properties,” Annals of
Mathematical Statistics, vol. 32, pp. 1231–1242, December 1961.

[14] R. Pyke, “Markov renewal processes with finitely many states,” Annals of Mathematical
Statistics, vol. 32, pp. 1243–1259, December 1961.

[15] J. Abate and W. Whitt, “The Fourier-series method for inverting transforms of probability
distributions,” Queueing Systems, vol. 10, no. 1, pp. 5–88, 1992.

[16] J. T. Bradley and H. J. Wilson, “Convergence and correctness of an iterative scheme for calcu-
lating passage times in semi-Markov processes,” Performance Evaluation, vol. 60, pp. 237–254,
May 2005.

[17] N. J. Dingle, Parallel Computation of Response Time Densities and Quantiles in Large
Markov and Semi-Markov Models. PhD thesis, Imperial College London, United Kingdom,
2004.

[18] J. T. Bradley, N. J. Dingle, P. G. Harrison, and W. J. Knottenbelt, “Distributed computation
of passage time quantiles and transient state distributions in large semi-Markov models,” in
Proceedings of the International Workshop on Performance Modeling, Evaluation and Opti-
mization of Parallel and Distributed Systems (PMEO-PDS’03), (Nice), p. 281, April 2003.

[19] G. Karypis, K. Schloegel, and V. Kumar, ParMETIS: Parallel Graph Partitioning and Sparse
Matrix Ordering Library, Version 2.0. University of Minnesota, September 1998.

[20] A. Argent-Katwala, J. T. Bradley, and N. J. Dingle, “Expressing performance requirements
using regular expressions to specify stochastic probes over process algebra models,” in Proceed-
ings of the 4th International Workshop on Software and Performance (WOSP’04), (Redwood
Shores CA, USA), pp. 49–58, January 14th–16th 2004.

20

