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Abstract

Stochastic performance models are widely used to analyse the performance and reliability of

systems that involve the flow and processing of customers and resources. However, model

formulation and parameterisation are traditionally manual and thus expensive, intrusive and

error-prone.

This thesis illustrates the feasibility of automated performance model construction from high-

precision location tracking data. In particular, we present a methodology based on a four-stage

data processing pipeline which automatically constructs Coloured Generalised Stochastic Petri

Net (CGSPN) performance models from an input dataset consisting of raw location tracking

traces. The output performance model can be visualised using PIPE2, the platform independent

Petri Net editor. The developed methodology can be applied to customer-processing systems

which support multiple customers classes and can capture the initial and inter-routing probabil-

ity of the customer flow of the underlying system. Furthermore, it detects any presence-based

synchronisation conditions that may be inherent in the underlying system and the presence of

service cycles. Service time distributions, one for each customer class, of each service area in the

system and travelling time distributions between pairs of service areas are also characterised.

PEPERCORN, the tool that implements the developed methodology, is also presented.

In addition to the latter, this thesis presents LocTrackJINQS, the extensible, location-aware

Queueing Network simulator. LocTrackJINQS was developed to support location-based

research. It has the ability to simulate a user-specified Queueing Network and while simulation

progresses, it generates and outputs location tracking data – associated with the movement of

the customers in the network – in a trace file.

Our methodology is evaluated through six case studies. These case studies use synthetic lo-

cation tracking data generated by LocTrackJINQS. The obtained results suggest that the

methodology can infer the abstract structure of the system – specified in terms of the locations

and service radii of the system’s service areas (max error 0.320 m and 0.277 m respectively) and

customer flow – and approximate its service time delays well. In fact, the maximum relative

entropy value that was obtained between the simulated and inferred service time distributions

is 0.324 nats. Furthermore, whenever synchronisation between service areas takes place, the

simulated synchronisation conditions are successfully inferred.
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Chapter 1

Introduction

1.1 Motivation

We live in an information-driven era where the ever-progressing technology provides means of

collecting vast amounts of data, especially location-based datasets. Naturally, people strive to

extract meaning from this type of data to gain insights into the works, operation and perfor-

mance of systems. This is a very broad subject and includes, amongst other areas, performance

modelling [6, 57], human mobility characterisation [15, 47, 88] and urban planning [16, 28]; this

thesis focuses on performance modelling and in particular, the modelling of physical systems

that process customers and goods, for example hospitals, airports and car assembly lines.

In such complex systems it is critical to understand the flow of customers and/or resources to

ensure that the system can be tuned to meet its Quality of Service (QoS) requirements. Failure

to achieve this has led to high profile fiascos such as the opening of Heathrow Terminal 5 [35],

the great increase in patient waiting times in hospitals [48], the immigration queues at Heathrow

just before the London 2012 Olympics [75] and the delays experienced by people who wished to

purchase Olympic football tickets on the spot, resulting in missing the event itself [81]. In an

attempt to minimise and ultimately eliminate the occurrence of such incidents, much time and

effort has been invested by the research community in performance modelling and analysis.

33



34 Chapter 1. Introduction

The traditional performance modelling and analysis pipeline consists of three stages: model

construction, model validation and system analysis. The most fundamental stage of this pipeline

is model construction as the accuracy of the model is crucial to ensure the validity of subsequent

analysis. A model’s accuracy, i.e. the degree to which the model reflects its underlying system,

depends on its structure and its parameterisation. The establishment of an accurate model

facilitates the extraction of useful information regarding customer and resource flow and the

identification of bottlenecks via system analysis. Additionally, performance models can be

used as predictive tools; a model can be modified to examine the system’s performance under

hypothetical scenarios such as the addition/removal of resources or increased workload.

The construction of an accurate model usually requires the availability of a large amount of

data. Current techniques, such as time and motion studies, involve tedious manual tasks [58],

e.g. inspection of video footage, questionnaires and manual collection of timing data, all of

which may be error-prone since the human factor is present. This data-gathering process is

not only time consuming, but more importantly, it can also disrupt the system’s natural flow.

This immediately compromises the reliability of the data and, subsequently, the reliability of

the model itself.

Usually, the formulation of performance models for a physical customer-processing system re-

quires that the modeller fully comprehends the works, interactions and dependencies between

the underlying system’s sub-processes. Previous work on modelling patient flow in an Accident

and Emergency department by S. Au-Yeung [11] exemplified the difficulties of manual model

construction and validation. In particular, Au-Yeung et al. [102] structured and parameterised a

hierarchical multiclass Markovian Queueing Network. While there was good agreement between

mean response times emerging from both the simulated model and the data, the distributions

of response times were not well matched, and there was no straightforward way to identify the

causes of discrepancies. In a future attempt [12] the authors modelled patient arrivals using

time series, aiming to identify seasonal patterns. While their model provided good insight in

walk-in patient arrivals, it failed to characterise ambulance arrivals adequately.

The recent development of real time location systems (RTLSs) enables the automatic and
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unobtrusive collection of large amounts of high-precision location tracking data in real time.

These systems use a variety of technologies, such as RFID (Radio Frequency Identification),

UWB (Ultra Wide Band) and Wi-Fi, and have been already deployed with the goal of enhanc-

ing performance and system safety, especially in the fields of supply chain management and

healthcare. Specific examples include international car makers such as Toyota and Ford Motors

which use RFID to monitor and control their automated production line [9]. Tagging systems

are now used in hospitals to prevent newborn baby abductions [82] and to monitor the supply

of blood and drugs [68, 113]. More example applications in healthcare and system safety can

be found in [51, 111] and [67] respectively.

Some research efforts have been made towards the development of methodologies and soft-

ware packages which enable the automatic construction of performance models. However,

such methodologies either focus on software systems, e.g. [36, 27, 90], or are application spe-

cific [114, 71]. To the best of our knowledge, no existing methodology, or tool, allows the auto-

matic extraction of performance models for generic physical customer-processing systems. Our

work presents a high-level approach, based on four-stage data processing pipeline, which allows

the automated extraction of Petri Net performance models (PNPMs) from high-precision loca-

tion tracking data. Coloured Generalised Stochastic Petri Nets (CGSPNs) are selected as the

underlying modelling formalism because of their inherent expression of synchronisation and con-

currency. Furthermore, the availability of multiple token types in CGSPNs, instead of one and

indistinguishable token type which is the case in Generalised Stochastic Petri Nets (GSPNs),

enables the modelling of complex systems in a relatively compact way.

1.2 Modelling Assumptions

The domain of applicability of our methodology is limited to customer-processing systems which

satisfy the following assumptions:

1. The various service points of the system from which customers request and receive service

are stationary, i.e. their position within the system is fixed.
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2. Only one customer can be serviced at each service point of the system during any time

period. Furthermore, the next customer to be serviced at a service point is randomly

selected; that is, if more than one customers are waiting to receive service from the same

service point.

3. Each customer which enters the system is monitored using a separate location tracking

tag, i.e. no tag recycling is supported, unless a tag’s unique identifier can be reconfigured

and then be used to monitor another customer.

4. The customers stop or move at a relatively low speed when are in the physical proximity of

a service point, given that the customers wish to be serviced from that particular service

point. The area within which this assumption applies is called service area.

5. If synchronisation takes place in the system, it can be detected only if it is defined in

terms of the physical presence of customers or resources in service points. Furthermore,

when synchronisation is detected, we assume that service only progresses when the syn-

chronisation condition(s) is(are) met.

6. In the scenario where multiple customer classes are processed in a system, the class of

each customer must be provided through its associated location updates or by a static

mapping of each customer id (unique tag identifier) to the class it belongs to.

1.3 Objectives

The aims and objectives of this thesis are:

• To develop a methodology which, given a spatiotemporal trace of customer and resource

flow in a customer-processing system, automatically:

– infers the location and service radius of service centres, and paths of customer flow,



1.4. Contributions 37

– extracts service time and travelling time samples of customers in the system and

characterises (or approximates) their underlying service time and travelling time

distributions.

– Hence constructs a CGSPN performance model of the customer/resource flow for a

given system. The model should be able to capture and represent:

∗ synchronisation dependencies between the system’s service centres,

∗ multiple customer classes,

∗ cyclic services.

• To develop a software package which allows the formulation and simulation of a physical

customer-processing system, and which can generate synthetic location traces approxi-

mating those of a real RTLS.

• To demonstrate the applicability of the methodology in a variety of case studies.

1.4 Contributions

This thesis presents a methodology which combines existing and new algorithms in order to

automatically infer Petri Net performance models from location tracking data, without any

prior knowledge regarding the system’s structure and operation, given that the system satisfies

the stated modelling assumptions.

We show how the location and service radius1 of each service centre in a physical customer-

processing system can be automatically inferred from the traces of the system’s customer flow.

Using this information we demonstrate that the flow of customers, specified in terms of the

initial and inter-routing probabilities, can be easily obtained. Combining the spatial information

for each service area, along with the spatiotemporal data which describe customer paths, we

extract the service time obtained by each customer at each service centre. Similarly, we extract

the travelling time for each customer while traversing between various service areas in the

1We assume a circular service area.
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system. A conservative scheme to determine whether the processing of customers at each

service area is subject to some presence-based synchronisation conditions is also introduced. A

Hyper-Erlang distribution (HErD) [106, 42] is fitted to each set of the extracted travelling and

service time samples. Upon completion, the model is exported in a non-standardised version

of the PNML format [18, 55] that is compatible with PIPE2, an open-source Petri Net editor

which also incorporates various analysis modules [20, 31]. Our methodology can be applied

for both single and multiple customer class systems. Support for the latter has been enabled

via the use of Coloured Generalised Stochastic Petri Nets [74] which we also use to accurately

represent the customer flow in the model when cyclic services are present in the underlying

system. The results we obtain through several case studies (using synthetically generated

location tracking data) suggest that the structure and stochastic features of a large class of

physical customer-processing systems can be successfully inferred.

The recent development and widespread adoption of RTLSs, especially in healthcare and in-

dustry, has generated new challenges and opportunities for location-based research. However,

experiments used to validate such research are, in general, difficult to formulate and require a

large amount of time and resources [57]. In this thesis we introduce LocTrackJINQS, an

open-source simulation library for constructing simulations with location awareness, which has

been originally developed in collaboration with T.-C. Horng to support our research. Loc-

TrackJINQS is an extension of the Queueing Network simulation package JINQS [43] and

offers a controlled environment where one can construct and simulate a real life customer-

processing system as a Queueing Network. It allows users not only to specify high-level features

of the network, i.e. customer flow and time delay distributions, but also low-level ones such as

entities geographic locations and their moving speeds and paths. As the simulation progresses,

LocTrackJINQS outputs location updates which approximate those of a real RTLS – for

each participating entity – in a trace file.
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1.5 Thesis Outline

The remainder of this thesis is organised as follows:

Chapter 2 describes the background theory to the work presented in this thesis. A basic

introduction to the theory of Markov processes (discrete and continuous time Markov chains) is

provided, followed by an overview of two modelling formalisms: Petri Nets, their subclasses, and

Queueing Networks. We then present some basic definitions and results from the field of graph

theory, as well as a discussion on clustering algorithms. We include a description of various

techniques and tools that are used to parameterise stochastic models and an overview of PIPE2,

the software we use to visualise our models. Next, we outline the existing technologies currently

employed by RTLSs and conclude the chapter with a presentation of related research, giving

emphasis on work relating to the automated construction and/or extraction of performance

models, and data mining.

Chapter 3 introduces LocTrackJINQS, which we developed and used to generate location

tracking data through simulation. Initially, we provide an overview of the simulator and its

capabilities, and outline the main features that distinguish it from JINQS. An extensive de-

scription of its software architecture follows. Next, we present two case studies. The purpose of

the first case study is to demonstrate the construction of location-enabled Queueing Network

simulation through LocTrackJINQS’s graphical user interface. Standard performance mea-

sures such as the mean and standard deviation of the response time for each customer class at

each server, as well as for the whole system, are included. The second case study focuses on

the evaluation of LocTrackJINQS operation through quantitative results.

Chapter 4 introduces the basic methodology we developed to enable the automated extraction

and construction of a hierarchical Generalised Stochastic Petri Net (GSPN) performance model

from location tracking data. The methodology is based on a four-stage data processing pipeline

for which a detailed description is provided. The chapter concludes with an evaluation of the

pipeline through two case studies for which the relevant results are presented.
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Chapter 5 realises and overcomes a major deficiency of the original pipeline: the ability to

explicitly capture synchronisation. A mechanism which implements the automated detection

of synchronisation from location traces is presented and described extensively. In this work, we

consider synchronisation to be defined in terms of the number of customers present in various

service areas during the processing of customers at another service area. We investigate the

impact of the presence of synchronisation on the previously extracted service time samples, and

demonstrate how they can be adjusted according to the detected synchronisation conditions.

Additionally, we show how these synchronisation conditions are incorporated in our model.

A case study which aims to validate the developed mechanism is presented, followed by a

discussion on the obtained results.

Chapter 6 presents further enhancements to the original processing pipeline. In particular,

using CGSPNs we add support for multiple customer classes and advanced customer routing.

The modelling approach taken to support multiple customer classes and its integration with the

existing methodology is presented. Then, we demonstrate that systems which contain cyclic

services cannot be modelled accurately using GSPNs, and explain how CGSPNs can be used to

overcome this issue. We also show how such systems can be automatically identified from the

structure of their corresponding Petri Net model, using graph theory. This chapter includes

another feature which has been added to the initial methodology, namely the calculation and

representation of inter-routing probabilities of the customer flow between service centres. We

present the two techniques that can be used to model such probabilities and reason about our

selection. The chapter concludes with an evaluation of these three additional features through

three case studies.

Chapter 7 describes the design and implementation of the PEtri net PERformance model

COnstRuctioN (PEPERCORN) tool. This tool implements the basic methodology presented

in Chapter 4, and integrates it with the synchronisation detection mechanism (Chapter 5) and

the pipeline extensions (Chapter 6). We note that PEPERCORN has been used to infer the

models presented in the conducted case studies.
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Chapter 8 concludes this thesis with a summary of the work presented. The chapter also

provides a discussion on applications and further work opportunities.

Appendix A contains a simple user manual for LocTrackJINQS and presents the XML

node definitions for each element of the Queueing Network.

Appendix B presents the additional results of the three case studies examined in Chapter 6.

1.6 Publications and Statement of Originality

I declare that this thesis was composed by myself, and that the work it presents is my own,

unless stated otherwise.

The following publications arose from the work carried out during the course of this PhD:

• 5th International Workshop on Practical Applications of Stochastic Mod-

elling (PASM 2011) [56] presents LocTrackJINQS, a flexible and extensible spa-

tiotemporal simulation tool for customer-processing systems, which is based on the mul-

ticlass Queueing Network simulation library JINQS. LocTrackJINQS allows the spec-

ification of realistic, low-level features which are found in the physical world and therefore,

its simulations can approximate entities’ physical movements in a real life system. During

simulation the entities’ movements are recorded in such a way that they are similar to

data collected from an actual RTLS. The work presented in Chapter 3 is based on this

paper. This is a joint work with Tzu-Ching Horng.

• 5th International ICST Conference on Performance Evaluation Methodolo-

gies and Tools (VALUETOOLS 2011) [6] presents an automated technique which

takes as input high-precision location tracking data and constructs a hierarchical Gener-

alised Stochastic Petri Net performance model of the underlying system. The developed

methodology is based on four-stage data processing pipeline and aims to provide a high-

level description of the customer flow in the system. The material presented in Chapter 4

is based on this paper.
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• 8th European Performance Engineering Workshop (EPEW 2011) [8] presents a

mechanism which automatically detects presence-based synchronisation between service

centres. We show how this mechanism is incorporated into our original methodology [6]

and examine its applicability through a case study. The content of this paper is presented

in Chapter 5.

• 4th ACM/SPEC International Conference on Performance Engineering (ICPE

2013) [7] extends our existing methodology [6, 8] to support the (automated) modelling

of systems with multiple customer classes and service cycles. These two features are

enabled via the use of Coloured Generalised Stochastic Petri Nets. Furthermore, another

feature is introduced: the calculation and representation of the inter-routing probability

of the customer flow within the system. The material presented in this paper is included

and extensively evaluated in Chapter 6.

• 10th International Conference on Quantitative Evaluation of SysTems (QEST

2013) - (Submitted) This paper presents the PEtri net PERformance model COnstRuc-

tioN (PEPERCORN) tool. This tool is a Java-based implementation of the methodology

presented throughout Chapters 4, 5 and 6. A more detailed description of the material

included in this paper, as well as an overview of PEPERCORN’s software architecture is

presented in Chapter 7.



Chapter 2

Background Theory

This chapter presents the background theory underlying the work in this thesis, as well as work

which shares some high-level similarities with ours. We begin by providing a brief introduction

of stochastic processes and a general overview of Petri Nets as a modelling formalism. The

basic structure and parameters of Queueing Networks is then presented, followed by some key

definitions and results from the field of graph theory. A discussion on clustering algorithms as

well as distribution fitting techniques and tools is also provided. We then present PIPE2, an

open-source Petri Net editor, and a high-level overview of existing location tracking technologies.

This chapter concludes with a section on related research mainly from the fields of performance

modelling and data mining.

2.1 Stochastic Processes

A stochastic process is a mathematical model used to describe the evolution of an empirical

process or system which exhibits some probabilistic behaviour. Such processes can be defined

by the set of all possible states that they may reach and the set of probabilities that specify the

transitions between possible states. Mathematically, a stochastic process is defined as follows:

Definition 2.1. A stochastic process is a family of random variables {X(t), t ∈ T} defined

over the same probability space and taking values in the set S. The parameter t usually denotes

43
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time and it is used to index each random variable. S contains the values which can be obtained

by the stochastic process, also known as states, and therefore S is called the state space of the

process.

Stochastic processes can be categorised according to their state space and index (time) param-

eter. If the state space is discrete then the corresponding stochastic process is said to be a

discrete-state process or chain; otherwise, if state space continuous, it is called a continuous-

space process. Similarly, the parameter set T , i.e. the values of t, can be either discrete or

continuous. In the latter case the stochastic process is called a continuous-time process while

in the former case it is referred to as discrete-time process or sometimes as a stochastic sequence.

A particular class of stochastic processes, the Markov processes, has been of great interest in

the research community as it finds numerous applications in many branches of science and

engineering amongst other fields. The next subsection introduces the Markov propery which

characterises such processes. A more formal introduction to the area of Markov processes, as

well as proofs for the results we present can be found in [53, 84].

2.1.1 Markov Processes

A Markov process is a stochastic process whose evolution depends only on its current state,

without being concerned with how the process arrived there. This is known as the “memoryless”

or Markov property. Assuming a discrete-state space, a Markov process (Chain) is formally

defined as follows:

Definition 2.2. Let {X(t), t ∈ T} be a stochastic process defined on the parameter set T and

state space S = {xi = i, i ∈ IN0
1}. The process is called a Markov process if it satisfies

P [X(t) = x |X(tn) = xn, X(tn−1) = xn−1, . . . , X(t0) = x0]

= P [X(t) = x |X(tn) = xn], t > tn > tn−1 · · · > t0

(2.1)

1
IN0 denotes the set of natural numbers including zero.
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If the transitions between the states of a Markov Chain (MC) are independent of the time the

chain has spent on its current state, then the chain is referred to as a time homogeneous MC,

i.e. the MC is invariant to shifts of time. For a time-homogeneous MC the following condition

holds:

P [X(t) = x |X(tn) = xn] = P [X(t− tn) = x |X(0) = xn] (2.2)

For the remainder of this section we assume discrete-state space, time homogeneous Markov

processes and we present results for Discrete-time Markov Chains (DTMCs) and Continuous-

time Markov Chains (CTMCs) defined over discrete and continuous parameter sets respectively.

2.1.2 Discrete-Time Markov Chains

In the case of DTMCs equation 2.1 can be written as

P [Xn = j |Xn−1 = i,Xn−2 = k, . . . , X0 = l] = P [Xn = j |Xn−1 = i] = pij (2.3)

where i, j, k, l denote some state s ∈ S and pij is called the one-step transition probability.

That is the probability that the chain reaches state j given that it is currently at state i. These

probabilities are usually displayed as the entries of an N ×N stochastic matrix2 P , called the

state transition probability matrix, where N is the total number of states of the Markov chain.

Using a similar notation we define the n-step transition probability pij(n) to be the probability

that the MC reaches state j after n transitions given that currently is at state i. It can be

easily shown [53] that the n-step transition probability can be expressed as the product of the

probability that the process reaches some intermediate state k from state i in r steps, 0 < r < n,

and the probability of reaching state j from state k in n− r steps, i.e.

pij(n) =
∑

k

pik(r)pkj(n− r) (2.4)

2A stochastic matrix is a matrix where the sum of the entries of each row is equal to one, i.e.
∑

j pij = 1.
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or in terms of P (n), the n-step transition matrix,

P (n) = P (n−r)P (r) (2.5)

Equation 2.4 is known as the Chapman-Kolmogorov equation and allows us to recursively

calculate the n-step from the one-step transition probabilities.

In performance evaluation we are often interested in the limiting behaviour of the MC, i.e. as

n � ∞. This is known as the steady state or stationary probability distribution Π. This is

a vector {πj} where each πj denotes the probability that the MC will be in state j at some

arbitrary time in the future; by the law of total probability

∑

j

πj = 1 (2.6)

The existence and uniqueness of such probabilities is subject to certain conditions that the

DTMC must satisfy. In particular the DTMC must be ergodic. Informally this means that

all states in S must be reachable from every other state in S and that S does not include any

periodic states, i.e. occurring in multiples of a fixed number of steps η where η ≥ 2. (for a

formal definition we refer to [53]). The stationary probabilities can be calculated by solving

the system of linear equations

πj =
∑

k

πkpkj (2.7)

for j = 1, . . . , N , where N is the total number of states, subject to the condition imposed by

equation 2.6.

2.1.3 Continuous-Time Markov Chains

In CTMCs the transition probabilities between states are defined as functions of time. This is

because a transition into another state may occur at any time point, as opposed to DTMCs

were transitions occurred at fixed time points (steps). When the process enters a state it stays

there for an amount of time t before moving to another state. t is known as the sojourn time
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or holding time. Furthermore, since the CTMC satisfies the memoryless property – defined in

equation 2.1 – the sojourn time is exponentially distributed. In fact, the exponential distribution

is the only continuous distribution which satisfies this property (proof can be seen in [53]).

As transitions from one state to another can occur at arbitrary time points, we use qii(t) and

qij(t), defined as

qii(t) = lim
∆t�0

pii(t, t+∆t)− 1

∆t

qij(t) = lim
∆t�0

pij(t, t+∆t)

∆t
, i 6= j

denote the infinitesimal rates according to which the CTMC transitions from one state to

another; the chain leaves state i at time t with rate −qii(t) and the chain transitions from state

i to state j at time t with rate qij(t). These are the elements of the generator matrix Q(t)

which is used to characterise the CTMC.

Again, we are interested in the long term behaviour of the chain. Similar to DTMCs we define

the steady state probability distribution Π, Π = {πj}, where πj is the probability of finding

the chain in state j as t � ∞. For a homogeneous CTMC, the values of πj can be determined

from the solution of the system of linear equations

−qjjπj +
∑

i 6=j

qijπi = 0 (2.8)

where qij = qij(t), subject to the constraint specified by equation 2.6. As in the case for

DTMCs, a unique solution exists if the CTMC is ergodic.

2.2 Petri Nets

Petri Nets (PNs), also known as Place-Transition Nets (P-T Nets), originated from the work

of Carl Adam Petri [89], and are now widely used as a modelling formalism across various

research fields, such as computer systems, biochemistry, systems biology and physics [78, 91,

54, 73, 1], as well as in industry. Examples of the latter include, amongst others, manufacturing
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Figure 2.1: A simple Petri Net.

systems [114], workflow management [110] and traffic control [109].

The main advantage of PNs (and their subclasses) over other modelling formalisms, such as

Queueing Networks [83] – both widely used in performance evaluation – is the inherent ex-

pression of synchronisation and concurrency. Furthermore, they provide an intuitive graphical

representation of the dynamic behaviour of systems in conjunction with their mathematical

nature. A typical Petri Net (see Figure 2.1) consists of :

• tokens, drawn by black dots. Tokens are usually used to represent the resources in a

system.

• places, drawn by circles. Places represent the resource holders and may contain tokens.

• transitions, drawn by rectangles. Transitions model activities which change the state or

availability of resources.

• arcs, specifying the interconnection of places and transitions, indicating which objects

are changed by a certain activity.
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Places may be only connected to transitions and vice versa. If an arc connects a place to a

transition then the place is referred to as an input place of the transition and similarly, if an arc

connects a transition to a place then it is referred to as an output place of the transition. The

activity that changes the state of resources is the firing of an enabled transition. A transition

is enabled if each of its input places contains at least the number of tokens specified by the

weight of its input arcs. The firing of a transition results in the destruction and construction

of a specific number of tokens from its input and output places respectively. The number of

tokens to be created and destroyed is indicated by the arc weights. Formally,

Definition 2.3. A Place-Transition Net is a 5-tuple PN = (P, T, I−, I+,M0), where

• P = {p1, . . . , pn} is a finite and non-empty set of places,

• T = {t1, . . . , tm} is a finite and non-empty set of transitions,

• P ∩ T = ∅

• I−, I+ : P × T → IN0 are the backward and forward incidence functions respectively,

• M0 : P → IN0 is the initial marking.

The 4-tuple PN = (P, T, I−, I+) represents the structure and M0 the initial token distribution

of the model. The state of the Petri Net, identified by the number of tokens in places, is

determined by the initial marking and any subsequent firings of the transitions which may

occur according to the conditions specified by the backward and forward incidence functions

I− and I+. Figure 2.2 demonstrates a simple case where one token is destroyed from each input

place and another is created to each output place. Another slightly more complicated example

is shown in Figure 2.3.

Definition 2.4. Let PN = (P, T, I−, I+,M0) be a Place-Transition Net.

• Input places of transition t: •t := {p ∈ P | I−(p, t) > 0},

• Output places of transition t: t• := {p ∈ P | I+(p, t) > 0},
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p3 p0p0 p3

p1 p1p4 p4

t0 t0

t0 fires

Figure 2.2: Firing of a transition in a Petri Net.

• Input transitions of place p: •p := {t ∈ T | I+(p, t) > 0},

• Output transitions of place p: p• := {p ∈ P | I−(p, t) > 0}.

Initially Petri Nets were used to perform qualitative analysis of systems to detect various

properties of the system, e.g. boundness, existence of deadlock etc. Their scope of applicability

was limited as they did not incorporate any notion of time, and thus, restricted the use of PNs

in performance evaluation of real systems.

p0 t0

p1

p2

t1

2

Figure 2.3: Transition t0 requires two tokens to be contained in p0 in order to be enabled.

In an attempt to increase the modelling power of Petri Nets many researchers have devised ex-

tensions, creating many variations and subclasses such as Stochastic Petri Nets (SPNs) [79, 80],

Generalised Stochastic Petri Nets (GSPNs) [78], PNs with marking dependent arc cardinal-

ity [33], Coloured Petri Nets (CPNs) [62] and Queueing Petri Nets (QPNs) [13]. The most
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relevant of these variations are described in the following subsections.

2.2.1 Stochastic Petri Nets

Stochastic Petri Nets (SPNs) [79, 80] are similar to Place-Transition Nets, in terms of structure,

but the firing of each transition involves an exponentially distributed delay. SPNs have been

developed to enable the performance analysis of systems while preserving the intuitive graphical

representation of Place-Transition Nets. Given an SPN, its underlying CTMC is isomorphic to

the reachability graph of the SPN and is obtained via a depth-first search [14].

Definition 2.5. A continuous-time Stochastic Petri Net is formed from a Place-Transition Net

with the addition of a set of transition rates Λ = {λ1, . . . , λm} to its definition, i.e. SPN =

(PN,Λ), where each λi, i = 1 . . . m, is the firing rate of the transition ti. The firing time follows

an exponential distribution and the cumulative distribution function of the random variable χi

of the firing delay of the transition ti is given by,

Fχi
(x) = 1− e−λix

The sojourn time at a particular state (marking) is also exponentially distributed with the

parameter λ equal to the sum of the individual rates of the enabled transitions in that state.

One example of an SPN is depicted in Figure 2.4. The initial marking of the SPN is M0 =

(1, 0, 0, 0, 0) and therefore, transitions t0, t1 and t2 are enabled. In this scenario we have a race

condition; one of the enabled transitions will fire first, disabling the others. It is shown in [14]

that given a set of n simultaneously enabled transitions at marking M , the probability of a

transition ti, i = 0, . . . , n− 1, firing is given by

P [ti fires at M ] =
λi

∑n−1
j=0 λj

(2.9)
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Figure 2.4: A Stochastic Petri Net.

2.2.2 Generalised Stochastic Petri Nets

Generalised Stochastic Petri Nets (GSPNs) inherit and extend the structure and behaviour of

SPNs. GSPNs support another type of transitions, namely immediate transitions. These are

graphically represented by filled rectangles, while timed transitions are represented by empty

rectangles (see Figure 2.5).

Definition 2.6. A Generalised Stochastic Petri Net is a 4-tuple GSPN = (PN, T1, T2,W )

where

• PN = (P, T, I−, I+,M0) is the underlying P-T Net,

• T1 ⊆ T is the set of timed transitions, T1 6= ∅,

• T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅ and T1 ∪ T2 = T ,

• W = (w1, . . . , w|T |) is an array where each wi ∈ IR
+ 3 is

3
IR

+ denotes the set of positive real numbers.
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1. a (possibly marking dependent) rate of an exponential distribution specifying the

firing delay, when transition ti is a timed transition, i.e. ti ∈ T1, or

2. a (possibly marking dependent) weight, which determines the firing frequency, when

transition ti is an immediate transition, i.e. ti ∈ T2.

The dynamic behaviour of a GSPN follows the same rules as an SPN for timed transitions.

Immediate transitions though, fire in zero time, i.e. as soon as they are enabled. Thus, enabled

immediate transitions always fire before timed transitions. In the scenario of multiple, simul-

taneously enabled immediate transitions, the firing weights are taken into account; given a set

of simultaneously enabled immediate transitions {ti, i = 1, . . . , n} with corresponding weights

{wi, i = 1, . . . , n}, the probability that ti fires is given by wi/
∑n

j=1wj.

p3

p0 p5

p2 p4

t0 t3

t1 t4

t2 t5

Transition Firing rate/Weight

t0 w0

t1 w1

t2 λ2

t3 w3

t4 w4

t5 λ5

Figure 2.5: A Generalised Stochastic Petri Net.

The analysis of GSPNs is also feasible but varies slightly from that of SPNs. The presence of

immediate transitions may cause “multiple time discontinuities” between change of states and

thus disrupts the correspondence between the reachability graph of the GPSN and a CTMC [78].

Markings that enable immediate transitions are called vanishing states as their sojourn time

is zero and are never observed. Markings that enable timed transitions are called tangible
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states since the sojourn time is exponentially distributed and thus, such markings are not left

immediately. Instead, a semi-Markov process can be extracted from the model as the probability

of changing states remains independent of the time spent in one marking [14].

2.2.3 Coloured Petri Nets

Coloured Petri Nets (CPNs), introduced by K. Jensen [62], enhance the modelling power of

P-T Nets by allowing different, but similar, processes to be described by a shared subnet.

In CPNs various types of tokens – each distinguished by a different colour – are supported. A

set of colours is also attached to each place and transition in the model. The transition firing

rules are similar to P-T Nets, except that functional dependencies are specified between the

colour set of the transition firing and the colours of the tokens involved. Formally,

Definition 2.7. A Coloured Petri Net is a 6-tuple CPN = (P, T, C, I−, I+,M0), where

• P = {p1, . . . , pn} is a finite and non-empty set of places,

• T = {t1, . . . , tm} is a finite and non-empty set of transitions,

• P ∩ T = ∅

• C is a colour function defined from P ∪ T into finite and non-empty sets,

• I−, I+ are the backward and forward incidence functions defined on P × T such that

I−(p, t), I+(p, t) ∈ [C(t) → C(p)MS], ∀(p, t) ∈ P × T ,

• M0 is a function defined on P describing the initial marking such that M0(p) ∈ C(p)MS
4,∀p ∈

P .

This generalisation of P-T Nets reduces the size of the model required for system description

and analysis. Figure 2.6 shows the P-T Net and CPN models for a dual processor system

where each processor accesses a common bus, but not at the same time [14]. We notice that in

4C(p)MS denotes all the finite multisets over C(p).
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Figure 2.6: A dual processor system modelled using a P-T Net (left) and a CPN (right) [14].

the CPN representation of the system two different colours of tokens are used – one for each

processor – resulting in a more compact model.

Furthermore, we note that every Coloured Petri Net can always be unfolded into an ordinary

Petri Net in the following way:

1. ∀p ∈ P, c ∈ C(p) create a place (p, c) of the Place-Transition.

2. ∀t ∈ T, c′ ∈ C(t) create a transition (t, c′) of the Place-Transition Net.

3. Define the incidence functions of the P-T Net as

I−((p, c)(t, c′)) := I−(p, t)(c′)(c),

I+((p, c)(t, c′)) := I+(p, t)(c′)(c).

4. The initial marking of the P-T Net is given by

M0((p, c)) = M0(p)(c), ∀p ∈ P, c ∈ C(p).
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The unfolded CPN is given by,

PN = (
⋃

p∈P

⋃

c∈C(p)(p, c),
⋃

t∈T

⋃

c′∈C(t)(t, c
′), I−, I+,M0)

CPNs, like Place-Transition Nets, evolved to facilitate the performance evaluation of sys-

tems [115, 116].

2.2.4 Coloured Generalised Stochastic Petri Nets

Coloured Generalised Stochastic Petri Nets (CGSPNs) [74] are a combination of CPNs and

GSPNs. In this type of PN, transitions – both timed and immediate – can have a variety of

firing modes depending on the coloured tokens supported in the model as well as the backward

and forward incidence functions defined. CGSPNs are formally defined as follows:

Definition 2.8. A Coloured GSPN (CGSPN) is a 4-tuple CGSPN = (CPN, T1, T2,W ), where

• CPN = (P, T, C, I−, I+,M0) is the underlying Coloured Petri Net,

• T1 ⊆ T is the non-empty set of timed transitions,

• T2 ⊂ T is the set of immediate transitions, T1 ∩ T2 = ∅, T1 ∪ T2 = T ,

• W = (w1, . . . , w|T |) is an array whose entry wi is a function of [C(ti) → IR
+] such that

∀c ∈ C(ti) : wi(c) ∈ IR
+

– is a (possibly marking dependent) rate of a negative exponential distribution specify-

ing the firing delay w.r.t. colour c, if ti ∈ T1 or

– is a (possibly marking dependent) firing weight w.r.t. colour c, if ti ∈ T2.

2.3 Queueing Networks

In addition to Petri Nets, another formalism which is widely used to model physical and com-

puter systems, and analyse their performance is Queueing Networks. A Queueing Network is
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a directed graph G = (V,E) where V is a set of nodes and E a set of weighted edges such that

E ⊆ V × V [53].

Nodes represent service points, e.g. bank cashier, CPU, etc., and consist of a queue and one or

more parallel servers. In queueing theory nodes are usually referred to as Queues. Customers

flow through the service points of the Queueing Network probabilistically according to the

weights of the node interconnections specified by the set E. Customers can either be physical

entities, i.e. actual customers, products, and so forth, or software entities such as network

messages, processes and so on, that require service or resources. When a customer arrives at a

service point, it issues a service request and if the server(s) of that service point is(are) busy, the

customer is placed temporarily in the queue; otherwise the customer is immediately serviced.

A simple example of a Queueing Network consisting of two single-server queues is depicted in

Figure 2.7.

In addition to the number of servers, several other parameters are also required to completely

characterise a queue: customer arriving pattern, service pattern, queue capacity and queueing

discipline. A unified, compact notation, known as the Kendall notation, uses five variables

A/B/X/Y/Z to represent all the aforementioned parameters where [83]:

• A denotes the customer arriving pattern, also known as customer inter-arrival time dis-

tribution,

• B denotes the service pattern, also known as service time distribution.

• X denotes the number of parallel servers,

• Y denotes the queue capacity and

• Z denotes the queueing discipline.

Some commonly used distributions for both inter-arrival and service times are M for Markovian

(exponentially distributed time between arrivals or exponentially distributed service time), D

for deterministic (constant), Ek for Erlang with k stages and G for general distribution [83].
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Server 1 Server 2

Customer arrivals
from an external
environment

Customer departures
to an external
environment

Figure 2.7: A simple example of a Queueing Network.

In cases where no explicit reference to the last two variables exists, e.g. M/M/1 queues, infinite

queue capacity and First-in-first-out (FIFO) queueing discipline are assumed. Other common

queueing disciplines are Last-in-first-out (LIFO), Priority, Random and Processor sharing (PS).

Under FIFO and LIFO queueing disciplines customers have no priority and are removed from

the head and the tail of the queue respectively. When the priority discipline is employed (each

customer has an assigned priority) the customers with the highest priority are removed first

from the queue. In random queueing discipline a customer is randomly chosen to be removed

from the queue. The PS discipline is slightly more complex; all customers in the queue receive

equal amounts of service. If a customer’s service request is completed within the service interval

provided by the server, then that customer exits the queue; otherwise the customer is placed

at the end of the queue until all other customers which are ahead in the queue receive their

share of service.

Furthermore, Queueing Networks can be one of three types: open, closed or mixed [53]. Open

Queueing Networks have one or more external sources which inject customers into the network,

and one or more sinks which represent the departures of customers from the network. On the

other hand, in closed Queueing Networks neither customer arrivals, nor departures occur; the

population of customers in the network is conserved and circulates the network’s queues. Mixed

Queueing Networks are a combination of the latter and former types and exist in the scenario

of multiple customer classes. The flow of customers of one class may define an open network

while the flow of another class may define a closed network.
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2.4 Graph Theory

Graph theory is a branch of mathematics which originated from the work of Euler during his

attempt to solve the Königsberg bridge problem. Currently, graph theory is being used in

many areas of mathematics, science and technology. Focusing our interest in computer science,

graph theory can be used in efficient algorithm construction, scheduling and network design.

An overview of more specific application examples can be found in [96]. In particular, graph

concepts can be easily applied to construct models of systems, to analyse their properties, and

to provide insights into their optimisation. In this section we will present some basic concepts

of graph theory and an algorithm for listing the elementary cycles of a directed graph [64]. If

required, further information and theory regarding this subject can be found in [30].

2.4.1 Basic Concepts

Here, we refer to the terms directed graph and directed edge simply as graph and edge unless

stated otherwise. We begin with the basic definition of a graph.

Definition 2.9. A graph G = (V,E) consists of

• a finite set V = {v1, v2, . . . , vn}, whose elements are called vertices, and

• a subset E of the cartesian product V × V , whose elements are called edges.

Each edge (vi, vj) ∈ E has two endpoints. Vertices vi and vj are called the initial and terminal

endpoints respectively. In the case where vj = vi the edge (vi, vi) is called a loop. Next we

define the notion of adjacency.

Definition 2.10. In a graph G = (V,E) two vertices vi, vj ∈ V are said to be adjacent if there

exists an edge e ∈ E whose endpoints are vi, vj. Two edges ei, ej ∈ E are said to be adjacent if

they have at least one common endpoint.
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Figure 2.8: A graph G with five vertices and seven edges is shown in 2.8(a). 2.8(b) depicts the partial
graph of G when edges (v1, v2) and (v2, v5) are removed. The subgraph of G, obtained by deleting
vertex v1, is shown in 2.8(c).

In addition, when two vertices vi, vj ∈ V are adjacent through the edge (vi, vj) ∈ E then vj

is called a successor of vi and vi is called a predecessor of vj. The sets of all successors and

predecessors of a vertex vi are denoted by Γ+(vi) and Γ−(vi) respectively.

If a subset of edges is removed from a graph G = (V,E), we obtain the partial graph of G,

denoted by H, where H = (V,E ′) and E ′ ⊂ E. If a subset of vertices V ′ is removed from G,

along with all edges which have at least one endpoint vi ∈ V ′, we obtain the subgraph of G.

An example of a graph along with its partial graph and subgraph is shown in Figure 2.8.

A finite sequence of edges in which the terminal endpoint of each edge is the initial endpoint of

following edge is called a path. The initial endpoint of the first edge and the terminal endpoint

of the final edge of the sequence are defined as the initial and terminal endpoints of the path

respectively. A path which has the same initial and terminal endpoints is called a cycle or a

circuit.

Definition 2.11. A simple path, is a path which does not traverse any edge more than once.

Similarly, an elementary path is defined as a path which does not traverse any vertex more than

once. If a path is elementary and the initial and terminal endpoints coincide, it is then called

an elementary cycle.

Now, we revisit the notion of successors and predecessors of a vertex vi and define the corre-

sponding concepts when the edge (vi, vj) is replaced by a path (vi, vk), (vk, vk+1), . . . , (vk+s, vj).

We say that vj is a descendant of vi and vi is an ascendant of vj if there exists a path from

vi to vj. Γ̂+(vi) and Γ̂−(vi) denote the sets of descendants and ascendants of vi respectively.
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Figure 2.9: Graph G = ({v1, v2, v3, v4}, {(v1, v3), (v3, v2), (v2, v2), (v3, v4)}) (2.9(a)) and its simplifica-
tion GS = ({v1, v2, v3, v4}, {(v1, v3), (v3, v1), (v3, v2), (v2, v3), (v3, v4), (v4, v3)}) (2.9(b)).

Furthermore, vj is said to be accessible from vi if it is a descendant of vi or vi = vj and similarly,

vj is said to be converse-accessible from vi if it is an ascendant of vi or vi = vj. As before, the

sets of vertices which are accessible and converse-accessible from vi are denoted by
∗

Γ+(vi) and
∗

Γ−(vi) in respective order.

An important process in graph theory is the decomposition of a graph G = (V,E) into its

connected components. This process can be thought as decomposing several objects contained

in the same set, into different object classes, where each object in each class is accessible from

another object within the same class. Formally,

Definition 2.12. Consider a binary relation, called the connectivity relation C, which is applied

on the set of vertices V of any graph G = (V,E). We write viCvj if vj ∈
∗

Γ+(vi) on the

simplification GS of G. If viCvj holds then we say that vi is connected to vj.

The simplification GS is obtained from G by complementing its edges, i.e. wherever an edge

(vi, vj) exists we add (vj, vi), and by removing its loops (see Figure 2.9). It can be easily

shown that the relation C is reflexive, transitive and symmetric, and therefore, an equivalence

relation [30]. The subgraphs of G which are generated by the equivalence classes produced by

the partition V/C are called the connected components of G. A graph is said to be connected

if it consists of only one connected component. A slightly altered version of Definition 2.12

defines strong connectivity :

Definition 2.13. Consider the binary relation S, called the strong connectivity relation, which

is applied on the set of vertices V of any graph G = (V,E). We write viSvj if vj ∈
∗

Γ+(vi) and

vi ∈
∗

Γ+(vj) on G. If viSvj holds then we say that vi is strongly connected to vj.



62 Chapter 2. Background Theory

Applying the same reasoning as above with respect to the relation S, instead of C, we can

define strongly connected components and strongly connected graph.

2.4.2 Determining Elementary Cycles in a Graph

The first relatively efficient algorithm which could list all the elementary cycles in a directed

graph was developed by Tiernan [107]. It performs an exhaustive search for cycles from each

vertex in the graph using backtracking. Unfortunately, his algorithm is quite slow with a worst-

case time complexity exponential in the number of circuits as well as the size of the graph. To

this end, Tarjan [104] developed another algorithm to perform the same task whose running

time is bounded by a polynomial function, i.e.O((|V | · |E|)(c + 1)) where c is the number of

cycles in the graphG = (V,E). The improvement observed in the running time of this algorithm

is mainly due to the way it searches for the next vertex which extends the elementary path;

the algorithm uses a depth-first search [103] to traverse the edges of the graph in an efficient

manner.

Here, we present the algorithm developed by Johnson [64] which, although it resembles Tarjan’s

algorithm, realises a worst-case time complexity of O((|V |+ |E|)(c+ 1)). The main difference

of this algorithm, with respect to the previous ones, is that it considers each edge in the graph

at most two times between the output of two consecutive circuits.

Algorithm 1 : Unblock(int v)5

1: blocked[v] � false

2: for w ∈ B[v] do

3: B[v].delete(w)

4: if blocked[w] then

5: Unblock(w)

6: end if

7: end for

The algorithm requires as input an adjacency list, say AG, which is used to describe the given

graph G = (V,E) and it outputs all elementary cycles that exist in it. It assumes that vertices

are represented by distinct and consecutive integer values starting from one. The algorithm

5Modularised presentation of Johnson’s algorithm as shown in [64].
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Algorithm 2 : Circuit(int v):Boolean5

1: f � false

2: stack.push(v)

3: blocked[v] � true

4: for w ∈ AK[v] do

5: if w == s then
6: {an elementary circuit has been identified}
7: store stack followed by s

8: f � true

9: else if blocked[w] == false then

10: if Circuit(w) then

11: f � true

12: end if

13: end if

14: end for

15: if f then

16: Unblock(v)

17: else

18: for w ∈ AK[v] do

19: if B[w].contains(v) == false then

20: B[w].add(v)

21: end if

22: end for

23: end if

24: stack.pop(v)

25: return f

begins with a root vertex s and eventually explores the set
∗

Γ+(s) of the subgraph GK = (VK , E
′)

of G induced by s and vertices “larger than s”6 by performing recursive calls to a procedure

called Circuit (see Algorithm 2) [64]. A stack is used to store the vertices of the elementary

cycle currently being constructed in the appropriate order. |V | + 1 more lists are maintained:

one logical array of size |V |, used to indicate which vertices are blocked (previously explored),

and |V | integer lists, referred to as B-lists, one for each vertex v ∈ V . These are used to store

information regarding searches which did not yield an elementary cycle. In particular, a B-list

for vertex, say w, w ∈ V , contains the predecessor vertices v of w given that the edge(v, w) has

been already traversed, at least once, during the current search. When an unexplored vertex is

reached through the current path, it is pushed into the stack and becomes blocked. Then, for

each w, where w is a successor of the current vertex, two conditions are checked:

1. If w is equal to s then an elementary circuit is recorded and the procedure Circuit

6“larger than s” in some user-defined ordering of the vertices.
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returns true.

2. If the latter is not the case and w is not blocked, a recursive call is made to the procedure

Circuit with the starting vertex being w.

The algorithm also uses an auxiliary procedure called Unblock – depicted in Algorithm 1 –

which takes as input a vertex v, and unblocks it. Also, this procedure removes and unblocks

every predecessor vertex of v (found in the B-list of v) in a recursive manner. Unblock is called

only whenever an elementary circuit is completed. The algorithm’s initialisation procedure

is shown in Algorithm 3. We note that the particular instantiation of AK (cf. line 4) is not

necessary for the correct operation of the algorithm. It simply guarantees that the algorithm

is run only if at least one circuit exists; the algorithm can be directly applied on AG as well.

Algorithm 3 : Init(AG)
5

1: stack.empty()

2: s � 1
3: while s < |V | do
4: AK � adjacency list of strong component K with least vertex in subgraph of G induced by

VK = {s, s+ 1, . . . , |V |}
5: if !AK.isEmpty() then

6: s � least vertex in VK

7: for i ∈ VK do

8: blocked[i] � false

9: B[i].empty()

10: end for

11: dummy � CIRCUIT(s)

12: s � s+1

13: else

14: s � |V |
15: end if

16: end while

2.5 Clustering Algorithms

During the past few years, in particular the last decade, great technological and scientific

advances have been made in the fields, of machine learning, artificial intelligence and bioinfor-

matics. The key to this progress is the analysis of vast flows of data and the identification of

patterns that are hidden in them.
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For the improvement of automatisation of several computing applications, where data ma-

nipulation and analysis is required, some form of unsupervised learning is essential. Several

clustering algorithms exist that can be used to perform such tasks and which are chosen ac-

cording to the type or structure of data at hand. Another factor which determines the choice

of the appropriate clustering algorithm is the type of analysis desirable.

Clustering algorithms can be divided into several categories based on the way the data is

grouped into clusters according to some, possibly user-defined, similarity measure. The two

main categories are hierarchical and partitional clustering (see Figure 2.10).

Clustering

Hierarchical Partitional

Single Link Complete Link Square Error Graph
Theoretic

Mixture
Resolving

Mode
Seeking

K-Means
Expectation
Maximisation

Figure 2.10: A taxonomy of clustering approaches [61].

Hierarchical clustering algorithms operate by decomposing a datasetD into smaller subsets until

each subset contains only one element. These subsets merge or split to produce a nested series of

partitions, represented by a dendrogram. The dendrogram can be created using two approaches;

the agglomerative approach and the divisive approach. The former creates the dendrogram from

the leaves up to the root while the latter from root down to the leaves [41]. Although this class

of clustering algorithms does not require the number of partitions to be known beforehand,

it requires the definition of a termination criterion to determine if the desired granularity has

been achieved. When dealing with large datasets, hierarchical clustering algorithms are usually

avoided since the construction of a dendrogram is computationally expensive.
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For the remainder of this section we focus on partitional clustering and, in particular, we

consider the k-means algorithm which is widely used mainly due to its easy implementation.

This category of clustering algorithms requires an initial partition of the dataset D and the

definition of a similarity criterion which is used to initially place the elements of D into the

given partitions. Then, using the same similarity measure the elements are re-assigned to

the newly computed partitions. The same process is repeated until the criterion is optimised,

i.e. no further re-assignment of elements can be done. The major disadvantage of partitional

algorithms is that they require as input the number of partitions, i.e. the number of output

clusters. Here, we also present the DBSCAN clustering algorithm which introduces a density-

based notion of clusters and lays the foundation of density-based clustering.

2.5.1 K-Means Clustering Algorithm

The k-means algorithm is very simple and works very well when dealing with isolated clusters.

Apart from the selection of k – the number of clusters – it also requires an initial selection of

centroids, one for each cluster. The centroid of a cluster is computed by taking the average

of each cluster’s contained elements on each dimension. After the successful completion of the

algorithm each element is found in the cluster with the nearest centroid. K-means works with

any choice of distance metric which is used to compute the similarity, or distance between

an element and a centroid. Given that a similarity measure has been selected, the algorithm

consists of four basic steps:

1. Define the number of clusters (value of k).

2. Define the initial centroids (one for each cluster).

3. Assign each element of the dataset to the nearest cluster.

4. Calculate the new centroid for each cluster.

Repeat steps three and four until each cluster’s centroid remains constant.
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The centroid initialisation (step two) is highly correlated to the clustering result since different

choices of centroids usually produce different sets of clusters within the same dataset.

Robinson et al. explored through a case study fourteen different techniques to perform the

initial centroid selection [93]. Their results indicate that the most efficient method is a synthetic

one, namely the scrambled midpoints. This method divides the range of a dataset D into k

equally spaced partitions. For example, if we are dealing with planar analysis, D consists of

two dimensions: x and y coordinates. Assuming that the range of values is [0.0, 20.0] and

[0.0, 15.0] for the x and y coordinates respectively, and that the value of k is five, i.e. we

require five clusters, we need to divide each dimension’s range into five equal sized partitions

(see Table 2.1). For each computed partition of each dimension we compute its midpoint. A

centroid is then calculated by randomly selecting one midpoint from each dimension.

Partitions for x coordinate Midpoint Partitions for y coordinate Midpoint
[0.0, 4.0] 2.0 [0.0, 3.0] 1.5
[4.0, 8.0] 6.0 [3.0, 6.0] 4.5
[8.0, 12.0] 10.0 [6.0, 9.0] 7.5
[12.0, 16.0] 14.0 [9.0, 12.0] 10.5
[16.0, 20.0] 18.0 [12.0, 15.0] 13.5

Table 2.1: The partitions and midpoints for x and y coordinates with k = 5.

Another technique to perform the initial centroid selection was developed by Bradley and

Fayyad [26]. Their work presents a refinement algorithm which is based on the idea of clustering

clusters; multiple subsamples are randomly drawn from D and clustered producing estimates

for the starting points. The k-means algorithm is applied on each subsample of D but its

completion is determined by an additional condition: if any of the computed clusters has no

membership, i.e. it is empty, then its centroid is re-assigned and the subsample is clustered

again. The new centroid is chosen to be equal to the data element which differs the most from

its cluster’s centre. The solutions of each subsample, CMi are then merged together providing

a new dataset CM . Classic k-means is now applied to CM multiple times, each time using

CMi as starting points, producing a new solution FMi. The FMi with minimum distortion7

over CM is chosen to be the the initial centroid selection for the application of k-means on D.

7Distortion in this context is interpreted as the sum of squared distances of each data element from its
nearest mean.
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2.5.2 DBSCAN Clustering Algorithm

The DBSCAN clustering algorithm [41] is a density-based algorithm which was developed for

discovering clusters in large spatial databases and which also encapsulates the notion of noise.

Clusters are defined as connected regions of high data-density. If the data-density of a region

is less than a pre-defined threshold then this data is considered as noise.

If we consider a two-dimensional framework, DBSCAN operates in the following way: given a

dataset consisting of n points, DBSCAN will divide them into a number of clusters according

to the specified density threshold. This threshold is defined by choosing the minimum number

of points, MinPts, in a circle of radius Eps.

The basic definition of DBSCAN is the core point. A point p is a core point if the circle of

radius Eps, centred at p, contains more points than the value of MinPts. Having this in

mind, a cluster is then defined to be the set of core points and boundary points. Boundary

points lie on the boundary of the cluster, i.e. they lie in the circle of a core point but they

are not core points themselves. The key function of the algorithm is called ExpandCluster

(see Algorithm 5); this performs a spatial query which returns all points that lie in the circular

region of radius Eps around p. It then examines if the number of points contained in this region

is less than MinPts, and if that is the case, it classifies p as noise, or as core point otherwise.

In turn, the algorithm examines all density-connected points, both core and boundary points,

and groups them under the same cluster. The two functions of DBSCAN as described in [41]

are presented in Algorithms 4 and 5.

Algorithm 4 : DBSCAN(SetOfPoints,Eps,MinPts)

1: {SetOfPoints is UNCLASSIFIED}
2: ClusterId � nextId(NOISE)

3: for i = 1 to SetOfPoints.size() do

4: Point � SetOfPoints.get(i)
5: if Point.ClId == UNCLASSIFIED then

6: if ExpandCluster(SetOfPoints,Point,ClusterId,Eps,MinPts) then

7: ClusterId � nextId(ClusterId)

8: end if

9: end if

10: end for

Like k-means, DBSCAN also requires two inputs: the value of Eps and the value of MinPts.
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The authors of this algorithm tried to eliminate the need for determining these values. They

defined a function called k-dist which maps each point in the dataset D to its kth nearest neigh-

bour. The points were sorted in descending order of their k-dist value and plotted producing

the sorted k-dist graph. Their experiments regarding the determination of optimal selection for

k showed that graphs for values of k greater than four, i.e. k > 4, were quite similar and required

more intense computation. Therefore, they decided to set the value of MinPts equal to four,

i.e.MinPts = 4, for all cases dealing with two-dimensional data, thus eliminating the need to

specify this parameter. An example of a sorted 4-dist graph is depicted in Figure 2.11(a).

Algorithm 5 : ExpandCluster(SetOfPoints,Point,ClId,Eps,MinPts):Boolean

1: Seeds � SetOfPoints.regionQuery(Point,Eps)

2: if seeds.size() < MinPts then

3: {not a core point}
4: SetOfPoints.changeClId(Point,NOISE)

5: return false

6: else

7: {all points in seeds are density-reachable from Point}
8: SetOfPoints.changeClIds(seeds,ClId)

9: seeds.delete(Point)

10: while seeds.size() != 0 do

11: currentPoint � seeds.first()

12: result � SetOfPoints.regionQuery(currentPoint,Eps)

13: if result.size() >= MinPts then
14: for i = 1 to result.size() do

15: resultPoint � result.get(i)
16: if resultPoint.ClId == {UNCLASSIFIED or NOISE} then

17: if resultPoint.ClId == UNCLASSIFIED then

18: seeds.append(resultPoint)

19: end if

20: SetOfPoints.changeClId(resultPoint,ClId)

21: end if

22: end for

23: end if

24: seeds.delete(currentPoint)

25: end while

26: return true

27: end if

The value of the second parameter Eps depends on each particular dataset D and it can be

easily determined by looking at the sorted 4-dist graph of D. If a random point p is chosen

and we set Eps to be the 4-dist(p), then all points with 4-dist less or equal to 4-dist(p) will be

core points (see Figure 2.11(b)). Thus, we need to identify a threshold point which has two
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Figure 2.11: The sorted 4-dist graph of a sample dataset D (left) and Eps selection (right).

properties: it has a maximal 4-dist value and it is located in the “thinnest” cluster of D. The

value of Eps is hence set to be the value of the first point in the first “valley” of the sorted 4-dist

graph [41]. Although this selection is fairly simple for a user when the graphical representation

of this graph is available, it is very difficult to be determined automatically.

As an alternative, the authors proposed an interactive approach where the system computes

and displays the 4-dist graph to the user, and asks him to provide an estimate of the noise

percentage. Then, the system proposes a value for Eps based on the input estimate. If the user

is satisfied with the proposed value, the algorithm initiates, otherwise this selection process is

repeated.

2.5.3 Clustering Algorithm Selection

Both k-means and DBSCAN are currently widely used in many data mining applications. As

described in Section 2.5.1 k-means is very sensitive to the starting point selection. Using the

refinement algorithm presented in [26] we managed to overcome the latter issue but we were

not able to discard the need to enter the value of k – the number of clusters – manually. We
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have employed two different techniques: the application of G-means clustering algorithm which

is a slight variation of the classical k-means, and brute force.

G-means [50] executes the k-means algorithm several times, while increasing the value of k on

each run. On each execution each cluster is tested for member normality, i.e. whether the data

points assigned to a cluster are normally distributed with respect to its centre. If a cluster

fails this test (the test also requires a confidence interval to be set), its centre is replaced by

two others. The second technique we tried runs k-means several times. We set k equal to

one, i.e. k = 1, as a starting point and subsequently increased it by one on each execution.

At the end of each execution an associated error was calculated, provided by an error func-

tion based on the intra-cluster distance, i.e. the distance of each member of a cluster from its

centroid. This process was repeated until the total error of a particular partition was below a

pre-specified threshold, or a pre-specified maximum value of k was reached. Both aforemen-

tioned techniques showed moderate success when tested in the scope of our application using

synthetic location tracking data generated by the location-aware Queueing Network simulator

LocTrackJINQS [56].

DBSCAN on the other hand, given that we fix the value of MinPts to four, requires minimal or

no domain knowledge to determine the remaining input parameter Eps. Since our work aims

to keep user input at a minimum and we have managed to approximate the value of Eps by

applying a simple interpercentile distance technique on the 4-dist, we chose DBSCAN as our

clustering algorithm.

We note that other density-based algorithms such as OPTICS and WaveCluster [10, 95] also

exist. The main advantage of OPTICS against DBSCAN8 is that it allows multiple distance

parameter settings to be processed simultaneously. WaveCluster is a grid-based algorithm and

it requires several input parameters such as the grid size on each dimension, the wavelet to use

and the number of applications of the wavelet transform. However, DBSCAN performed very

well in our framework and thus we did not investigate further into the other algorithms.

8DBSCAN and OPTICS operate using the same principle of density-connected points.
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2.6 Estimating Model Parameters

An important part of performance modelling is the extraction of service and response time

distribution(s), customer arrival distribution(s) and other statistical information so that the

model accurately reflects the stochastic features of the underlying system. This process, in

most cases, requires some distribution to be fitted to the available data. The most common

technique used to perform this task is the Expectation Maximisation (EM) algorithm. It is

essentially an iterative method, a form of parametric clustering, based on the assumption

that the data to be clustered are drawn from one distribution. Its goal is to identify the

parameters of the distribution by assigning a score – provided by the likelihood function – to

each iteration while changing the parameters. The final parameters chosen are the ones that

produced the maximum likelihood, given that the likelihood has converged. The limitation of

this algorithm is that it needs to be tailored for a specific distribution, i.e. certain assumptions

must be made regarding the distribution that the sample data follow. In this section we present

the Maximum Likelihood Estimation (MLE) method and EM algorithm. A short description of

the hyper-Erlang distribution along with an overview of the G-FIT tool [106] is also provided.

We conclude this section with a presentation of the Akaike Information Criterion (AIC) and

the concept of Relative Entropy.

2.6.1 Maximum Likelihood Estimation

MLE [4] is widely used to fit a probability density function to a dataset. Suppose that a prob-

abilistic model depends on the set of parameters Θ and the dataset consists of N observations.

We denote the dataset as X = {xi}
N
i=1 and we assume that each xi is independently drawn

from the same probability density function p(x |Θ). The aim of this technique is to determine

the values of Θ so they maximise the value (probability) of the likelihood function

P (X |Θ) =
N
∏

i=1

p(xi |Θ) (2.10)
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Computing the right hand side of equation 2.10 can be hard. Taking the logarithms of both

sides we obtain,

log(P (X |Θ)) =
N
∑

i=1

log(p(xi |Θ)) (2.11)

yielding the log-likelihood function, denoted by L(Θ |X). The solution

Θ∗ = argmax
Θ

L(Θ |X) (2.12)

can be obtained by solving the equations of the first derivatives of the log-likelihood function,

with respect to Θ, set equal to zero.

2.6.2 EM Algorithm

The Expectation Maximisation (EM) algorithm [37] is a statistical tool widely used to estimate

the parameters of an underlying statistical model Θ from a given, possibly incomplete, set

of observations X. This is achieved through the maximisation of the log-likelihood function

L(Θ |X) (defined in Equation 2.11). EM works iteratively and at each iteration i the updated

value of Θ(i) is calculated so that the difference

log(P (X |Θ(i)))− log(P (X |Θ(i−1))) (2.13)

where Θ(i−1) is the previously computed estimate for Θ, is maximised. This process terminates

when the log-likelihood converges to some local maximum. The convergence of the algorithm

is guaranteed [19] and the convergence rate depends on the set of initial parameters Θ(0) which

can be initialised via several strategies [17].

The EM algorithm is also used in cases where the maximisation of the log-likelihood function

is analytically intractable. In this case, or in the case of an incomplete dataset, it can be

assumed that a complete dataset Z exists which contains both the observed and unobserved

data, i.e. Z = {X, Y }, and thus the joint density function P (Z | Θ) = P (X, Y | Θ) can be

specified. This density function is known as the complete-data log-likelihood L(Θ | Z).
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Using Equation 2.13, L(Θ | Z) and Jensen’s inequality, one can derive [21] that the updated

value for Θ, Θ(i), is given by the equation

Θ(i) = argmax
Θ

{EZ |X,Θ(i−1){log(P (X, Y |Θ)}} (2.14)

The computation of the right hand side of Equation 2.14 is performed in two steps:

1. The Expectation Step: The evaluation of the conditional expectation

EZ |X,Θ(i−1){log(P (X, Y | Θ)} of the complete-data log-likelihood function, given the ob-

served data X and the previously computed estimated parameter value Θ(i−1). We note

that this is evaluated as a function of Θ.

2. The Maximisation Step: The calculation of the current parameter value, Θ(i). This

calculation involves choosing an appropriate value for Θ so that the conditional expecta-

tion function is maximised.

Another version of this algorithm, known as the Generalised EM (GEM) algorithm [21, 19],

performs the maximisation step in a slightly different way; instead of finding the value Θ which

maximises the conditional expectation expression, it selects Θ(i) so that

EZ |X,Θ(i−1){log(P (X, Y |Θ(i))} > EZ |X,Θ(i−1){log(P (X, Y |Θ)} (2.15)

2.6.3 The Hyper-Erlang Distribution and G-FIT

As stated earlier, the EM algorithm needs to be tailored to fit a particular distribution to the

observed data. In the case where no prior knowledge exists for the data distribution, the latter

can be a problem. To this end the work of Thümmler, Buchholz and Telek [106] provides

a solution. They have developed a new tool, G-FIT, which fits a hyper-Erlang distribution

(HErD), a kind of phase-type distribution, to the sample data using the EM algorithm. Their

work relies on the theory that any general distribution of non-negative random variables can

be approximated arbitrarily closely by a HErD with the correct choice of parameters.
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Figure 2.12: State transition graph of a hyper-Erlang distribution [106].

A HErD is defined as a weighted mixture of Erlang distributions and it belongs to the class of

acyclic phase-type distributions. Formally,

Definition 2.14. The probability density function of a HErD is

fX(x;M, r,α,λ) =
M
∑

m=1

αm

(λmx)
rm−1

(rm − 1)!
λme

−λmx (2.16)

where M is the number of Erlang branches, r = (r1, r2, ..., rM ) ∈ IN
M is the vector specifying the

number of phases of each Erlang branch, α = (α1, α2, ..., αM ) ∈ IR
M
+ is the vector specifying the

weight (contribution) of each Erlang branch, with
∑M

m=1 αm = 1, and λ = (λ1, λ2, ..., λM ) ∈ IR
M
+

is the vector of scaling parameters (rates) (see Figure 2.12).

A common standardised measure of dispersion of a probability distribution is the coefficient of

variation (CoV ) which is a dimensionless number defined as,

CoV =
σ

µ
(2.17)

where σ and µ are the standard deviation and mean of the distribution. The CoV of a HErD

in terms of the first and second moment is,

CoV =

√

E[X2]

E[X]2
− 1 (2.18)

where the ith moment is given by,

E[X i] =
M
∑

m=1

αm(rm − 1 + i)!

(rm − 1)!λi
m

(2.19)
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If we define the set

H = {fX(x;M, r,α,λ)}

i.e. the set containing all hyper-Erlang distribution models, then H has the following proper-

ties [42]:

1. H is a convex set. Therefore, ∀f 1
X(x), f

2
X(x) ∈ H and f 3

X(x) = c1f
1
X(x) + c2f 2

X(x),

f 3
X(x) ∈ H with c1 + c2 = 1 and c1, c2 ≥ 0. That is, any convex combination of hyper-

Erlang distribution models is also in this set. This also holds for a combination of k HErD

models.

2. Let F be the set containing all probability density functions of non-negative random

variables. Then H is dense in F , i.e. any probability density function, giX(x) ∈ F , can be

approximated by a hyper-Erlang distribution model.

3. Hyper-Erlang distributions can have CoV less than, greater than and equal to one de-

pending on the choice of parameters. Their CoV is naturally bounded below by zero but

is unbounded above, i.e. it can be as large as desired.

Property 1 above can be easily verified by performing basic calculus. On the other hand,

properties 2 and 3 require more complex calculations and theoretical background. Their proofs

can be found in [65] and [42] respectively.

G-FIT operates using the EM algorithm tailored to the parameter estimation of a HErD.

At each iteration the algorithm increases the log-likelihood function until either the maximal

difference between consecutive values of the parameter vectors, or the relative difference of the

log-likelihood function between successive iterations, falls below a pre-defined threshold. The

computational complexity of both E- and M-step is O(M · K) where K is the sample size.

Therefore, the overall computational complexity for each iteration is O(M · K). Moreover,

G-FIT provides an option to find the “best” N -state HErD to be fitted where N is the total

number of states. The algorithm enumerates all possible settings of M and r1, ..., rM and fits a

HErD for each case. Unfortunately, this is only possible for a small number of states (N ≤ 10)
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and samples (K ≤ 106) as the number of possible settings grows exponentially for larger values

of N . The authors of G-FIT [106] recommend two different strategies to be employed in such

situations depending on the properties of the sample data distribution, i.e.CoV and heavy-tail,

and one general strategy (progressive pre-selection).

A series of case studies fitting HErDs to six benchmark traces and two real traffic traces was

performed [106]. The results indicate that G-FIT matches the first, second and third moments of

the sample distribution with 0.0%, 0.8%−69.4% and 1.2%−94.3% error respectively, depending

on the type of the sample distribution. Although it seems that the approximation is not always

good – matching third moment with a maximum error of 94.3% – it is in most cases better than

approximations obtained using the same sample data with PH-FIT, a phase-type distribution

fitting tool [59]. In general, G-FIT is able to provide relatively fast and good results without

much configuration and, most importantly, it is easy to automate. Its ability to be run as an

automated module makes it a very attractive option for our research.

Another distribution fitting tool which was recently developed by Reinecke et al. [92], called the

Hyper-* tool, showed to perform better than PH-FIT and G-FIT on three selected data sets.

It follows a two-step process: firstly the samples are clustered using the k-means algorithm (see

Section 2.5.1) and secondly an Erlang distribution is fitted to each computed cluster. Clusters

are then refined using two possible criteria: highest density or probabilistic assignment. This

process is repeated until convergence or until a maximum number of iterations is performed.

The final result is a hyper-Erlang distribution where each branch is the Erlang distribution

fitted to each of the final clusters and its weight is the relative size of the corresponding cluster.

Unfortunately, Hyper-* requires user input as it employs the k-means algorithm and therefore

is currently not suitable for our purpose9.

2.6.4 The Akaike Information Criterion

Akaike’s entropic information criterion known as AIC [3] is widely used to provide a measure

of how good a statistical model is relative to the number of parameters that it employs. The

9With an alternative suitable clustering algorithm Hyper-* could possibly be completely automated.
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problem that arises when multiple models are available for a given dataset, is which model to

choose since no knowledge of the “true” model is available.

Given a general statistical model f(·|Θ) and several competing models, each with a different

set of parameters, we can represent each competing model as

Model(k) : f(·|Θk), Θk = (θ1, θ2, . . . , θk) (2.20)

where k is the number of free parameters of Model(k) and it is often called the dimension or

order of the model.

The AIC(k) of each Model(k) is defined to be

AIC(k) = 2k − 2L(Θk) (2.21)

where L(Θk) denotes the log-likelihood function. A geometrically-based proof is provided

in [23]. The model that minimises the value of AIC over the set of competing models is

selected as the best approximation of the true model, i.e.

{f(·|Θk)| argmin
Θk

AIC(k)} (2.22)

As it can be clearly seen from Equation 2.21, AIC rewards the goodness of a fit while adding

a penalty proportional to the number of parameters of the model.

When dealing with finite and especially small samples of size, say n, AIC can become biased

when the dimension k of a competing model increases with respect to n. Hurvich and Tsai [60]

presented a bias-corrected version of AIC, the AICc which takes into account the sample size.

AICc adds an extra penalty as k increases which is inversely proportional to n, thus eliminating

the latter problem. That is,

AICc = AIC +
2k(k + 1)

n− k − 1
(2.23)

From Equation 2.23 we notice that as the sample size becomes larger, AICc converges to AIC
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since

lim
n→∞

2k(k + 1)

n− k − 1
= 0

2.6.5 Relative Entropy

Entropy, in the context of information theory, was first formally introduced by C. E. Shannon

in [94]. In his work he formulated and extensively studied the problem of message passing

through a channel, and set the foundation of communication theory. In an attempt to quantify

“choice” or uncertainty, Shannon defined the entropy of a discrete random variable X with N

possible events xi each with probability pi, i = 1, . . . , N , as

H(X) =
N
∑

i=1

pi log
1

pi
(2.24)

Relative entropy, also known as the Kullback-Liebler divergence [72], is a generalisation of

Shannon’s entropy. It provides a measure of the difference between two probability distributions

say P and Q, given that they are defined over the same domain. This measure is not symmetric,

though it is often intuitively thought of as a distance metric since it is always greater than

zero10, or equal to zero if the two distributions are the same. It can be used as distance metric

in distribution fitting algorithms where the objective is to find the set of model parameters Θ

that minimise the value of the relative entropy between the empirical distribution P and its

approximation model QΘ.

Formally, the relative entropy between two discrete distributions P and Q, denoted by RPQ is

defined as

RPQ =
∑

i

pi log
pi
qi

(2.25)

where pi, qi are the probabilities of event i in P and Q, and for continuous distributions as,

RPQ =

∫

Ω

f(x) log
f(x)

g(x)
dx (2.26)

10It must be noted that the value of relative entropy increases as the distributions diverge.
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where f(x), g(x) are the probability density functions for P and Q respectively, and Ω is their

domain.

Since RPQ 6= RQP , care must be exercised when ordering the two distributions. Usually, as in

our work, the first distribution, say P , represents the theoretical distribution and the second

distribution, say Q, a model or an approximation of P . The units of relative entropy (same as

entropy) depend on the base of the logarithm, e.g. for base 2 we have bits, base e, nat and for

base 10 the units are known as both ban or hartley.

2.7 PIPE2

PIPE2 [20, 40] is a Java-based open-source tool for GSPN-based system modelling and analysis.

It was developed as a platform-independent Petri Net editor, but was later enhanced by a

number of analysis modules and evolved into a distributed performance evaluation environment.

PIPE2 provides a friendly graphical user interface (see Figure 2.13) which allows the user to

create, load, save and edit GSPN models that conform to a format similar to the Petri Net

Mark-up Language (PNML) [18, 55]. While this unfortunately limits the inter-change of the

constructed models between PIPE2 and other tools, PNML support was prohibited since the

current PNML standard does not provide support for stochastic variations of Petri Nets such

as GSPNs.

In PIPE2, Petri Net models can be drawn on the canvas using available features from the

drawing toolbar. The drawing toolbar supports all the components required to construct a

GSPN model of arbitrary complexity, namely places, timed and immediate transitions, arcs

and tokens.

The model design interface also provides additional visual features, like zoom, export, tabbed

editing and animation. The animation mode has two available options. The user can either

manually fire enabled transitions or observe the behaviour of its model under random firing of

enabled transitions, by selecting the number of firings and the time delay between them.
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Figure 2.13: PIPE2: Petri Net Model Design Interface.

PIPE2 has been extended to support visualization of Coloured Generalised Stochastic Petri

nets (CGSPNs) [31]. PIPE2 also provides a CGSPN unfolding feature [14] that enables the

transformation of a CGSPN to an equivalent GSPN model and then uses the existing analysis

modules to perform model evaluation.

p1 p2t p1

p3

p4

p2

t1

t2

t3

t4

Figure 2.14: An example of a GSPN subnet shown in compact transition representation (left) and in
detailed representation (right) in PIPE2.

Another extension has been made to PIPE2 to enable the compact visualisation of large models;

specifically, a special form of transition has been introduced which essentially abstracts a Petri

Net subnet from a visualisation point of view, i.e. the dynamic behaviour of the model, as well
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as the delays introduced by the subnet’s transitions, do not change. An example of this type

of transition is illustrated in Figure 2.14.

2.8 Real Time Location Systems

In this section we provide a brief overview of the established location tracking technologies

available. Real Time Location Systems (RTLSs) facilitate data collection in real time. This

process is done automatically without requiring any human input thus increasing the quantity

and accuracy of data.

Figure 2.15: UWB-based sensors and tags (left) use a combination of angle-of-arrival and timed-
difference-of-arrival triangulation schemes to enable high accuracy tag location tracking (right).

RTLSs have been deployed mostly in the fields of supply chain management and healthcare [9,

101], but their domain of applicability is increasing with time, especially with the realisation

of the vision of the Internet of Things [5]. If we assume a generic customer-processing system,

the use of RTLSs can provide insights into resource and customer flow. This information can

be then used to improve performance efficiency, asset management and system safety.

A variety of location tracking systems is available where each utilises a different technology:

Infrared (IR), WiFi, Ultra Wide Band (UWB) and Radio Frequency Identification (RFID).

Each technology has merits over the others but the choice of technology to be used depends

on several factors such as the cost, the environment it is applied in and the degree of accuracy

required.
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Infrared technology provides continuous tracking in 2D. Compared to the other technologies

it provides the worst level of accuracy, typically seven to twelve metres, and its signal can

be blocked by objects placed in the line of sight between the detection devices (tags) and

the spotter. Currently, IR is not used as a stand-alone location tracking technology but in

combination with RFID [85].

WiFi RTLS has the advantage that it can be deployed in existing WiFi infrastructure since

all WiFi devices operate under the IEEE 802.11 standard. Similar to IR, it can also provide

continuous monitoring in 2D but its accuracy can reach higher levels depending on the number

of access points that are available. Vendors suggest that its maximum accuracy can reach one

to two metres but it is in the range of five to ten metres in practice.

Ultra Wide Band technology can provide continuous tracking in 3D with accuracy up to fifteen

centimetres. The high accuracy of UWB makes it stand out from the other RTLS technologies.

UWB emits short-duration high-bandwidth radio pulses at a low power. This limits the inter-

ference of UWB with other signals, thus making it suitable for radio sensitive environments.

However, the low pulses limit its range. The high frequency on which UWB operates (6-8.5

GHz), allows the monitoring of multiple tags in an area. UWB-based RTLSs (an example can

be seen in Figure 2.15) can be the most expensive systems to deploy, depending on two fac-

tors: scalability and accuracy required. Until recently, their domain of applicability was limited

to mission critical applications and/or personnel tracking in dangerous environments [86, 44].

Currently, they are also employed – amongst other areas – in automotive and aerospace man-

ufacturing [108].

The most widely applied technology is RFID due to its low cost. RFID tracking consists of

three types: passive, battery-assisted passive and active. Passive RFID requires no battery and

is the cheapest and most basic option; it provides the tag’s location when it is in range from an

RFID reader with an accuracy of five to ten metres. Active and battery-assisted passive RFID

tags have onboard batteries thus emitting a signal to the RFID reader without the need to be

as close as the passive tags. RFID-based location tracking systems are also11 used in the fields

11Additional application fields of RFID-based RTLSs are listed in Section 1.1.
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of logistics and asset management. Some examples can be found in [87, 112].

2.9 Related Work

The problems associated with manual construction of performance models of both software

and physical systems have been acknowledged during the past two decades by the research

community. It is an expensive and time-consuming process that often results in models which

fail to accurately capture the relevant time delays associated with the system’s underlying

processes and thus, fail to emulate correctly the system’s behaviour. In this section we present

research related, but not limited, to the automated construction of performance models and

data mining.

Research conducted in the fields of workflow induction and process mining share some high-

level similarities with ours. For example, Agrawal et al. present an approach which automat-

ically constructs process models from execution logs [2]. Their algorithm produces a directed

acyclic graph (DAG), known also as execution graph, which represents the workflow struc-

ture of the underlying business process, by identifying dependencies between activities. In the

model graph, these dependencies are represented by directed edges. Gonzalez et al. propose

a method to construct compressed probabilistic workflow models from RFID-based location

tracking data [46]. Their research, which focuses on supply chain management applications,

yields an efficient method for extracting and storing item flow information, such as the path

of items, their transition probabilities to different locations and duration distribution at each

location. The authors manage to achieve a high-level of data compression by grouping indi-

vidually tagged items into categories and by ignoring or merging deviations of individual items

within the same category. Item flows were stored in a data cube, referred to as flowcube,

whose measure is a flowgraph12 [45]. These flowgraphs differ from traditional flowgraphs; their

nodes are annotated with a distribution of possible durations at the particular node and they

maintain a set of exceptions to the transition probabilities and duration distribution at each

12A traditional flowgraph is a tree where each node represents a location and each edge represents a transition
between two nodes.
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node. These exceptions – recorded only when sufficient evidence to support them exists – are

essentially deviations of paths or duration, which significantly affect the transition probabil-

ities and duration distribution respectively. In our work we employ techniques which share

some similarities with [45] to extract high-level information from raw location tracking data,

i.e. service duration of a customer at a service area, and to record or merge path deviations of

customers of a particular class from the general path of the same class.

Techniques, similar to those of process mining, are also applied in software architecture-level

performance model extraction of component-based systems [27]. Event records such as BEGIN

and END are used to signal the entry or exit from a software building block and during the

software run-time they are stored in a list. This list can be processed to yield the components

and component connections (control flow) of the system. We employ a similar approach to infer

the high-level customer flow – in terms of service area locations – from past customer location

traces. Since our research is based on location tracking data we use the low-level location of

customers, specified by x and y coordinates, and the computed boundary of each service area

to determine high-level events, such as a customer’s arrival or departure from a service area.

A previous research endeavour in the field of automatic construction of GSPN models has been

performed by Xue et al. [114]. They developed a methodology that automatically constructs

GSPN models for Flexible Manufacturing Systems (FMSs)13, which can respond to changes in

their environment in real-time. The authors’ work includes a software package, FMSPet, where

an input language called FMSDL is used to describe the physical system being modelled. The

output of FMSPet is compatible with the Stochastic Petri Net Package (SPNP) [34] which is

used to analyse GSPNs. However, their methodology does not extract the model from data;

the FMS must be explicitly defined in the input file, and it is application-specific. Thus, it

cannot be easily adapted for other scenarios.

Another piece of work related to the automatic construction of performance models, but in a

different context, was performed by Kounev et al. [71]. They propose an approach to auto-

13An FMS consists of two components: the actual manufacturing system, i.e. an assembly line, and a con-
troller which allows the system to react to various changes.
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matically extract the performance model of an Enterprise Data Fabric (EDF)14. The model is

realised using Queueing Petri Nets (QPNs) and its parameterisation is based on readily avail-

able monitoring data which are provided by the EDF. Three submodels, the Client, Server and

Network submodel, are combined to produce the EDF’s performance model for any number of

servers and clients (multiple instances of the Client and Server submodels may be used). The

authors’ approach is implemented as part of the simulation-based tool Jewel whose purpose

is the automated performance prediction and capacity planning for EDFs. The applicability

of their modelling approach, performance prediction and capacity planning are demonstrated

through a case study using a representative EDF.

Our work is most closely related to the work of Horng et al. which examined the aspects of

automatic Queueing Network model construction of physical systems from location tracking

data [57]. In this work the authors propose a multiple-stage processing pipeline in order to

infer an accurate performance model. The model encapsulates both the structure of the network

through routing probabilities and the service time of its service centres. The inter-arrival time

distribution of customers at service centres is also inferred. In addition to the use of different

modelling formalisms, there is another major difference with our work: the authors tagged

the servers in the system, i.e. their location is known and they assume that each server has a

user-defined service area (circular). We make the same assumption regarding the shape of the

service area, but we are able to automatically infer both the servers’ location and service radius

from the location tracking data. Furthermore, unlike our work, the existence of presence-based

synchronisation between service centres and the presence of service cycles is not inferred.

14An EDF is a distributed enterprise middleware, located between the application and the host network, and
it is used to allocate and manage data and resources across multiple, physically separate, hardware nodes.
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Generating Synthetic Location

Tracking Data

Simulation has been widely used in both academic and business applications since it provides the

user with the ability to rapidly perform experiments so as to investigate the system behaviour

under different scenarios. Furthermore, this process is quite inexpensive, not only in terms of

money but resources too, compared with the actual cost for implementation, or modification, of

a real life system. Applications where simulation is of particular interest include performance

modelling and evaluation of systems, workflow analysis, process improvement, asset/personnel

management, etc. The availability of simulation software tools, such as MOMOSE [22], Asset-

Manager NT and PT [29], WITNESS [76] and Simul8 [97], assist organisations to identify their

system’s bottlenecks and gain better insights into the implications of various resource and work-

load modifications on the overall system performance. However, some simulation tools have

limited application domains (e.g. [22, 29]) and many of them also fail to capture the stochastic

nature of the system’s inherent time delays.

In this chapter we present LocTrackJINQS [56], originally developed to support location-

based research [6, 57], an open-source simulation library used to construct location-aware sim-

ulations. LocTrackJINQS is an extension of JINQS, a Java simulation library for multi-

class Queueing Networks [43]. JINQS provides a suite of primitives which enable developers

87
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to build simulations for a wide range of stochastic Queueing Network models in a time effi-

cient manner. Furthermore, it offers simplicity for simulation construction and flexibility for

application-specific functionalities through the use of inheritance [43].

Unfortunately, JINQS only allows the creation of high-level simulations of abstract Queueing

Networks and fails to provide support for realistic low-level features found in the physical world.

This makes JINQS unsuitable for constructing simulations that can approximate entities’ phys-

ical movements in a real life system, since entities’ travelling time might significantly influence

the overall system response time. In order to overcome the latter limitation, LocTrack-

JINQS provides low-level models of entity movement, while retaining the abstract high-level

model specification power of JINQS. LocTrackJINQS also provides primitives for gener-

ating synthetic location tracking data similar to that collected from actual real time location

tracking systems. This eliminates the need for heavy upfront investment and long-running

observation periods that an RTLS installation requires, and thus benefits research in data min-

ing from location tracking data and industry by providing a test bed for the development of

location-based applications.

The remainder of this chapter presents LocTrackJINQS in more detail. We first give an

overview for the simulator and its capabilities. We then present its basic software architec-

ture and explain how the location-awareness related features are implemented. The chapter

concludes with a presentation of two case studies which demonstrate the construction of a

simulation for a real life system and evaluate LocTrackJINQS’s operation.

3.1 LocTrackJINQS

LocTrackJINQS is a simulation library that offers functionalities to setup and execute sim-

ulations of real life customer-processing systems as Queueing Networks with low-level location

information (see Figure 3.1). It provides the user with the ability to specify the high-level fea-

tures of the network, i.e. the customer flow structure and time delay distributions (e.g. service

time and inter-arrival time), and the low-level ones, i.e. the entities’ geographic locations, their



3.1. LocTrackJINQS 89

(a) (b)

(c) (d)

Figure 3.1: An example of simulating a real life system using LocTrackJINQS: Figures 3.1(a) and
3.1(b) demonstrate how a customer processing system is represented as a high-level Queueing Network
with low-level location information; Figures 3.1(c) and 3.1(d) show a screen shot of the simulation in
progress and the generated location traces respectively.

moving speeds and paths.

A simulation can be specified and executed through LocTrackJINQS’s GUI or program-

matically. Simulations can also be saved and loaded for future execution or modification,

e.g. addition of new service areas, customer paths, etc. Figure 3.2 presents the main features

supported by LocTrackJINQS, grouped into categories. Multiple N -Servers1 with com-

mon queue can be used to simulate customer-processing systems which employ multiple service

points – each with its own service area – in order to service a shared queue of customers, e.g. the

cashiers in a bank or post office counters.

Service preemption allows a progressing service, provided by a service area, to be paused when

certain conditions are met, i.e. a customer, who has higher priority than the current customer

1N can be set equal to one, thus enabling the use of multiple single-servers which share a common queue.
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Service Areas Single Server N -Server Infinite Server
Multiple N -Servers
with common queue

Queueing Disciplines FIFO LIFO Priority-based Random

Customer Routing Deterministic Probabilistic
Customer
Class-based

Join Shortest Queue

Service Policies Service Preemption
Service Synchronisation

(Presence-based)

Figure 3.2: Main features supported by LocTrackJINQS.

being served, arrives at the service area and requests service, or simply whenever a new cus-

tomer arrival occurs. Whenever the service of a customer is paused, it is resumed as soon as

the service which caused the interruption has been completed. The service synchronisation fea-

ture is application-specific and it was developed to make the validation of the presence-based

synchronisation detection mechanism possible (see Chapter 5). This feature allows the user

to specify one or more conditions which associate the service status of customers at a par-

ticular service area with the presence of customers in other service areas2. Service, provided

to customers by the server of the synchronised service area, initiates and progresses only if

all the specified synchronisation conditions are met. We note that in service synchronisation,

when service is paused, the server of the synchronised service area remains unavailable to all

customers in the queue until the paused service is resumed and completed.

Figure 3.3 shows all currently supported distributions which can be used to specify the location

update error, customer speed, service times and customer arrivals. Other distributions can be

easily implemented and incorporated in the simulation via the use of inheritance.

In addition to the simulation specification features presented above, LocTrackJINQS pro-

vides customer and system-oriented performance measures for each service area defined in

2A synchronisation condition is defined with respect to the number of customers, of each class, that must
be present in the synchronising service area so that the service of a customer in the synchronised service area
can initiate and progress.



3.1. LocTrackJINQS 91

Deterministic Normal Cauchy Empirical Discrete Gamma Uniform

Exponential Erlang Hyper-Exponential Hyper-Erlang Geometric

Pareto Type I Pareto Type II Truncated Cauchy Weibull

Figure 3.3: Distributions supported by LocTrackJINQS.

the simulation [43]. Examples of such performance metrics include the mean response time

and its variance (customer-oriented), mean queue length, server utilisation and mean popula-

tion (system-oriented). The computation of such metrics is enabled by the use of two types

of measurement variables contained within each node defined in the network; their computed

values can be displayed at the end of the simulation.

Before we proceed to examine the software architecture of LocTrackJINQS, we outline the

three main features which distinguish it from JINQS:

1. Location-aware simulation support. As mentioned earlier, JINQS only provides the user

with the ability to specify high-level simulations, where service areas are defined as servers

with an associated queue and no geographical location. Furthermore, as no low-level

information is incorporated, customer location and flow are defined only with respect to

which server the customer is currently located, and which one the customer is going to visit

when its current service request is completed. Transitions of customers between servers

are assumed to occur instantaneously. In LocTrackJINQS, each entity in the Queueing

Network is assigned a geographical location3 (see Section 3.2.1) and its movements occur

along user-defined paths at a speed sampled from a user-specified distribution.

2. Location update generation. The original motivation and purpose of LocTrackJINQS

is to support location-based research, e.g. mining agent flow patterns and performance

models from location tracking data. It can generate synthetic, yet reasonably realistic,

3The geographical location is defined under a 2D Cartesian coordinate system.
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location traces on the fly, as the simulation progresses (see Sections 3.2.3 and 3.2.4). Fur-

thermore, since the user is able to specify the location update error, LocTrackJINQS

can produce location tracking data that virtually approximate any type of RTLS.

3. Graphical User Interface. LocTrackJINQS provides a graphical user interface that

enables the setup of the simulation environment, along with all required parameters4, in

an intuitive and user-friendly manner. Also, it allows the user to monitor the progressing

simulation visually. Further details regarding the GUI’s design can be seen Section 3.2.5.

An introductory user’s manual is also included in Appendix A.1

3.2 Software Architecture

LocTrackJINQS has been designed in a way to be either used as a stand-alone simulation

tool, or as a Java library, thus enabling users to incorporate it in their own applications; for

this purpose and also, to add new features to LocTrackJINQS, understanding its software

architecture is important. The two main packages which enable the construction and execution

of simulations programmatically are network and tools [43]. The classes which correspond

to entities used to formulate the structure of the Queueing Network model are located within

network while tools contains various utility classes. These are used to define various properties

of the network’s entities (such as their service time distributions), facilitate the simulation’s

event scheduling and calculate performance metrics. A third package, namely gui, contains

classes which deploy the graphical user interface of LocTrackJINQS and allows it to be used

as a stand-alone simulation tool.

The design of LocTrackJINQS, when considered as a stand-alone tool, follows the Model

View Controller design pattern (see Figure 3.4) [100]. Its components are defined by the

following classes:

• Model: It represents the overall state and data of the application domain. In LocTrack-

JINQS, the Network class in the network package represents the model and updates

4Simulation setup through the GUI supports only the specification of non-application-specific features.
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Figure 3.4: Model View Controller design pattern for LocTrackJINQS.

the view when changes occur in its state. View updates are issued either directly from

the Network class, e.g. the addition of a service area, or indirectly from its components,

e.g. the movement of customers.

• View: It displays the model and handles communication with the user. The model is

rendered so that users can visualise it and provides them with the ability to interact

with the application. In LocTrackJINQS, classes ControlPanel and DrawingPanel,

contained within the gui package, act as views. In particular, the ControlPanel class

allows the user to interact with the application, i.e. setup the simulation environment

and location update error. The DrawingPanel class renders the model and enables users

to visualise the simulation while it progresses. Furthermore, before the simulation is

initiated, it allows low-level customisation of the paths which define the flow of customer

in the model.

• Controller: It receives user input from view and responds by invoking the appropriate

methods on the model. The ControlPanel class also acts as the controller in LocTrack-

JINQS. It contains several swing5 components which are used to accept user input and

depending on the type of input obtained, it issues calls to the corresponding methods of

the Network class.

5swing is a core Java package which contains important classes for adding a GUI to an application.
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3.2.1 Architectural Modifications and Additions of Queueing Net-

work Components

During the process of extending JINQS to support location-awareness, several structural mod-

ifications were required to be made, especially in terms of the way a Queueing Network is

defined. In general, a Queueing Network is defined as a collection of nodes (service centres)

with an associated queue and service policy (see Section 2.3). Furthermore, when multiple

nodes exist in a Queueing Network, an associated set of routing rules, which specifies the flow

of customers, must be provided.

JINQS uses three classes, along with their specialisations, to represent a Queueing Network:

Node, Link and Customer. Links are used to connect Nodes and enable the (instantaneous)

transportation of Customers. Node class specialisations, i.e. Source and Sink, are used to

inject and retract Customers in the network respectively. Customers move along Links to

various Nodes within the network and request service or resources. The UML representation of

the Queueing Network structure is shown in Figure 3.5.

Network

+responseTime: CustomerMeasure

 

+registerCompletion(t:double)

Link

#send(c:Customer,n:Node)

#move(c:Customer)

Node

 ~id: int

 ~name: String

 ~arrivals: int = 0

+enter(c:Customer)

#accept(c:Customer)

#forward(c:Customer)

Customer

-customerId: int = 0

 

-id: int

-type: int

-priority: int

-arrivalTime: double

-serviceDemand: double

-queueInsertionTime: double

Source

#delay: DistributionSampler

#batchsize: DistributionSampler

 ~injectCustomers()

Sink

+accept(c:Customer)

QueueingNode

+enter(c:Customer)

+accept(c:Customer)

+forward(c:Customer)

travels via             

connected by

enters/leaves

Figure 3.5: The main classes in JINQS in UML representation.

The main challenge we encountered during the design phase of LocTrackJINQS, was to
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incorporate low-level, spatial information6 regarding customer movement and node location,

while maintaining a class hierarchy that can be easily extendable at the same time. To achieve

a suitable level of abstraction, similar to that of JINQS, we define the INode interface. This

interface extends the notion of Node to include any (planar) region a Customer instance may

enter, and remain for a period of time7 before departing for its next destination [56]. INode is

implemented by the classes Server, MultiQueueingServers and QueueingArea. An instance

of the Server class does not provide “service” to customers; after a Customer entity is accepted

to the Server’s service area, it is immediately forwarded to its next destination which is defined

by the outgoing link(s). The MultiQueueingServers class implements a cluster of Servers (or

subclasses of Server) which share a common queue (an instance of the QueueingArea class);

this class can also be used to model multiple N -Servers.

The classes Source and Sink are subclasses of the Server class and provide the same function-

ality as they do in JINQS: a Source instance injects Customers in the network and a Sink

instance retracts them. Two more basic types of service points are provided by LocTrack-

JINQS which are subclasses of Server, namely the InfiniteServer and QueueingServer

classes. Instances of the InfiniteServer class provide immediate service, i.e. no waiting time,

to accepted customers as they have an infinite number of resources (servers). On the contrary,

an instance of QueueingServer class has a limited, user-specified, number of servers and it

can be used to model an N -Server. If no servers are idle when a Customer entity is accepted,

the Customer is queued and waits until a server becomes available. The service time for each

serviced Customer is sampled from a user-specified distribution. All types of service points

that are currently supported by LocTrackJINQS have a fixed location and a circular service

area. The radius of each service area is user-specified and is used – in combination with the

Customer entity’s location – as the criterion to determine whether a customer is accepted into

a service point’s service area and thus, request service from it.

Furthermore, application-specific types of service points can be easily implemented using inher-

itance. Examples of such types of service points include the SynchronisedQueueingServer,

6Specified as 2D Cartesian coordinates.
7In a CTMC analogy, this period of time corresponds to the sojourn time of the customer at a certain

node (state).
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PreemtiveGenericGenericServer and SynchronisingQueueingServer classes, all of which

are subclasses of the QueueingServer class and are included in the current version of Loc-

TrackJINQS. Figure 3.6 depicts the basic Queueing Network structure, as well as all readily

available types of service points along with their class hierarchy, in UML representation.

Using the INode interface we have successfully managed to embed low-level information, such

as location and service radius, in the various types of service points supported in LocTrack-

JINQS. A similar approach is employed to enable the simulation of the low-level movement of

Customer entities between different locations in the system. Instead of using the Link class as

the superclass to define the various types of links, which is the case in JINQS, LocTrack-

JINQS uses an abstract class, namely the AbstractLink.

The introduction of the AbstractLink class enables a well defined link hierarchy: types of links

can be differentiated according to the customer routing policy they employ (see Figure 3.7).

The Link class, which is a subclass of AbsrtactLink, maintains the same functionality as the

Link class in JINQS, i.e. forwards Customer entities to their destination in zero time. However,

in LocTrackJINQS, two subclasses of Link, namely PhysicalLink and TransportLink, are

used to represent the physical path – defined as line segments connected together using break

points – that a Customer entity follows when moving between two INode implementations.

Using the method moveCustomers, a TransportLink updates the location of the Customers

traversing the link by taking into consideration their individual speed and direction of travel.

The MultiLinks class (also a subclass of Link) is composed of one or more TransportLink

instances and is mainly used within the MultiQueueingServers class. Its main application

is to transport Customer entities from the shared Queueing Area to the individual service

points which consist a MultiQueueingServers instance. It also uses the findAvailablePath

function which selects one of its TransportLinks to forward a Customer; this selection depends

on service point availability, i.e. which service point is not engaged in serving another Customer.

The RoutingLink class (also a subclass of AbstractLink) can be used as the parent class for

implementing various customer routing policies. Examples of such policies which are currently

included in LocTrackJINQS are:
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<<Interface>>

INode

 ~enter(c:Customer)
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 ~forward(c:Customer)
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InfiniteServer
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#customervelocities: DistributionSampler[]
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+setCustomerSpeedDistribution(s:DistributionSampler[])

Figure 3.6: The basic Queueing Network structure and supported types of service points of LocTrackJINQS in UML representation.



98 Chapter 3. Generating Synthetic Location Tracking Data

• Customer class-based routing. This routing policy allows Customer entities to be routed

from one INode to another, where the destination INode is selected from a user-defined

set. The destination selection is performed by applying a user-defined rule, which maps

the class of a Customer entity to a member of the latter set. This policy is implemented

by the ClassBasedRouting class.

• Probabilistic routing. This routing policy does not consider any individual properties of

a Customer entity. As in class-based routing, a set of destination INodes must be defined;

however, the destination selection is purely probabilistic. The probability associated with

each destination must also be provided by the user. This routing policy is implemented

by the ProbabilisticRouting class.

• Join shortest queue routing. This routing policy allows Customer entities, given a set

of destination INodes, to be routed to the destination which, at that time instance, has

the shortest queue. This is particularly useful when modelling a real life system, where

customers wish to obtain some service that is provided by several service points in the

system, each with its own queue, e.g. passport control checkpoints at an airport. This

policy is implemented by the JoinShortestQueueRouting class.

AbstractLink

#send(c:Customer)

+move(c:Customer)

+moveCustomers()

Link

#send(c:Customer)

+move(c:Customer)

+moveCustomers()

RoutingLink
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+moveCustomers()

LinkCluster
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+move(c:Customer)

+moveCustomers()

ClassBasedRouting

#routingPolicy: int[]

+setRoutingPolicy(routingRule:int[])
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1
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1

1..*
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1

1..*
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1
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Figure 3.7: Hierarchy of classes used to implement different types of links in LocTrackJINQS (UML
representation).
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The LinkCluster and MultiLinks classes may appear similar in the sense that they consist

of multiple links; yet they have significant differences in terms of structure, operation and

functionality. In Multilinks, links, in particular TransportLink instances, are constructed

internally when a new Server node is added to the corresponding MultiQueueingServers

instance. These internal links are not considered as independent components of the Queue-

ing Network. On the contrary, LinkCluster provides an abstract structure used to group

links which are explicitly defined within the network. LinkCluster uses a set of user-defined

rules to manage Customer forwarding via its member links. Subclasses of LinkCluster,

AbstractLink

#send(c:Customer)

+move(c:Customer)

+moveCustomers()

LinkCluster

#findLinkToMove(c:Customer): AbstractLink

+move(c:Customer)

+moveCustomers()

contains

1

1..*

DivergingLink

#findLinkToMove(c:Customer): AbstractLink

#addDivergingPair(lastVisitedNode:String,l:AbstractLink)

+move(c:Customer)

java.util::Hashtable<String,AbstractLink>contains1 1

Figure 3.8: UML representation of the DivergingLink class in LocTrackJINQS.

e.g. DivergingLink (see Figure 3.8), can be used in conjunction with certain implementa-

tions of the INode interface, e.g. ConvergenceNode (see Figure 3.9), to enable the connection

of multiple links to and from a node. The ConvergenceNode acts as a virtual layer on top

of a Server instance in order to allow multiple connections with links. Furthermore, using

the DivergingLink class, Customer entities accepted by a ConvergenceNode instance can be

forwarded – by links which are members of the group – to specific destinations. The destination

is determined by considering the node where the Customer was located prior to its arrival at

the ConvergenceNode.
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<<Interface>>
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Figure 3.9: UML representation of the ConvergenceNode class in LocTrackJINQS.

3.2.2 Saving and Loading Queueing Networks

Another feature introduced by LocTrackJINQS is the ability to save and load Queueing

Networks. The need for this feature was induced by the introduction of the GUI. When the

simulation environment is defined programmatically, it is naturally stored within a file placed

on the machine’s hard drive. On the other hand, when the user specifies the Queueing Network

through the GUI, the simulation model, including all its associated parameters, is temporarily

stored on the machine’s physical memory. Thus, when the application is terminated, all effort

put by the user to perform this, sometimes tedious, task is lost. In order to overcome this, and

allow users to modify and/or execute previously specified simulations, we include a save/load

feature into LocTrackJINQS.

Before developing this feature, we searched the existing literature for a unified Queueing Net-

work model specification format, similar to PNML for Petri Nets. The work of Smith and

Williams [99] proposes the Performance Model Interchange Format (PMIF) as a standard for

performance model interchange between performance modelling tools. The authors perform

a survey of representative Queueing Network modelling tools and define a prototype PMIF
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meta-model8 based on the EIA/CDIF (Electronic Industries Association/CASE Data Inter-

change Format). This meta-model is defined by taking into consideration the data required by

the tools included in the authors’ survey. The latest version of PMIF, i.e. PMIF 2, developed

by Smith et. al. [98], implements – amongst other features – a revised meta-model and XML

schema which provides additional syntactic validations, as well as a set of validations that

confirm that the models are semantically correct. Unfortunately, PMIF 2 currently does not

incorporate any information regarding the graphical representation of the Queueing Network

model, e.g. node coordinates and low-level link customisation.

The main contribution of LocTrackJINQS is the ability to generate location tracking data

and therefore, low-level location information is required to be included in the Queueing Net-

work’s meta-model definition. Thus, PMIF 2 is not yet9 suitable for our purpose; instead, we

define the LTJ file format, using the Extensible Markup Language (XML), and specify how

each network component, along with its parameters, must be represented. Each (abstract)

superclass or interface which is used to define a family of Queueing Network components,

i.e. AbstractLink, INode and Queue, contains an export function. This function is overridden

by the subclasses or implementations of the latter and when called, it returns the XML node

representation of that particular instance. A similar hierarchical approach is employed to en-

able the representation of all distributions supported by LocTrackJINQS as XML nodes.

Figure 3.10 shows an example of the representation of an instance of the QueueingServer and

TransportLink classes as XML nodes, as defined for the LTJ file format. The XML node

representation for all elements of the Queueing Network can be seen in Appendix A.2.

Saving

The NetworkSaver class, located within the network package, provides the saveNetwork

method. This method iterates through all Network components, i.e. nodes and links and for

each component, it invokes the component’s export method. The returned XML node of each

instance is stored in the LTJ file – specified as the argument of the saveNetwork method.

In addition to the network’s components, the number of customer classes and the specified

8The meta-model is the model of the information required to construct a model.
9Location information regarding the model’s graphical representation are being considered as future work

in PMIF 2.
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error/noise distribution (its type and parameters) are also stored within this file.

Loading

The method loadNetwork is a member of the NetworkLoader class (also contained in the

network package) and it takes as argument a File object that conforms to the LTJ file for-

mat described above. This method is responsible for setting up the simulation environment

according to the specifications and components contained in the input file. It first initialises

the Network and NetworkMonitor classes, and then parses the input file to create a Document

object. Several auxiliary methods – one for each type of XML node – read the constructed doc-

ument and add the corresponding elements into the Network; these elements are subsequently

displayed onto the DrawingPanel.

1 <node id = "N3">

2 <tagType>Server</tagType>

3 <tagged>true</tagged>

4 <updateRate>6</updateRate>

5 < l o c a t i o n>

6 <Point2D id = "pt1">

7 <x>5 .0</x>

8 <y>5 .0</y>

9 </Point2D>

10 </ l o c a t i on>

11 <type>Queueing Server</type>

12 <s e rv i c eRad iu s>0 .5</se rv i c eRad ius>

13 <numberOfServers>1</numberOfServers>

14 <s e rv i c eT imeDi s t r i bu t i on>

15 <d i s t r i b u t i o n>

16 <type>Exponential</type>

17 <parameter name = "Rate">0 .5</parameter>

18 </d i s t r i b u t i o n>

19 </ s e rv i c eT imeDi s t r i bu t i on>

20 < i n t e r a r r i v a lT imeD i s t r i bu t i on>

21 </ i n t e r a r r i v a lT imeD i s t r i bu t i on>

22 <v e l o c i t yD i s t r i b u t i o n>

23 </v e l o c i t yD i s t r i b u t i o n>

24 <queue ingD i s c i p l i n e>

25 <type>FIFO</type>

26 <capac i ty>2147483647</capac i ty>

27 <supportedCustomerClasses><

/supportedCustomerClasses>

28 <subQueueDisc ip l ine></subQueueDisc ip l ine>

29 </queue ingD i s c i p l i n e>

30 <p r i o r i t yPo l i c y></P r i o r i t yPo l i c y>

31 </node>

1 < l i n k id ="N4 to N2">

2 <type>Single Link</type>

3 <owner>N4</owner>

4 <t a r g e t id = "1">N2</ ta rge t>

5 </ p r o b a b i l i t i e s>

6 </cus tomerClas sDest inat ions>

7 <pathsAndPoints>

8 <path id ="N4 to N2">

9 <Point2D id = "pt0">

10 <x>15 .0</x>

11 <y>5 .0</y>

12 </Point2D>

13 <Point2D id = "pt1">

14 <x>20 .0</x>

15 <y>10 .0</y>

16 </Point2D

17 ></path>

18 </pathAndPoints>

19 </ l i nk>

Figure 3.10: XML node representation of an instance of the QueueingServer class (left) and
TransportLink class (right).
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3.2.3 Simulating the Monitoring Behaviour of an RTLS

Real life customer-processing systems are usually monitored by an RTLS in order to help system

administrators gain insights regarding the system’s customer and/or resource flow. An RTLS

collects low-level data which can then be processed to provide high-level information used to

assess the performance of the underlying system. In particular, an RTLS monitors tags which

are attached to, or in some cases embedded in, entities which either provide or request service.

Each tag is assigned a QoS (Quality of Service) value which determines the tag’s update rate

requirement, i.e. how often the RTLS should harvest a location update from that tag. At each

location update time slot, the RTLS chooses a tag and retrieves its location. The tag selection

is performed in such a way so that each tag’s QoS requirement is approximately satisfied, while

preventing starvation, i.e. a tag’s location is not updated for a long period of time.

NetworkElement

#id: String

#tagId: String

#isTagged: boolean

#updateRate: int

+setCurrentLocation(x:double,y:double)

+giveReads(): tools::Read

java.awt.geom::Point2D.Doubleis located at1 1

Customer Server

#serviceRadius: double

AbstractLink

#send(c:Customer,n:Node)

#move(c:Customer)

has outgoing1 1

Figure 3.11: UML class diagram of the NetworkElememt and its two subclasses Server and Customer.

LocTrackJINQS introduces the NetworkElement class to represent a “tagged” entity in

the system. NetworkElement equips its subclasses, i.e. Server and Customer, with attributes

and methods which facilitate the simulation of the monitoring behaviour of the RTLS: the

updateRate attribute defines the QoS requirement of the entity and the giveReads method

provides the entity’s (current) location update.

The monitoring behaviour of the RTLS is implemented by the NetworkMonitor class. This

class keeps track of all entities being monitored, and at regular time intervals it selects a tag

and outputs the tag’s location update. The tag selection algorithm (implemented by T.-C.

Horng) tries to emulate the one of an actual RTLS; it probabilistically selects a tag from a
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list of candidates. The list of candidate tags to be updated is constructed by taking into

consideration the QoS requirement of each tag, as well as the time which has passed from the

tag’s last location update (thus preventing starvation for a particular tag).

RTLSs employ different technologies, e.g. Ultra Wide Band, RFID and Wi-Fi, each with a dif-

ferent level of noise associated with its location measurements (see Section 2.8). Additionally,

the quality of the location readings obtained by an RTLS also depends on several other factors

which relate to the environment the RTLS is being deployed in: its nature, e.g. radio sensitive

environments may contain devices which cause signal interference, its topology, e.g. existence of

objects that may obstruct the sensors’ signal, and the density of the sensors in range. It is thus

very difficult, and also impractical, to assume any noise distributions. Therefore, LocTrack-

JINQS allows the user to specify an appropriate error distribution; this enables the generation

of location tracking traces tailored to approximate those produced by any RTLS technology.

The generated location updates are essentially tuples of the form (tagName, type, time, x,

y, stderr). The tagName field denotes the unique identifier for each entity in the system. type

contains the category of the entity, e.g. it specifies whether the entity represents a customer

or a tagged service point. In the case of multiple customer classes, type can also be used to

specify the customer class a customer entity belongs to. time denotes the timestamp of the

location update, i.e. the time when the location update was recorded by the RTLS, and x, y

specify the location of the tag at that particular instance. stderr is the expected deviation

between the tag’s recorded location and actual location.

3.2.4 Introducing New Event Classes

JINQS performs high-level Queueing Network simulations using discrete-event simulation (DES).

DES maintains a time ordered list of various simulation events and the simulation time pro-

gresses instantaneously to the next event in the list when the processing of the current event is

completed. Invoking an event may result to other events being added to the list. LocTrack-

JINQS performs simulations in the same way.
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Both JINQS and LocTrackJINQS use the Event class, along with its subclasses, to define

events such as customer arrival events and service termination events. We note that these

types of events, shared by both JINQS and LocTrackJINQS, do not contain any low-level

information regarding customer location. To support the location-based features introduced

earlier, two new Event subclasses are implemented:

• TransportCustomersEvent class. When such an event is triggered, it performs a call to

the moveCustomers function which is contained in every instance of the TransportLink

class. This event is scheduled to occur at frequent, regular time intervals, e.g. every few

milliseconds, thus enabling the simulation of customer movement at fine resolution.

• TagReadEvent class. The execution of this event invokes the updateTagReads function

of the NetworkMonitor class. By taking into account the two criteria mentioned in the

previous section, i.e. QoS requirement and starvation avoidance, this function reads the

locations10 of the tags and outputs them to the trace file.

3.2.5 Graphical User Interface

LocTrackJINQS’s graphical user interface is implemented by nineteen classes which are

contained in the gui package. The main classes which consist LocTrackJINQS’s interface,

including their relationships, are depicted in Figure 3.12.

Through this interface, users are able to easily lay out the topology of the Queueing Network,

specify the parameters of each added service point and its corresponding service area, and

visualise the simulation as it progresses. Furthermore, customer paths between service points,

i.e. links, can be explicitly seen (drawn as a straight line segment) and customised with a few

mouse clicks; the user can click on a path and enter a new break point which can be dragged

to the desired position.

The MainUserFrame class contains the components of LocTrackJINQS’s GUI: an instance

of the ControlPanel, DrawingPanel, StatusBar and GUI Sim class. The StatusBar class is

10The read location is the tag’s true location adjusted according to the user-defined error/noise distribution.
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MainUserFrame

+setSimTerminateTime(t:double)

+runSimulator()

+runSimulator(t:double)

ControlPanel

-init()

+actionedPerformed(event:ActionEvent)

contains 11

java.swing::JFramejava.swing::JPanel <<interface>>

java.awt.event::ActionListener

DrawingPanel

-init()

+clear()

+addPath(source:INode,destination:INode)

+addNode(node:INode)

+paintComponent(g:java.awt::Graphics)

<<interface>>

java.awt.event::MouseListener

<<interface>>

java.awt.event::MouseMotionListener

StatusBar

+changeMessage(messageIndex:int)

contains

1

1

contains

1

1

GUI_Sim

+actionPerformed(event:ActionEvent)

NonGUI_Sim

#initialiseOutputFile()

+setTerminateTime(t:double)

+simulate()

+simulate(t:double)

+run()

+run(warmupTime:double)

+stop(): boolean

contains

1

1

Figure 3.12: UML class diagram of the main classes in gui package.

used to display various messages which serve as guidelines on how to setup the simulation

environment through the GUI.

The ControlPanel class acknowledges various events generated by pressing on certain swing

components (JButtons). For each triggered event, a corresponding action is executed which

usually requires some user input. This input is inserted through dialogs which also validate it

before accepting it; when unacceptable values or data types are inserted, relevant messages are

displayed to the user. User interaction via the DrawingPanel class only allows low-level path

customisation or deletion, and the specification of the location of a new service point.

Gui Sim class holds the simulation parameters, i.e. duration and warmup time, and it is re-

sponsible for removing and invoking scheduled Events. It maintains an instance of the Timer

class, provided by the Java swing package, which enables the fine-grained animation of the

customer movement; it produces ActionEvent instances every ten milliseconds which trigger



3.3. Evaluation 107

the execution of various events, e.g. TransportCustomersEvent, and update the state of the

simulation accordingly.

3.3 Evaluation

In this section we present two case studies: the first one simulates the security process in a

small airport, and the second one simulates a simple M/M/1 queue. The purpose of the first

case study is to demonstrate the functionality of some of the new features implemented in

LocTrackJINQS and illustrate its GUI. Results associated with the response time (mean

and standard deviation) and mean queue length of each customer class at each service point

in the system are also presented. The second case study focuses on the validation of Loc-

TrackJINQS’s operation. The M/M/1 queue is simulated ten times and the averages of

the server utilisation, mean queue length and mean response time are compared against their

corresponding analytically obtained values.

3.3.1 Case Studies

The first case study simulates the security section of a small airport which consists of two

passport control and two passenger screening checkpoints, each with its own queue. Figure 3.13

provides a description of the high-level topology of the airport’s security section. Customers

entering this system are processed in a way similar to a standard airport security process:

before entering the airport’s departure lounge, a passenger is subject to one passport control

check and one security screening.

Considering an EU airport, we differentiate customers into three distinct classes:

• Pilots and flight attendants (class 0). This class of customers has high priority.

• EU passengers (class 1). This customer class has low priority.

• Non-EU passengers (class 2). This class of customers also has low priority.
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Passenger Entrance

Passport Control 1 Passport Control 2

Security Screening 2

Security Screening 1

Departure Lounge

Figure 3.13: Case study one: high-level topology of the airport’s security section. Dashed arrows are
used to represent the flow of customers in the system.

The model for this system, constructed via LocTrackJINQS’s GUI, is depicted in Figure 3.14.

Node N1 represents the passengers entry point and is implemented by the SourceWithClassDist

class. The passport control checkpoints, represented by nodes N2 and N3, are implemented

by two identical instances of the QueueingServer class. Their service radius is set to be one

metre and their corresponding service area is indicated by the dashed circles. An additional

node (N4) – not explicitly specified in Figure 3.13 – is used to merge the flow of customers

departing from N2 and N3, and route customers to nodes N5 and N6 which represent the

passenger screening checkpoints. Since N4 provides no “real” service, it is implemented as an

infinite server with zero service time. The implementation of N5 and N6 is similar to that

of N2 and N3, but with a service radius of 1.5m. The two branchings of the customer flow,

i.e. from N1 to N2 and N3, and from N4 to N5 and N6, are implemented as instances of the

JoinShortestQueueRouting class since they are best suited to emulate the customers’ natural

behaviour in such type of systems. N7, an instance of the Sink class, is the model’s exit point; a

customer arrival at N7 denotes the completion of that customer’s security check and its entry in

the airport’s departure lounge. All service points in this system employ a priority-based queue-

ing discipline and customers that belong in the same priority class queue in a FIFO fashion.
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Figure 3.14: Case study 1: the airport simulation model as created using the GUI of LocTrack-

JINQS.

The type and parameters of the inter-arrival and service time distribution for each customer

class, at each service point are depicted in Table 3.1.

Pilots & Flight Attendants EU Passengers Non-EU Passengers

Passenger Entrance
Exp(0.02) Exp(0.33) Exp(0.2)

(Inter-arrival time)

Passport Control
Normal(2, 0.5) Exp(0.25) Erlang(2, 0.33)

(Service time)

Passenger Screening
Exp(0.2) Erlang(4, 0.1) Erlang(4, 0.1)

(Service time)

Table 3.1: Case study 1: the specified inter-arrival/service time distributions for each type of service
point and customer class of the airport simulation model.

The speed of all customers in this simulation environment is assumed to follow a Normal

distribution. Pilots and flight attendants’ speed distribution has a mean of 0.45m/s and a

standard deviation of 0.1m/s. Passengers (EU and non-EU) share the same speed distribution
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with a mean and standard deviation of 0.3m/s and 0.1m/s respectively. The location update

error is also normally distributed with mean 0.15m and standard deviation 0.2m.

The second case study simulates an M/M/1 queue ten times. Customer arrivals follow an

exponential inter-arrival time distribution with rate 0.03 customers/s. The service time is also

exponentially distributed with rate 0.05 customers/s. The queue (implemented as an instance

of the QueueuingServer class) consists of one server and employs a FIFO queueing discipline.

Infinite queue capacity is also assumed. Figure 3.15 illustrates this system as modelled in Loc-

TrackJINQS. As we discussed in the introduction of this section, the purpose of this case

Figure 3.15: Case study 2: the M/M/1 queue simulation model as created using the GUI of Loc-
TrackJINQS. N1 and N3 represent the system’s entry and exit points respectively. The queue is
represented by N2.

study is to assess the operation of LocTrackJINQS using quantitative results. We com-

pute the average of standard performance measures, such as server utilisation, mean response

time and mean queue length, obtained through the simulation of this queue and compare them

against the corresponding analytical results. In order to simulate this queue without accounting

for travelling delays of customers, these delays can cause inadmissible discrepancies between the

simulation and steady-state analytical results, customers must travel very fast, in fact instan-

taneously. For this reason, we set the speed of all customers equal to 100 m/s (a Deterministic

distribution is employed). We also note that a warm-up period of 100 s is employed in each

simulation to obtain a better approximation of the steady state analytical results.
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3.3.2 Results

Figures 3.16 and 3.17 show the (on-going) simulation of the airport model, at different time

instances. Light blue, red and green coloured person figures represent pilots and flight atten-

dants, EU and non-EU passengers respectively. The colour of the small circle located above

each person figure indicates the customer’s status: blue indicates movement, red queueing and

light green rendered service.

Moving pilot or

flight attendant

EU passenger

receiving service

Non-EU passenger

queueing

Figure 3.16: Case study 1: the on-going simulation of the airport model at an early stage.

Table 3.2 displays the mean and standard deviation of the response time for each customer

class at each service point, as well as the mean queue length at each service point, for case

study one. It can be seen from these results that the quality of service received by customers

with high priority at each node, i.e. pilots and flight attendants, is much better than that of the

remaining classes. In fact, the mean response time experienced by these customers – at every
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Passport Control 1 Passport Control 2 Passenger Screening 1 Passenger Screening 2
(N2) (N3) (N5) (N6)

C
la
ss

0 µrt 5.462 6.936 26.652 23.051

σrt 2.337 3.423 19.931 18.525

C
la
ss

1 µrt 226.279 250.316 573.261 485.416

σrt 117.048 139.623 295.540 287.235

C
la
ss

2

µrt 247.300 261.040 391.637 504.648

σrt 101.015 145.224 277.569 314.843

µq 57.566 59.936 88.321 89.463

Table 3.2: Case study 1: mean (µrt) and standard deviation (σrt) – in seconds – of the response time
for each customer class at each service point of the airport simulation. Customer classes 0, 1 and
2 correspond to Pilots & Flight Attendants, EU passengers and non-EU passengers respectively. µq

represents the mean queue length at each service point.

Figure 3.17: Case study 1: the on-going simulation of the airport model as time progresses.
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service point – is, relatively, close to the mean of their assigned service time distribution, i.e. 2

seconds at passport control and 5 seconds at passenger screening. Furthermore, the standard

deviation of their response time is low. The discrepancy between the mean of the assigned

service time distribution and the obtained mean response time is the result of delays inflicted

by customers of lower priority whose service was already in progress upon the arrival of high

priority customers at the service point. The mean and standard deviation of the response

time for each customer class at the system level demonstrate that pilots and flight attendants

consistently receive better service than EU and non-EU passengers (see Table 3.3).

Class 0 Class 1 Class 2 Aggregate

µrt 161.023 704.522 634.237 533.790

σrt 42.855 321.807 322.123 360.561

Table 3.3: Case study 1: mean (µrt) and standard deviation (σrt) – in seconds – of the response time
for each customer class, as well as the aggregate, for the whole system. Customer classes 0, 1 and 2
correspond to Pilots & Flight Attendants, EU passengers and non-EU passengers respectively.

The results of the second case study are shown in Table 3.4. We observe that the computed

average of utilisation, mean response time and mean queue length, obtained by simulating the

system depicted in Figure 3.15 ten times, approximate the corresponding analytically computed

values well. Furthermore, the analytically computed values lie well within the 95% confidence

Performance Measure Simulated Value (Avg.) 95% Confidence Analytical Solution
Interval

Utilisation (ρ) 0.622 (0.586, 0.659) 0.6

Mean Response Time (µrt) 50.453 s (37.537, 63.368) 50 s

Mean Queue Length (Nq) 0.887 customers (0.731, 1.043) 0.9 customers

Table 3.4: Case study 2: standard performance measures obtained through simulation and their
corresponding analytically computed values, for the system depicted in Figure 3.15. The simulated
values and the corresponding 95% confidence intervals are given to three decimal places.

intervals of the computed means. In addition to the results shown in Table 3.4, we also perform

two-sided, one-sample t-tests in order to test whether the mean of each performance measure

sample is equal to the corresponding analytically computed steady state value (cf. Table 3.5).

The results obtained in the second case study, as well as the values of the performance measures

obtained in case study one, suggest that LocTrackJINQS operates correctly and produces

data that preserve the properties of the specified Queueing Network model.



114 Chapter 3. Generating Synthetic Location Tracking Data

Performance Measure Null Hypothesis Test Statistic Critical Value Accepted ?

Utilisation (ρ) ρ = 0.6 1.3735 2.2622 Yes

Mean Response Time (µrt) µrt = 50 s 0.0793 2.2622 Yes

Mean Response Time (Nq) Nq = 0.9 customers −0.1847 2.2622 Yes

Table 3.5: Two-sided, one-sample t-test at significance level 0.05 applied to each sample of perfor-
mance measures obtained in case study two. The test statistics and critical values are given to four
decimal places.

3.3.3 Conclusion

This chapter presented LocTrackJINQS, a location-aware simulation tool, developed to sup-

port location-based research. Its development is based on the discrete-event simulation library

for Queueing Networks, JINQS. LocTrackJINQS maintains the simplicity and extensibility

of JINQS, and allows low-level location information to be incorporated in its simulation mod-

els, i.e. the location of entities and their spatiotemporal dependencies. Thus, it can generate

location tracking data, approximating those of an actual RTLS, as the simulation progresses.

Furthermore, simulations in LocTrackJINQS can be either specified programmatically or vi-

sually; simulations can be constructed visually through LocTrackJINQS’s GUI. In addition,

its GUI enables the graphical visualisation of on-going simulations, as it was demonstrated by

the first case study presented in Section 3.3.1. Standard performance measures can also be

computed and displayed at the end of each simulation.

In addition to the results of the two case studies presented in Section 3.3.2, LocTrackJINQS

is continuously evaluated through the course of this thesis: it is used to generate location

tracking data for the six case studies presented in Chapters 4, 5 and 6. As we will see in detail

later on, the results obtained from these case studies suggest that the PNPMs, inferred by our

methodology, match the structure and parameters of the abstract system, prior to its simulation

in LocTrackJINQS (cf. Figure 4.15). This evidence reinforces our conjecture regarding the

correct operation of LocTrackJINQS and its ability to generate data that accurately reflect

the properties of the specified Queueing Network, i.e. routing probabilities of the customer flow

and service time distributions.



Chapter 4

Model Inference Pipeline

In this chapter we present an automated technique which takes as input high-precision location

tracking data – potentially collected from a real life system – and constructs a hierarchical

Generalised Stochastic Petri Net (GSPN) performance model of the underlying system. This

is based on a coarse-grained approach which aims to provide a high-level description of the

physical agent flow in the system.

The methodology presented here follows the four-stage data processing pipeline shown in Fig-

ure 4.1, which takes as input raw location tracking traces and outputs the Petri Net Performance

Model (PNPM) in a format compatible with PIPE2 [20]. This methodology operates based on

the following assumptions (see also Section 1.2):

1. The system’s service centres, also referred to as service areas, are static.

2. The system employs single-server semantics and a random service discipline. Although

the methodology can successfully extract the service time of service areas which employ

a First-Come-First-Served (FCFS) discipline, it is, in general, hard to represent FCFS

in GSPNs.

3. No tag recycling is supported.

4. The customers stop or slow down inside a service area in order to receive service.

115
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The first stage of the pipeline prepares the input data for processing. The second stage infers

the locations and radii of the service areas in the system. We note that during this stage

additional service areas may be inferred which will not correspond to a physical service process.

Such service areas serve as an indication of a high congestion point or a spatial bottleneck

in the system which would probably not be captured through a traditional (manual) model

construction process. The third stage creates the initial structure of the PNPM with the

required places and transitions. Here, samples of sojourn times in each service area and samples

of travelling times between each pair of service areas are also extracted. The extracted sojourn

time samples are then processed to yield the service time samples. The final task of this stage

is the computation of the initial routing probability of the customer flow. In the final stage we

fit a hyper-Erlang distribution to each set of extracted service or travelling time samples using

the G-FIT tool [106] and refine the structure of the model accordingly.

Location
Tracking

Data
Stage 1 Stage 2 Stage 3 Stage 4 PNPM

1. Data standardisation

2. Customer path separation

3. Data filtering

...

1. Inference of service areas

2. Location and service radius
approximation for each in-
ferred service area

...

1. Allocation of places and
transitions

2. Sojourn and travelling
time sample extraction

3. Calculation of initial rout-
ing probabilities

0.3

0.7
1. Service and travelling time

distribution fitting

2. Model refinement

Figure 4.1: The four-stage data processing pipeline.

Naturally, since the GSPN performance model is constructed by analysing the location traces of

the customer flow in the underlying customer-processing system, there is dependency between

the inferred PNPM and the collected location tracking data. Ultimately this means that the

model will reflect the underlying system during the period that the customers of the system

were monitored. In particular, especially in customer-processing systems where resources are
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dynamically allocated during the system’s operation according to service demand, e.g. operating

bank cashiers, airline check-in points, supermarket tills etc., heavier customer traffic loads may

lead to the discovery of additional service areas and bottlenecks. Nevertheless, we note that

the response time of the service areas that have been discovered during lower workloads, will be

valid under heavier workloads since our methodology only infers the service time distribution of

each service area; the waiting time is thus implicitly modelled according the number of waiting

customers at each service area. However, if additional service areas are discovered, a similar

argument does not hold for the overall system’s response time.

The remainder of this chapter provides further details for each stage of the developed data

processing pipeline. We then present two case studies based on synthetic location tracking data,

generated using LocTrackJINQS [56] (cf. Chapter 3), on which we applied our methodology.

This chapter concludes with an evaluation of the obtained results and a discussion of several

limitations of the current methodology which are addressed in the following two chapters.

4.1 Stage 1

The aim of this stage is to prepare the raw location tracking data, retrieved from a customer-

processing system via an RTLS or simulation, for processing by the subsequent stages. This data

is essentially a stream of spatiotemporal updates where each such update contains – amongst

other information – the position of its associated tag at a particular time (see Figure 4.2).

The structure of a location update can vary depending on the type of RTLS being used and on

the software component used to extract the location trace file. Therefore, the raw input data

are converted into a standardized, source-independent format. Currently, the data conversion

component supports UWB-based location tracking data generated from a Ubisense RTLS and

synthetic location tracking data generated by LocTrackJINQS [56], but it can be easily extended

to support location tracking data from other sources.

The standardised data are then separated into paths, one for each recorded customer, identified

by the tagName. A path is the set of location updates which have the same tagName. A speed-
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Figure 4.2: Graphical representation of a stream of location traces, i.e. the input of the first stage of
the processing pipeline, obtained from a system with four service areas. Blue dots represent location
updates recorded during customer movement. Red dots represent location updates recorded when
customers were stationary.

based filter is then applied on each path to remove possible erroneous location updates which are

usually caused by signal reflection and refraction, and bad sensor geometry. This filter imposes

a speed threshold which defines the maximum allowable average speed that a customer can

move within the monitored environment. Its operation is described below.

l0

l1 l2

l3

l4

l5

l6

l7

l8

l9

l10

Figure 4.3: A graphical representation of the operation of the speed-based filter used to eliminate
erroneous location updates. Each lk, k = 0, . . . , 10 represents a location update and red arrows denote
rejected path segments. The filtered path is denoted by green arrows.

Given two location updates, say li and li+j , for some j, the average speed is computed by

di+j/(ti+j − ti) where di+j denotes the distance between them and ti, ti+j their timestamps.

If the value of the average speed is less than or equal to the threshold value, then li+j is

considered valid and added to the filtered customer path; otherwise it is discarded and the
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process is repeated for li and the next available location update. The value of the speed

threshold is by default set equal to 1.667 m/s which is sufficient to accommodate for systems

where customers (people) walk, and it can be easily adjusted according to the nature of the

system to be modelled. This filtering process is illustrated in Figure 4.3.

4.2 Stage 2

This stage infers the number of service areas in the system as well as their corresponding

locations and service radii. The main assumption here is that customers stop, or slow down

while receiving service and thus we can identify the regions where the customer movement is

relatively ‘slow’, as the likely service areas. This task consists of a three-layer technique (see

Figure 4.4): speed filtering, density filtering and the application of the DBSCAN clustering

algorithm [41].

Customer Path 1

Customer Path 2

...

Customer Path N

Speed
Filter

Density
Filter

2D Points

2D Points

...

2D Points

Merged
set of

2D Points

DBSCAN
Clusters

of

2D Points

Figure 4.4: Stage two of the data processing pipeline. The centroid of each cluster is likely to
approximate the location of a service area.

4.2.1 Speed Filtering

The speed filter is applied on each customer path (computed during the first stage) and aims to

identify the 2D spatial points1 of the location updates that were recorded when the customer

was stationary or moving at a relatively low speed. The operation of this filter is as follows:

1We employ a two-dimensional framework.
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for each customer path we calculate a raw speed curve describing the average speed of the

customer for each time interval between consecutive readings. That is, if the distance between

location readings li, li+1 with timestamps ti and ti+1 is di+1, the corresponding point on the

raw speed curve is (ti, vi) where

ti =
ti + ti+1

2
, vi =

di+1

ti+1 − ti
.

An example of the resulting curve is shown Figure 4.5(a). We then compute the 10th percentile

of the raw speed vector v, v = (v0, v1, . . . , v|v|−1), and use it as a threshold to identify the lowest

speed values (cf. Figure 4.5(b)).
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Figure 4.5: The raw speed curve (left) and the speed threshold applied to identify ‘low’ speed values
which suggest that the customer was in a service area waiting to be or being serviced (right).

The spatial points of the location updates that constituted the computation of each identified

vi, i.e. the position of the location readings li and li+1, are retrieved and stored in a list (one list

per customer). We note that this list only includes 2D points from distinct location updates.

For example, if vi and vi+1 have been identified as ‘low’ speed values, then we retrieve the

position of li and li+1 for vi and similarly, the position of li+1 and li+2 for vi+1. However, we

only store three points in the list: the position of li, li+1 and li+2.
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4.2.2 Density Filtering

The spatial points retrieved from the previous layer do not necessarily correspond to the position

of a customer located in a service area since the customer may move at variable speed and/or

may pause en route between service areas. To ensure that most2 such points are removed we

apply this density filter on each customer path, immediately after the application of the speed

filter (see Figure 4.4).

Here we make use of the notion of the Eps − neighbourhood of a point p [41], which for a

dataset D is defined as

NEps = {q ∈ D | dist(p, q) ≤ Eps}

That is, the set of points in D that lie in the circular area of radius Eps around the point

p. For each point p that has “survived” the speed filter we compute NEps(p) and we examine

if the number of points contained in this circular area exceeds a certain threshold MinPts,

i.e. |NEps(p)| ≥ MinPts. This condition specifies the minimum number of points that should

be present within the set NEps so that the point p remains in the list (see Figure 4.6). In our

implementation the value of MinPts is chosen to be four, according to the suggestion of [41].

Eps is chosen to be 0.25 (metres) because the error of typical UWB-based RTLS is approx-

imately this value. When this process is completed for every list of two-dimensional points

obtained by the speed filter, the remaining points from each list are merged (cf. Figure 4.4).

We note that we allow the reconfiguration of these values, i.e.MinPts and Eps, in order to

make this filter more sensitive (increase MinPts), or insensitive (decrease MinPts and/or

increase Eps). This is useful when modelling systems with high congestion where customers

move throughout the system at a very low speed or stop on several instances. In this case one

would increase the sensitivity of the density filter so that only true service areas are inferred;

in order to allow the inference of possible bottlenecks, e.g. regions of high traffic, one would

decrease the filter’s sensitivity.

2If a customer pauses en route between service areas, the points of those location updates may not be filtered
out. This depends on the duration of the customer’s pause and the tag update rate. Action against such cases
is taken after then DBSCAN clustering algorithm is applied.



122 Chapter 4. Model Inference Pipeline

r -
Epspr

r

r

r

r

r -
Epsp

r

r

r

Figure 4.6: Illustration of the density filtering process. Point p remains in the list as the number of
points present in NEps(p) is five (left), and p is eliminated from the list in the case where |NEps(p)| =
3 (right).

4.2.3 DBSCAN clustering

In the third layer, the DBSCAN algorithm [41] is applied to group the points contained in

the aggregated filtered dataset, emerging from the previous layer (cf. Figure 4.4), into clusters,

provided that they satisfy a density criterion (see Section 2.5.2). As in the previous subsection,

this criterion is specified by two parameters, MinPts′ and Eps′.

Again, we choose MinPts′ to be four, as our experience and that of others is that larger choices

do not produce any significant difference in results, while they rapidly become computationally

prohibitive [41]. The first step in finding a suitable value of Eps′ is to compute the 4-dist value

for each point p. As mentioned earlier (Section 2.5.2), a suitable value of Eps′ is identified

by finding the 4-dist value of the first “valley” in the sorted 4-dist graph. This value of Eps′

best differentiates noise (points to the left of the valley) from points that potentially lie within

service areas (points to the right of the valley).

Ideally, the filtered dataset should contain no noise points. In the context of this work, we

consider noise points to be points that correspond to location updates recorded while a customer

was moving towards a service area. The speed and density filters presented in the previous two

subsections are applied to remove such points from the dataset. Thus, in order for all the points

in the filtered dataset to be assigned to some cluster, we require that the Eps′ value is set equal

to the maximum 4-dist value. That is the first 4-dist value of the 4-dist graph, since the 4-dist

values are sorted in a descending order.

However, in some cases not all noise points are removed. When this occurs, the challenge is
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to choose the appropriate Eps′ value that will best distinguish noise points from points that

actually form the clusters corresponding to service areas. As we intend to keep user input at a

minimum in our approach, we applied a simple, empirical technique to approximate the value

of Eps′ automatically when noise points are present in the dataset. First, we obtain the set

of 4-dist values that lie in the first half percentile, i.e. 0.5% of the total number of values. We

then compute their mean (µhp) and standard deviation (σhp). We approximate the Eps′ value

by the first 4-dist value greater than two standard deviations above the mean. That is:

Eps′ ≈ min({4-dist | 4-dist > µhp + 2σhp})

Unfortunately, we were not able to automatically detect the cases where noise points are present

in the filtered dataset. Thus, we always apply the latter technique and provide a graphical user

interface (see Figure 4.7) which displays the automatically selected value for Eps′, the sorted

4-dist graph, as well as the filtered dataset. If no “significant” noise points are contained in

the filtered dataset (e.g. Figure 4.7(a)) – such points are usually isolated and thus can be easily

detected by the user (e.g. Figure 4.7(b)) – a manual selection is supported through this GUI.

The user can select the correct Eps′ value by clicking on the first point on the 4-dist graph (if

its not already selected).

We consider a cluster which was output by DBSCAN to be valid if the cluster contains a

substantial number of points. In particular, we require that the number of points contained in

a cluster exceeds 1% of the total number of clustered points. This action is mainly taken to

account for clusters created by limited groups of points which may have “survived” the speed

and density filters and satisfied DBSCAN’s density criterion.

The centroids of the valid clusters approximate the real locations of the corresponding service

areas. The radius of each service area is conservatively approximated as the 110% of the 95th

percentile of the distance between each point in the cluster and the cluster’s centroid. An

example of this process can be seen in Figure 4.8.
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(a) The filtered dataset does not contain any noise points. The user should select the first 4-dist value.

(b) The filtered dataset contains noise points. The correct Eps′ value has been successfully selected auto-
matically.

Figure 4.7: Eps′ selection graphical user interface.

4.3 Stage 3

Stage 3 constructs the basic structure of the derived PNPM. Here, we will use the example

shown in Figure 4.8 to visualise each step of this stage. We first create places associated

with the service areas inferred from the previous stage (see Figure 4.9). The next step is to

create places associated with customer movement between service areas, one for every pair

of service areas between which customer movement was observed, and transitions connecting

places representing service areas to those representing customer movement (see Figure 4.10(a)).

We call these transitions, service area service time transitions. Transitions are then created to

connect the places associated with customer movement to places representing destination service

areas (see Figure 4.10(b)). We call these transitions travelling time transitions.
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(a) (b)

Figure 4.8: Figure 4.8(a) shows the colour-coded clusters produced by DBSCAN for the set of location
traces depicted in Figure 4.2, and Figure 4.8(b) shows each service area’s location and service radius
approximation.

For the moment, we do not parameterise the rates of the transitions; in fact in the next

section we show how we replace each transition by a GSPN subnet that accurately reflects the

distribution of the relevant time delays. In preparation for this, here we compute – for each

customer – samples of their sojourn times inside service areas (response time samples) broken

down into waiting time and service time.

In order to estimate the service time a customer receives at a service area, we first estimate

when the customer enters the service area (entry time) by taking the average of two timestamps

called the first appearance time and last disappearance time [57]. Based on the customer’s

location traces, the first appearance time corresponds to the first timestamp when the customer

is identified to be inside the service area; the last disappearance time is defined as the last

timestamp when the customer is considered to be outside the service area (prior to the first

appearance time). The customer’s exit time is computed in a similar way: we take the average

of the timestamps of the two location updates that correspond to the last appearance and first

disappearance [57] (see Figure 4.11). We maintain a list for each service area which contains
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Server 0 Server 1

Server 2 Server 3

Figure 4.9: Creation of places representing service areas, one for each inferred service area from Fig-
ure 4.8.

instances of a data structure which holds – amongst other information – each customer’s entry

and exit times and allows its instances to be sorted according to exit time3. At each exit

time of a customer, we check if the previous customer’s exit time is larger than this particular

customer’s entry time. In this case, the estimated service time is the difference between the

current customer’s exit time and the previous customer’s exit time. Otherwise, the server

was idle upon the customer’s arrival so the service time is simply the difference between the

customer’s exit and entry times. An example of this process is shown in Table 4.1. We then

compute travelling time samples by subtracting the customer’s exit time at the upstream service

area from the customer’s entry time at the downstream service area along the customer’s path.

Customer Id Entry Time (s) Exit Time (s) Service Time (s)
Customer 1 10.50 13.40 2.90
Customer 2 12.47 18.33 4.93
Customer 4 8.11 20.27 1.94
Customer 3 22.10 26.41 4.31
Customer 5 25.03 33.84 7.43

Table 4.1: Service time estimation process from the recorded entry and exit times.

3We assume that a random service discipline is employed in line with the conventional service discipline
used in Petri Net models.
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Server 0 Server 1Travel 0t0

Server 2 Server 3Travel 1t1

(a)

Server 0 Server 1Travel 0t0 t2

Server 2 Server 3Travel 1t1 t3

(b)

Figure 4.10: Addition of travel places between pairs of places representing service areas as well as
transitions. Figure 4.10(a) shows the addition of service time transitions t0, t1 and Figure 4.10(b) the
addition of travelling time transitions t2, t3.

One of the key challenges in this stage is to distinguish the cases where a customer simply

passes through a service area without requesting service. To spot these cases, we use a speed-

based heuristic tailored for each particular customer path. We compute the average speed

of the customer over a time window before it reaches a service area and compare it with the

customer’s average speed inside the service area. If the latter is less than the former we consider

the customer as having waited to be serviced by the server. A look-ahead action similar to [57]

is also employed, in order to judge whether a real departure event occurred by checking if the

departed customer returns to the service area within a short period of time; this also removes

issues caused by possible erroneous location updates which might indicate that the customer’s

location is briefly outside the service area while, in reality, this is not the case.

Finally, a simple counting mechanism is used to calculate the initial routing probabilities of

the customer flow structure. These are represented as immediate transitions in the resulting

PNPM with weight equal to the probability for each corresponding destination service area.

Several other places and transitions are also used in our model (see Figure 4.12):
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Last disappearance time

First appearance time

Last appearance time

First disappearance time

Service Area

Figure 4.11: An example of a customer path, as the customer passes through a service area. Red
dots represent the location updates whose timestamps are used to compute the customer’s entry time.
Similarly, blue dots denote the location updates whose timestamps are used to compute the customer’s
exit time.

• A repository place. This place holds the total number of customers to be processed by

the system (represented as tokens).

• A place labelled as “Arrived” which is connected to the repository place via a timed

transition. The transition is used to emulate the travelling delay of customers before

reaching the first service area.

• Intermediate places connected to some service areas’ service time transitions and to im-

mediate transitions. These immediate transitions have weight equal to one and restore

the number of tokens contained in the repository. Such intermediate places are created

when customers exit the system immediately after obtaining service from a service area.

4.4 Stage 4

The final stage aims to replace the service area service time and travelling time transitions

with GSPN subnets that accurately reflect the distributions of the corresponding service time

and travelling time samples collected in Stage 3. For this task we will use the hyper-Erlang

distribution (HErD).

As discussed in Section 2.6.3 a HErD, given a sufficient number of phases, can be used to

approximate any non-negative type distribution. Here, the main issue is the accurate represen-

tation of the HErD in terms of GSPNs, since they only support transitions which fire with an

exponentially distributed time delay. As illustrated in Figure 4.13, the places and transitions in
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Server 0 Server 1Travel 0t0 t2

Server 2 Server 3Travel 1t1 t3
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Arrived
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Figure 4.12: A complete overview of the initial structure of a PNPM model obtained at the end of
the third stage of the processing pipeline for the set of location traces depicted in Figure 4.2. The
immediate transitions t7 and t8 model the initial routing probability of the customer flow.

the GSPN subnets correspond to the phases of the HErD which best fits the extracted timing

samples.

The weights of the Erlang branches are represented by the immediate transitions t1, . . . , tM , and

each Erlang branch is modelled using Molloy’s representation [79, 32], i.e. each phase of the Er-

lang distribution is modelled by a timed transition. The immediate transitions tinst1 , . . . , tinstM

have weight equal to one and are simply used to transfer tokens out of the subnet. When the

GSPN subnet replaces a service time transition, places p0 and p1 correspond to places repre-

senting service areas and customer movement respectively. If a travelling time transition is

replaced by the subnet then p0 corresponds to a place which represents customer movement

and p1 to a place which represents a service area.

We assume infinite-server semantics for all timed transitions included in the subnet. Therefore,

in the representation of the service time transitions we employ an additional complementary

place to control the number of tokens (customers) that are allowed to be inside the subnet
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Figure 4.13: HErD to GSPN correspondence.

simultaneously. In this research, we assume service areas with single-server semantics and

therefore the initial marking of this place is one (see Figure 4.14). There is no such restriction

on travelling time transitions.

To compute the candidate best-fit HErDs from our extracted timing samples, we make use of

the G-FIT tool [106]. We perform an exhaustive enumeration of all possible HErDs up to a

maximum number of states; we run G-FIT repeatedly, increasing the maximum allowed number

of states. At each run G-FIT returns the parameters of the best-fit HErD, i.e. the number of

Erlang branches, their weights, the number of phases and the rate for each branch. We have

also modified G-FIT to return the log-likelihood value of the selected fit. This information is

stored in a list, in respective order for each run, and is used in conjunction with the Akaike

Information Criterion (AIC) to select the best-fit HErD; the one which achieves the lowest score

under the AIC (this is computed using equation 2.23 which is appropriate for small samples –

cf. Section 2.6.4). If AIC was not used, the chosen HErD would always be the one having the

maximum number of states, and thus we risk over-fitting the data.
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Figure 4.14: GSPN subnet representation for service time transitions.

The maximum number of states for the HErD to be fitted is set equal to ten, i.e.N = 10, for

all cases when the coefficient of variation of the extracted service or travelling time sample is

greater than 0.4 and twenty five, i.e.N = 25, when it is less. This action is taken to allow for

better approximations of very low-variance distributions to be obtained. In fact we expect that

in such cases the best-fit HErD has only one branch and k states, 10 < k ≤ 25, where each state

has rate λ, for some λ. We conjecture that twenty five states are sufficient to achieve relatively

good approximations for such low-variance distributions with regard to the overhead of fitting

a HErD with more states. Nevertheless, we allow the user to increase the maximum number

of states if the computational cost – both in terms of the fitting process and the subsequent

GSPN model analysis4 – is not an issue.

4.5 Evaluation

In this section we present two case studies that were conducted in order to assess the appli-

cability and accuracy of our proposed approach. We also discuss limitations of the developed

pipeline. For the two case studies we have generated location tracking data using an extended

version of the simulator JINQS [43], namely LocTrackJINQS [56] (see Chapter 3). The

use of synthetic data provides two advantages over real traces: it allows us to characterise the

4The larger the maximum number of states is, the larger the state space of the underlying semi-Markov
process will be.
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degree of accuracy of the inferred distributions and their parameters – as the exact model pa-

rameters and processes are known – and their generation is performed in a time efficient manner

rather than engaging in long experimental procedures. The philosophy behind our evaluation

process for these, as well as for the subsequent case studies, is to formulate and parameterise

an abstract system, model and simulate it in LocTrackJINQS, and then process the simu-

lation’s output using our methodology. The inferred GSPN performance model is considered

to be accurate if its structure and parameters approximate those of the abstract system. A

graphical representation of this evaluation process is shown in Figure 4.15.

Data Processing Pipeline

Inferred PNPM

Abstract System Location Tracking Data by Simulation

Validation

Figure 4.15: Graphical representation of our evaluation process.

4.5.1 Case Studies

We focus on the service area inference (second stage of the pipeline) and the extraction of

the service area service time distributions (fourth stage). The experimental setup for each

case study is depicted in Figure 4.16. The simulations take place in a virtual 25m× 25m

environment with customer movements as illustrated. Customers are assumed to travel between

service areas in such a way that each journey has a speed drawn from a normal distribution

with mean 0.5m/s and standard deviation 0.1m/s for case study 1, and a speed drawn from a

normal distribution with mean 0.3m/s and standard deviation 0.1m/s for case study 2. The

location update error is normally distributed with mean 0.15m and standard deviation 0.2m.

Each service area consists of a single customer-processing server and a random customer service

discipline. The service time for each service area follows a different density function. Table 4.2



4.5. Evaluation 133

(a) (b)

(c) (d) ,

Figure 4.16: The experimental setup in terms of abstract system structure and generated location
tracking data (a), (c) and clustering results (b), (d) of the first (above) and second (below) case
studies. Blue and red traces indicate customer movement and stationarity respectively.

shows each service area’s actual location and service radius as well as its service time density

for each case study.

4.5.2 Results

Figures 4.16(b) and 4.16(d) show the results of the second stage of our processing pipeline.

Table 4.3 displays the estimated location and service radius for each service area as well as the

error between these and their real values (in terms of the distance between the real and inferred

points). From these results we can see that the inferred location matches the real location

almost perfectly with a maximum error of 0.079 metres for the two case studies. The fitted

radius for each service area has larger error in general (max 0.128 metres).

For the purpose of evaluating the service time sample extraction and HErD fitting we compute

the relative entropy between the theoretical and fitted service time distribution, shown in Ta-

ble 4.4. We also conduct a Kolmogorov–Smirnov test, examining compatibility of the extracted

service time samples for each service point with its best-fit HErD (see Table 4.5).
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Server Service Service Time
Location Radius Density

C
as
e
S
tu
d
y
1 S1 (2.0,2.0) 0.5 HErD(2,2;0.5,0.5;0.05,0.48)

S2 (18.0,2.0) 0.8 Erlang(3,0.065)

S3 (18.0,20.0) 0.35 Exp(0.03)

C
as
e
S
tu
d
y
2

S1 (5.0,5.0) 0.5 HErD(2,2,4;0.3,0.3,0.4;0.05,0.25,0.6)

S2 (10.0,2.0) 0.75 Erlang(4,0.12)

S3 (20.0,2.0) 0.3 Normal(35.5,6.5)

S4 (10.0,8.0) 0.45 Exp(0.025)

S5 (20.0,8.0) 1.5 Hyper-Exp(0.4,0.3,0.3;0.04,0.1,0.01)

Table 4.2: The parameters for each service area in the system, for each case study. Server locations
and their corresponding service radii are given in metres. The parameters of the HErDs represent
the phase lengths, weights and rate for each branch respectively, separated by a semi-colon. The
parameters of the hyper-exponential distribution represent the weights and rates of each exponential
distribution respectively, separated by a semi-colon. The unit of the rate parameters for phase-type
distributions is customers per second. The mean and standard deviation of the Normal distribution
are given in seconds.

Server Location Service Radius

Real Inferred (3 d.p.) Error (3 d.p.) Real Inferred (3 d.p.) Absolute Error

C
as
e
S
tu
d
y
1 S1 (2.0,2.0) (1.996,1.987) 0.014 0.5 0.567 0.067

S2 (18.0,2.0) (18.024,2.029) 0.038 0.8 0.896 0.096

S3 (18.0,20.0) (17.966,19.983) 0.038 0.35 0.428 0.078

C
as
e
S
tu
d
y
2

S1 (5.0,5.0) (5.031,5.016) 0.034 0.5 0.566 0.066

S2 (10.0,2.0) (9.921,1.992) 0.079 0.75 0.846 0.096

S3 (20.0,2.0) (20.015,2.008) 0.017 0.3 0.378 0.078

S4 (10.0,8.0) (9.983,8.004) 0.017 0.45 0.519 0.069

S5 (20.0,8.0) (19.946,7.962) 0.066 1.5 1.628 0.128

Table 4.3: The inferred location and service radius for each service area in the system accompanied
with the absolute error, for each case study. These values are given in metres.

Although the approximation of the actual service time density by the best-fit HErD is very good

in all cases (see Figures 4.19 and 4.20), the parameters of the best-fit HErD do not match the
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Service Time Fitted HErD Relative
Density Parameters Entropy

Phase Lengths Rate (3 d.p.) Weights (3 d.p.) (3 d.p.)

C
as
e
S
tu
d
y
1 S1 HErD(2,2; 0.5,0.5; 0.05,0.48) 1,2 0.038,0.600 0.744,0.256 0.029

S2 Erlang(3,0.065) 3,7 0.065,4.055 0.991,0.009 0.007

S3 Exp(0.03) 1 0.030 1.000 0.000

C
as
e
S
tu
d
y
2

S1 HErD(2,2,4;0.3,0.3,0.4;0.05,0.25,0.6) 2,2,4 0.048,1.699,0.0469 0.295,0.084,0.622 0.049

S2 Erlang(4,0.12) 5,5 0.139,0.514 0.953,0.047 0.011

S3 Normal(35.5,6.5) 25 0.666 1.000 0.055

S4 Exp(0.025) 1,3 0.022,0.144 0.785,0.215 0.012

S5 Hyper-Exp(0.4,0.3,0.3;0.04,0.1,0.01) 1,1 0.010,0.049 0.315,0.685 0.010

Table 4.4: The HErD parameters fitted by G-FIT for each service area’s service time density with the
relative entropy (in nat) between the theoretical and fitted probability density function, for each case
study. The parameters of the HErDs represent the phase lengths, weights and rate for each branch
respectively, separated by a semi-colon.

Case Study 1 Case Study 2

S1 Test Statistic 0.0263 0.0194
α 0.1 0.05 0.1 0.05

Critical Values 0.0494 0.0563 0.0388 0.0442
Compatible ? Yes Yes Yes Yes

S2 Test Statistic 0.0420 0.0402
α 0.1 0.05 0.1 0.05

Critical Values 0.0730 0.0832 0.0552 0.0629
Compatible ? Yes Yes Yes Yes

S3 Test Statistic 0.0470 0.0442
α 0.1 0.05 0.1 0.05

Critical Values 0.0757 0.0863 0.0558 0.0636
Compatible ? Yes Yes Yes Yes

S4 Test Statistic

N/A

0.0285
α 0.1 0.05

Critical Values 0.0579 0.0661
Compatible ? Yes Yes

S5 Test Statistic

N/A

0.0333
α 0.1 0.05

Critical Values 0.0613 0.0699
Compatible ? Yes Yes

Table 4.5: Kolmogorov-Smirnov test at significance levels 0.1 and 0.05 applied to the extracted service
time samples for each service point from case studies one and two. The null hypothesis is that each
extracted sample belongs to the corresponding best-fitted HErD.
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Figure 4.17: The inferred GSPN performance model for case study 1, visualised in PIPE2 (in compact
transition form).

parameters of the actual density in every case. For example, if we consider S2 in the first case

study we see that the best fitted HErD has an additional branch with seven phases and rate

equal to 4.055. Its weight though is only 0.009 and this suggests that the contribution from this

branch is not of great significance. A similar case is also observed for S4 (case study 2) where

an additional branch with three phases is allocated to the fitted hyper-Erlang distribution;

however, in this example the weight of the additional branch is 0.215. Furthermore, the HErD

approximation of the normally distributed service time (S3 – case study 2) is as expected:
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Figure 4.18: The inferred GSPN performance model for case study 2, visualised in PIPE2 (in compact
transition form).

one branch with a sufficiently large number of phases. In particular, by the Central Limit

Theorem (CLT) [4], the fitted HErD approximates a normal distribution with mean 37.538 s

and standard deviation 7.508 s.

Figures 4.17 and 4.18 illustrate the inferred PNPMs for both case studies. We observe that the

structure of both models matches the abstract system structure of the models used to set up

the simulation, i.e. for each service area there exists a corresponding place and an associated

subnet – in compact transition form – which models the service area’s service time. In particular,

server places with labels Server 2, Server 0 and Server 1 correspond to S1, S2 and S3 in the first

case study. Similarly, for the second case study, places Server 1, Server 2, Server 0, Server 3 and

Server 4 correspond to S1, S2, S4, S3 and S5. Also, between each pair of places representing

service areas we can see intermediate travel places and their associated travelling time subnets.

As it was briefly discussed in the introduction of this thesis, the constructed GSPN performance

models can be used to analyse the underlying system’s performance through the computation of

end-to-end response time distributions [39, 52]. This kind of analysis is supported in PIPE2 via

the DNAmaca analysis module [70]. In addition, one can modify the the model’s workload (by

adding/removing tokens in the Repository place) or the model’s resources (duplicate existing

server places along with their corresponding GSPN subnets that reflect their service delay) to

examine the system’s performance under hypothetical scenarios (“what-if” analysis).
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and its best-fit distribution compared with the theoretical distribution
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Figure 4.19: Case study 1: Graphs 4.19(a), 4.19(b) and 4.19(c) show the cumulative histogram
of the extracted service time samples and its best-fit hyper-Erlang distribution compared with the
theoretical distribution for S1, S2 and S3 respectively.

4.5.3 Conclusion

In this chapter we have presented a data processing pipeline which successfully derives PNPMs

from high-precision location tracking data collected from a class of simple customer-processing

systems.
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Figure 4.20: Case study 2: Graphs 4.20(a), 4.20(b), 4.20(c), 4.20(d) and 4.20(e) show the cumulative
histogram of the extracted service time samples and its best-fit hyper-Erlang distribution compared
with the theoretical distribution for S1, S2, S3, S4 and S5 respectively.
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The first stage of the pipeline prepares the raw location traces for processing by the subsequent

stages. Stage two employs a variety of well-known and established techniques to infer the

location and radii of stationary service areas in the system. Stage three constructs the initial

non-parameterised model from the processed location tracking traces and extracts the observed

service and travelling time samples. The fourth stage of the pipeline uses the G-FIT tool to

fit matching HEr distributions to the extracted time samples and accurately represents them

in terms of GPSNs. Their incorporation in the initial non-parameterised model results in a

hierarchical GSPN model compatible with PIPE2, an open source Petri Net editor.

The results of the two case studies indicate that the developed approach has the potential to

infer the stochastic features of simple systems accurately, at least when synthetically-generated

location tracking data is used.

Currently our approach has made several assumptions such as a single class of customers, single-

server semantics and random service discipline. Also, in real customer processing systems it is

very often the case that the service of customers is subject to some synchronisation conditions.

The current methodology lacks the possibility of synchronisation inference. In particular, we

would like to provide mechanisms that allow the accurate representation of multiple customer

classes and synchronisation specified in terms of the physical presence of customers at different

service areas. These two features often arise in real customer-processing systems and it is

critical to incorporate them in the data processing pipeline so that it can be applied in more

realistic scenarios. This task is tackled in the following two chapters.



Chapter 5

Synchronisation Detection and

Representation

In the previous chapter we presented a methodology that is able to automatically construct

Generalised Stochastic Petri Net [14, 78] performance models from raw location tracking data.

However, synchronisation between service centres – the natural expression of which is one of the

most fundamental advantages of Petri Nets as a modelling formalism – was not explicitly cap-

tured. This is potentially a serious deficiency since many physical customer-processing systems,

such as hospitals, airports and car assembly lines, exhibit many instances of synchronisation.

For example, if we consider a treatment room in a hospital, the examination of a patient cannot

take place without the presence of a doctor.

Here, we introduce a mechanism for automatically detecting presence-based synchronisation

from location tracking traces. In other words, synchronisation is detected only if it is defined

in terms of the physical presence of customers or resources in service areas. Of course, as we

discussed in the introduction of Chapter 4, the constructed PNPM depends on the collected

location tracking traces and in particular, on the period during which the customer-processing

system was monitored. This also presents an effect on the synchronisation detection mechanism

introduced in this chapter. Specifically, if the flow of customers in the system is monitored

during periods of heavy customer traffic or more fine-grained sampling is employed additional

141
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synchronisation conditions may be exposed.

This chapter also illustrates how this mechanism is incorporated into the existing methodol-

ogy (third stage of the processing pipeline – see Figure 5.1) and presents the modifications

that are required to be made to the structure of the constructed PNPMs to enable the accu-

rate representation of synchronisation (fourth stage of the processing pipeline). We conclude

this chapter with a case study which demonstrates and evaluates the modified data processing

pipeline.

Stage 3

1. Allocation of places and transitions

2. Sojourn and travelling time sample
extraction

service time estimation

3. Calculation of initial routing proba-
bilities

0.3

0.7

Stage 3

1. Allocation of places and transitions

2. Sojourn and travelling time sample
extraction

service time estimation

3. Synchronisation detection

service time re-adjustment

4. Calculation of initial routing proba-
bilities

0.3

0.7

?

Figure 5.1: A high-level description of the third stage of the processing pipeline before (left) and
after (right) the incorporation of the synchronisation detection mechanism.

5.1 Synchronisation Detection Mechanism

Our aim is to construct a conservative scheme to determine whether the processing of customers

at each service area is subject to some synchronisation conditions (expressed as conditions on

the number of customers present within other service areas) at certain time points. To this
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end, we have designed three functions (see Algorithms 6, 7 and 8) that can be applied together

to perform the synchronisation detection task.

To formalise our approach, we introduce some notation:

• N is the total number of service areas inferred from the second stage of the processing

pipeline,

• P = {P1, P2, . . . , PN} is the set of inferred services areas (subsequently represented by

places in the derived Petri Net model),

• Ci = {c
(1)
i , c

(2)
i , . . . , c

(ni)
i } is the multiset1 of all customers processed by Pi, with ni = |Ci|,

• e
(j)
i is the timestamp of the entry of c

(j)
i into Pi,

• s
(j)
i is the service initiation timestamp of c

(j)
i , and

• f
(j)
i is the service termination timestamp of c

(j)
i .

• Mi(t) is the number of customers present on service area Pi at timestamp t. This is also

referred to as the marking of Pi at time t.

• Mi(t1, t2) is the maximum number of customers observed on service area Pi during the

time interval [t1, t2). This is also referred to as the maximum marking of Pi during the

time interval [t1, t2). Mi(t1, t2) and Mi(t2) are the two components of the evidence we

require to (possibly) infer the synchronisation conditions between service areas. This is

explained in more detail in the remainder of this section.

Given a service area Pi, we consider the processing of each customer that receives service there

in turn. Our approach is based on finding evidence – for each customer – that its processing

may have been dependent on the presence of customers on other service areas. This evidence

has two components: one is the maximum marking observed on each of the other service

areas in the interval during the customer was serviced; the other is the marking observed on

each of the other service areas at the instant of termination of the customer’s service. These

1Thus supporting the possibility of multiple service periods for the same customer.
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two components are combined across all customers processed by Pi – taking into account the

possibility of error and noise – to yield the likely synchronisation conditions of service at Pi
2.

Formally:

Definition 5.1. The jth customer c
(j)
i ∈ Ci is said to receive service at Pi with possible syn-

chronisation from each service area Pk, k = 1, . . . , N and k 6= i, if:

Mk(s
(j)
i , f

(j)
i ) > 0, (5.1)

and

Mk(f
(j)
i ) > 0 (5.2)

Definition 5.2. Synchronisation between service area Pi and service area(s) Pk, k = 1, . . . , N

and k 6= i, is inferred if the synchronisation percentage sp defined as,

sp(i, k) =
|{c(j)i | Mk(s

(j)
i , f

(j)
i ) > 0,Mk(f

(j)
i ) > 0, j = 1, . . . , ni}|

ni

(5.3)

satisfies

sp(i, k) ≥ sthresh (5.4)

where sthresh is the hypothesis acceptance threshold.

The value of the acceptance threshold (typically in the range [0.8, 1]) can be chosen according

to factors such as the precision of the location tracking system used, the tag update rate and

topology of the system being modelled. Of course, in systems with high traffic (even with the

synchronisation acceptance threshold set equal to one) this synchronisation detection mech-

anism is susceptible to false positives. Nevertheless, other techniques, e.g. the discretisation

of the service time interval of a customer into several others and the examination of the two

conditions specified in Definition 5.1 for each subinterval, would perform similarly under high

traffic or worse (increase the number of false positives) under lower workloads.

2Here we assume a single class of customers. It is straightforward to apply the combination across each
customer class in a scenario with multiple customer classes.
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5.2 Algorithm Description

In this section, we present and describe the three functions we have developed to perform the

synchronisation detection task.

The first algorithm (see Algorithm 6) implements the Mk(t) method which returns the number

of customers that are present on service area Pk at timestamp t. A counter variable is initialised

to zero and the method iteratively examines – for all customers processed by Pk – if each

customer was present at timestamp t. In this case the counter variable is incremented.

Algorithm 6 : M(k,t) : int

1: marking � 0
2: for j = 1 to nk do
3: if c

(j)
k was present in Pk at t then

4: marking � marking + 1

5: end if
6: end for
7: return marking

The second algorithm (see Algorithm 7) implements the Mk(t1, t2) method which returns the

maximum number of customers that were present on service area Pk during some time interval

[t1, t2). Here, we use the Mk(t) method to obtain the marking of the service area at certain

timestamps. First, we initialise a counter variable (maxMarking) to the marking of the service

area at timestamp ts, i.e. the service initiation timestamp of some customer who is present at

some other service area. Then we check – for each customer processed by Pk – if the customer’s

arrival in Pk occurred within the time interval (ts, tf ), i.e. ts < e
(j)
k < tf . If this is the case then

Algorithm 7 : M(k,ts,tf) : int

1: maxMarking � M(k,ts)
2: for j = 1 to nk do
3: if ts < e

(j)
k < tf then

4: instMarking �M(k, e
(j)
k )

5: if instMarking > maxMarking then
6: maxMarking � instMarking

7: end if
8: end if
9: end for

10: return maxMarking
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we compute the instantaneous marking of Pk at timestamp e
(j)
k and check if its value is greater

than the value of maxMarking. When the latter condition is satisfied, we update the counter

variable to the value of the instantaneous marking.

Algorithm 8 : computeSynchronisation(i,sthresh) : int[N]

1: customersWithSynch � new int[N] = {0,0,...,0}
2: synchMarking � new int[N] = {0,0,...,0}
3: csmMatrix � new int[ni][N] = { {0,0,...,0}, {0,0,...,0}, ..., {0,0,...,0} }
4: for j = 1 to ni do
5: for k = 1 to N do
6: if k ! = i then
7: csmMatrix[j][k] � min(M(k, s

(j)
i ,f

(j)
i ),M(k,f

(j)
i ))

8: if csmMatrix[j][k] > 0 then
9: customersWithSynch[k] � customersWithSynch[k] + 1

10: end if
11: end if
12: end for
13: end for
14: for k = 1 to N do
15: if k ! = i then
16: if customersWithSynch[k] / ni ≥ sthresh then
17: synchMarking[k] � percentile({csmMatrix[1][k],. . .,csmMatrix[ni][k]},5)
18: end if
19: end if
20: end for
21: return synchMarking

The previous two Algorithms introduce auxiliary functions that are used in the main function,

computeSynchronisation (see Algorithm 8), which is applied in turn to every service area

Pi ∈ P . There are two phases in this algorithm. In the first phase (see lines 4 to 13) we

construct the csmMatrix, which describes the possible set of synchronisation dependencies

between the service of customer j at Pi, and the markings of the other service areas. In this

phase, for each Pk, i 6= k, we also count the number of customers for which some potential

synchronisation was observed, during their service at Pi. In the second phase (see lines 14 to 20)

we calculate sp(i, k) and if its value exceeds the value of sthresh we compute the synchronisation

marking on Pk required to support service at Pi. This is computed as a low percentile of the

set of synchronisation markings; this is preferred to simply taking the minimum because it is

more robust to measurement errors inherent in location tracking systems. This percentile is

determined by the function percentile(M,α) (see line 17, Algorithm 8) which computes the
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αth percentile of the set M .

If we assume that ∀i, ni = n, then the worst-case time complexity of the main function

computeSynchronisation and synchronisation detection for the entire network are O(N · n3)

and O(N2 ·n3) respectively. Based on the same assumption, space complexity is bounded above

by the size of csmMatrix (see Algorithm 8) and is O(N · n).

5.3 Service Time Adjustment

Whenever synchronisation is detected involving the processing of customers at Pi, the corre-

sponding service time samples of those customers need to be adjusted to take into account the

proportion of time during which the synchronisation condition(s) is(are) satisfied. This is be-

cause we assume that service only progresses when the synchronisation condition(s) is(are) met.

To perform the service adjustment process we developed a function which examines the syn-

chronisation conditions only at the timestamps of arrival and departure events of the customers

instead of the entire pre-adjusted service time interval (see Figure 5.2).

s
(l)
i f

(l)
i

e
(3)
k e

(1)
k

f
(4)
k f

(8)
k

e
(5)
k

f
(1)
k f

(3)
k

Figure 5.2: Three arrival and four departure events occurring at service area Pk during the lth

customer’s service time interval [s
(l)
i , f

(l)
i ] at Pi. During the customer’s service time adjustment process

the synchronisation conditions are checked nine times: at s
(l)
i , f

(l)
i , and on the occurrence of each arrival

or departure event.

To demonstrate how this function works let us consider a simple example. Assume that syn-

chronisation has been detected involving the processing of customers at Pi and the presence of

customers at Pk, k 6= i, and that the synchronisation marking has been calculated. We retrieve

the multiset3 of the entry and exit timestamps of all customers processed by Pk, i.e. e
(j)
k , f

(j)
k ,

3Multiple customers may have a common timestamp; thus a multiset allows for such cases.
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for j = 1, . . . , nk, and then form the timestamp intersection multiset, defined as

T∩ = {e
(j)
k , f

(j)
k |s

(l)
i ≤ e

(j)
k ≤ f

(l)
i , s

(l)
i ≤ f

(j)
k ≤ f

(l)
i , j = 1, . . . , nk}

where s
(l)
i and f

(l)
i are the service initiation and termination timestamps respectively of the

lth customer who received service at Pi and define the service time interval to be adjusted.

First T∩ is sorted (in ascending order). We begin the service time adjustment process by

retrieving the marking of Pk at s
(l)
i – using Mk(t) – and check if it satisfies the corresponding

synchronisation marking, i.e.Mk(t) ≥ synchMarking[k]. If it does, we create an open-ended

time interval, starting at s
(l)
i , i.e. [s

(l)
i , . ] and proceed to the first timestamp in T∩; otherwise we

directly proceed to the first timestamp. We then repeat the same process for every timestamp

contained in T∩, while creating new and closing existing time intervals where appropriate. An

existing time interval closes at a timestamp t if the synchronisation marking of Pk at t is not

satisfied. A new time interval is created if the synchronisation marking of Pk at time t is

satisfied and no open-ended time interval already exists. Finally, the last existing open-ended

time interval is closed by the service termination timestamp f
(l)
i .

We obtain the actual4 service time by adding the time difference between the end and the start

of each of the previously formed subintervals. We note that if T∩ is empty, meaning that no

departure nor arrival events occurred during the customer’s c
(l)
i service time interval, then the

actual service time is simply the difference between f
(l)
i and s

(l)
i .

5.4 Synchronisation Representation in our Models

After the synchronisation between service areas is detected, it needs to be incorporated into the

GSPN performance model that is constructed during stage four of the data processing pipeline.

Considering the place representing Pi and its outgoing service transition ti then for every place

representing Pk such that synchMarking[k] > 0, we connect Pk to ti via a double-headed arc

4The time during which all the synchronisation conditions where met, i.e. when service was indeed progress-
ing.
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with weight equal to synchMarking[k]. We use this representation since we are dealing with

location tracking environments where customer entities are preserved.

In Section 4.4 we described how we fit a HErD to the extracted service time samples of each

service area. We also discussed how we represent each HErD in terms of GSPN components (see

Figure 4.13) and how we substitute each transition created in the first task of the third stage by a

GSPN subnet which reflects the fitted HErD. Now, let us consider the synchronisation condition

between server places p1 and p2 shown in Figure 5.3. In this example, the synchronisation

condition specifies that at least two customers must be present in service area P2 so that

customers can be processed in P1. As explained in the previous paragraph, this condition is

represented by a double-headed arc – of weight two – connecting p2 to transition t3.

p2

p1

t0 t1

t2 t3

2

· · ·

· · ·

· · ·

· · ·

Figure 5.3: Modelling synchronisation between server places p1 and p2 with p2 being the synchronising
place with a synchronisation marking equal to two.

In order to preserve the synchronisation condition between p1 and p2 when t3 is replaced by

a GSPN subnet, we need to connect p2 to every immediate transition on the left-hand side

of the GSPN subnet with double-headed arcs – one for each immediate transition – of weight

two. These are the transitions whose firing allows tokens to enter the subnet and their firing

rates represent the weights of the Erlang branches of the HErD. Figure 5.4 shows the resulting

GSPN model under the assumption that t3 is replaced by a subnet which reflects a four-state

HErD with two Erlang branches, where each branch has two states.
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Figure 5.4: Modelling synchronisation between server places p1 and p2, when t3 (cf. Figure 5.3) is
replaced by a GSPN subnet. Service initiates at p1 only if p2 is marked with at least two tokens and
p1 with one.

5.5 Evaluation

In this section we conduct a case study to test and demonstrate the developed synchronisa-

tion detection mechanism. For this case study we have generated location tracking data using

an extended version of LocTrackJINQS [56], which supports synchronisation between ser-

vice areas of the system (see Section 3.2.1). Results for the service area location and service

radii inference, the synchronisation detection mechanism and the service time distribution fit-

ting (adjusted for synchronisation when appropriate) are presented. We conclude this chapter

with a discussion on the obtained results and future development.

5.5.1 Case Study

Figure 5.5 shows the experimental setup for the case study and the flow of customers in the

system (indicated by arrows). The simulation takes place in a virtual 25m× 25m environment

and the customers are assumed to travel within the system at a speed drawn from a normal
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distribution with mean 0.5m/s and standard deviation 0.15m/s. The location update error,

which emulates the standard error of a real life location tracking system, is also normally

distributed with mean 0.15m and standard deviation 0.2m.

Figure 5.5: The experimental setup in terms of abstract system structure. The arrows represent the
customer flow in the system and the branching to S1 and S2 occurs with equal probabilities. The service
areas contained in the dotted red rectangles Synch1 and Synch2 are subject to synchronisation. The
synchronisation condition is represented by the dotted red arrow. Its source indicates the synchronising
service are and its target the service area to be synchronised. The number of customers required to be
present in the synchronising service area so that service can be supported in the synchronised service
area is denoted by the weight of the dotted red arrow.

Each service area consists of a single customer-processing server and employs a random customer

service discipline. Service areas S2 and S3 require at least one customer to be present in service

areas S1 and S4 respectively in order to service their customers. The service time for each

service area follows a different density function. The actual location and service radius of each

service area as well as its service time density can be seen in Table 5.1.
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Server Service Service Time
Location Radius Density

S1 (8.0,5.0) 0.5 Erlang(2, 0.1)

S2 (8.0,15.0) 0.7 Exp(0.1)

S3 (16.0,5.0) 0.6 Erlang(4, 0.3)

S4 (16.0,15.0) 0.5 HErD(2, 3; 0.5, 0.5; 0.08, 0.12)

Table 5.1: The parameters for each service area in the system, for this case study. Server locations
and their corresponding service radii are given in metres. The parameters of the HErD represent the
phase lengths, weights and rates for each branch respectively, separated by a semi-colon. The unit of
the rate parameters for phase-type distributions is customers per second.

5.5.2 Results

The inferred locations and service radii of the service areas, as well as the error between these

and their actual values, are depicted in Table 5.2. From these results we can see that the

location and radii of the service areas are approximated very well. The maximum error for the

location inference is 0.145metres and for the service radius approximation is 0.096metres.

Server Location Service Radius

Real Inferred (3 d.p.) Error (3 d.p.) Real Inferred (3 d.p.) Absolute Error

S1 (8.0,5.0) (7.900,5.009) 0.100 0.5 0.526 0.026

S2 (8.0,15.0) (7.980,14.936) 0.067 0.7 0.773 0.073

S3 (16.0,5.0) (16.143,4.974) 0.145 0.6 0.696 0.096

S4 (16.0,15.0) (16.017,14.988) 0.021 0.5 0.575 0.075

Table 5.2: The inferred location and service radius for each service area in the system accompanied
with the absolute error, for this case study. These values are given in metres.

For the evaluation of the sample extraction and HErD fitting process we conduct Kolmogorov-

Smirnov tests, to examine the compatibility of the extracted service time samples for each

service area with its best-fit HErD (see Table 5.4). The parameters of HErDs fitted for each

service area’s service time density, along with the computed relative entropy between the sim-

ulated and fitted distributions, are depicted in Table 5.3. The selected HErD for each set of

extracted service time samples is plotted against the corresponding theoretical service time
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density which was used in our simulation (see Figure 5.6).

Service Time Fitted HErD Relative
Density Parameters Entropy

Phase Lengths Rate (3 d.p.) Weights (3 d.p.) (3 d.p.)

S1 Erlang(2, 0.1) 4 0.225 1.0 0.203

S2 Exp(0.1) 1 0.088 1.0 0.008

S3 Erlang(4, 0.3) 3 0.186 1.0 0.071

S4 HErD(2,3;0.5,0.5;0.08,0.12) 3 0.137 1.0 0.042

Table 5.3: The parameters of the HErD fitted for each service area’s service time density with
the relative entropy (in nat) between the theoretical and fitted probability density function. The
parameters of the HErD represent the phase lengths, weights and rate for each branch respectively,
separated by a semi-colon.

S1 Test Statistic 0.1196
α 0.1 0.05

Critical Values 0.1844 0.2108
Compatible ? Yes Yes

S2 Test Statistic 0.1250
α 0.1 0.05

Critical Values 0.1697 0.1939
Compatible ? Yes Yes

S3 Test Statistic 0.1137
α 0.1 0.05

Critical Values 0.1903 0.2176
Compatible ? Yes Yes

S4 Test Statistic 0.0959
α 0.1 0.05

Critical Values 0.1719 0.1965
Compatible ? Yes Yes

Table 5.4: Kolmogorov-Smirnov test at significance levels 0.1 and 0.05 applied to the extracted service
time samples (adjusted for synchronisation) for each service area in the case study. The null hypothesis
is that the extracted samples belong to the corresponding best-fit HErD.

Here, as in Section 4.5.2, the parameters of the fitted HErDs do not match the parameters

of the actual distributions in every case; however, we can see from the graphs that the fit is,

in general, very good. We also note the successful application of the service time adjustment

process for service areas S2 and S3; if the service time samples were not successfully adjusted

according to the synchronisation conditions, a significant difference would have been observed

between the theoretical and best-fit hyper-Erlang distributions. Additional evidence which
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Figure 5.6: Case Study: Graphs 5.6(a), 5.6(b), 5.6(c) and 5.6(d) show the cumulative histogram of
the extracted service time samples (adjusted for synchronisation for S2 and S3) and its best-fit hyper-
Erlang distribution compared with the theoretical distribution for S1, S2, S3 and S4 respectively.

supports the compatibility between the simulated and fitted distributions is provided by the

relative entropy which has low values (≤ 0.203).

Figure 5.7 shows the constructed GSPN performance model in compact transition form. We

observe that the structure of the inferred model matches the structure of the abstract simulated
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system. The transitions between pairs of server places (places that correspond to the service

areas) represent the travelling time for each particular pair. The weights of the immediate

transitions T1 and T0 are 0.457 and 0.543 respectively, approximately matching the simulated

initial routing probabilities of the customer flow which are 0.5 and 0.5. In the model we can

also see the constructed synchronisation between S2 and S1 (synchronising service area) as well

as between S3 and S4 (synchronising service area).

Figure 5.7: The inferred GSPN performance model for this case study, visualised in PIPE2 (in
compact transition form).

5.5.3 Conclusion

This chapter has presented an automated mechanism for presence-based synchronisation de-

tection between service areas in a customer-processing system. This mechanism has been

implemented and incorporated into our existing data processing pipeline to extend its range of

applicability; it allows the automated inference of GSPN performance models of more complex

customer-processing systems. We conjecture that our methodology can be applied to a variety

of systems whose underlying GSPN structure includes simple nets (SPL-nets). An example of

a real life situation where this methodology could be successfully applied is a Magnetic Reso-

nance Imaging (MRI) unit in a hospital. The MRI control room is physically separate from the

MRI chamber and the scanning process is initiated if and only if two conditions are satisfied:
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the patient – the person who receives the scan – must be located in the MRI chamber and the

radiologist who operates the MRI scanner must be located in the MRI control room.

The case study results indicate that the developed methodology can infer the presence and

conditions of synchronisation in simple systems accurately and provide stronger evidence to

the correctness of the existing processing pipeline (stages two and four).



Chapter 6

Pipeline Extensions

Under the assumptions and limitations described in Chapter 4, the developed methodology was

able to successfully infer a GSPN performance model capturing both the physical structure and

the stochastic behaviour of the underlying system from location tracking data. An additional

mechanism was subsequently incorporated into the initial methodology to enable the detection

and representation of presence-based synchronisation between the system’s service areas (see

Chapter 5). This was all possible without needing to extend the modelling power of GSPNs.

In Section 4.5.3 we discussed some limitations of the data processing pipeline, including its

inability to represent multiple customer classes. This is a serious deficiency as it prohibits

the application of the pipeline to real life systems dealing with multiple customer classes. Ex-

amples of such systems include passport control checkpoints at airports, Accident and Emer-

gency (A&E) departments of hospitals and, in general, systems where not all customers are

treated in a homogeneous fashion.

In this chapter, we augment the PNPMs constructed by our methodology to support coloured

tokens, using CGSPNs [74] instead of GSPNs. We describe how the use of CGSPNs allows us

to facilitate multiple customer classes and, furthermore, to control the routing of customers as

they pass through various processing stages in a dynamic way. Here, we also present another

extension of the data processing pipeline which enables the representation of inter-routing

probabilities of the customer flow in scenarios where the customers follow different routes in

157
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the system after receiving service at a service area. These extensions have been incorporated

within the third stage of the processing pipeline. We conclude this chapter by presenting three

case studies to evaluate these new features.

6.1 Multiple Customer Classes

The main assumption here is that the class of each customer in the system is known and

provided through the customer’s associated location updates, e.g. the type field of a typical

location update contains the category the monitoring tag belongs to, or by a static mapping

of each customer’s unique identifier (tagName) to the class it belongs to. The tag type is a

generic field and it can be modified by the user, through the RTLS’s software, to define custom

categories. For example, one can set the tag category to be one of the types “Person”, “Patient”,

“Doctor”, “Package”, and so on, depending on the application. For simplicity and to have the

ability to support general systems we use distinct non-negative integers to distinguish between

such categories (customer classes).

This extension presents no effect to the first, second and fourth stage of the data processing

pipeline. Also no modifications or additions are required in the service time and travelling time

sample extraction process, taking place in the third stage of the pipeline. However, in order

to allow the differentiation of the extracted time samples into groups – one for each customer

class – we store the class of the customer each sample corresponds to. During the latter process

we also infer the total number of customer classes in the system by simply counting all the

different classes observed. Once the service time and travelling time extraction process has

been completed, the samples associated with the service of customers at each service area, or

movement of customers between pairs of service areas, are grouped according to each observed

customer class. For example, if n classes of customers are serviced at a service area, then we

will have n groups of service time samples (and subsequently, in the fourth stage of the pipeline

n HErD fits) associated with that service area.

The main difference in the third stage of the data processing pipeline is the way we form the
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p1 p2t1

Figure 6.1: A simple CGSPN with three different token classes.

initial structure of PNPM and, in particular, the transitions contained in the model. Normally,

in a CGSPN, or even a CPN, each transition can support many different firing modes. For

example, let us consider the CGSPN depicted in Figure 6.1 where p1 is marked with three

different types of tokens: two blue, two red and one black. The transition t1 may require

two blue tokens to be enabled, or one red, or one black or even a combination of different

token types, i.e. one black and two red. Similarly, the firing of t1 may place any number and

combination of token types in p2. It is left to the net designer to specify the conditions under

which t1 fires so that it accurately reflects the behaviour of the system being modelled. We also

note that a different firing rate or weight can be associated with each supported firing mode of

a timed or immediate transition respectively.

To facilitate the unambiguous visualisation of a transition’s firing modes, we use a different

transition for each firing mode that we wish to support. That is, if we consider the latter

example, assuming that t1 has three firing modes (see Table 6.1), we use three transitions; this

is shown in Figure 6.2. This decision was heavily influenced by the design of the extension

Mode I−(p1, t1)(red)I
−(p1, t1)(blue)I

−(p1, t1)(black) I
+(p2, t1)(red)I

+(p2, t1)(blue)I
+(p2, t1)(black)

1 1 0 0 1 0 0
2 0 1 0 0 1 0
3 1 1 1 1 1 1

Table 6.1: The three firing modes for transition t1 shown in Figure 6.1. I−(pi, tj)(ck) denotes the
number of tokens of colour ck that must be present in pi in order for tj to be enabled. I+(pi, tj)(ck)
denotes the number of tokens of colour ck that are created in pi when tj fires.

that was made to PIPE2 to support coloured tokens [31].

In Section 4.3 we demonstrated how we create the initial structure of the PNPM under the

assumption of one customer class. When dealing with multiple customer classes, the process

of place construction is the same as before. Service area service time transitions are created

in a similar manner but, instead of having a single transition between pairs of service areas



160 Chapter 6. Pipeline Extensions
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Figure 6.2: The CGSPN shown in Figure 6.1 with one transition for each different firing mode of t1.
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Figure 6.3: A complete overview of the initial structure of a PNPM model obtained at the end of the
third stage of the processing pipeline of a system with two customer classes.

where customer movement was observed, we have multiple transitions: one for each class of

customers that was processed by the corresponding service area. The same principle applies

for the construction of travelling time transitions. Additional intermediate places are used to

transfer the tokens back to the repository place through immediate transitions where appro-
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priate. Figure 6.3 shows the initial structure of the PNPM depicted in Figure 4.12, assuming

that now we have two customer classes.
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pM,1 pM,2 pM,rM pM,rM+1
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Figure 6.4: CGSPN subnet representation for service time transitions. The colour of tokens supported
varies according to the customer class which the net applies for. The complementary place labelled as
server num is shared among subnets associated with the same service area. This allows only one token
to be in a subnet at a time and prohibits parallel service of distinct customer classes (we assume single-
server semantics). p0 represents a service area and p1 is associated with the movement of customers
between p0 and some other service area.

Like before, all timed transitions at this stage are not parameterised. In the fourth stage a

HErD is fitted to each set of extracted samples – one for each customer class – and now, a

CGSPN subnet is used to represent it. The CGSPN subnet’s structure is similar to the one

used in the single customer class scenario (see Figures 4.13 and 4.14 for travelling time and

service time transitions respectively) and the type (colour) of tokens allowed in each subnet is

defined by the arc weights accordingly. However, we make two adjustments to the structure of

the CGSPN subnets used to replace service time transitions so that the service of customers

remains accurately modelled: firstly, the complementary place server num1 (earlier used to

ensure that no more than one token is allowed in a subnet) is now shared among all subnets

associated with a particular service area. This prohibits the parallel service of customers of

different classes. We note that the token type contained in the place server num is irrelevant to

the customer class that each subnet corresponds to; therefore, no colour is required. Secondly,

we introduce two additional places and two immediate transitions to each subnet (cf. Figure 6.4).

These two transitions tent and text, in conjunction with the place server num, enforce mutual

1Note that this place is found only in subnets that are used to replace service area service time transitions.
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exclusion to the service area’s resources. Also, the marking dependent weight of tent (defined

as the number of tokens of some colour c that are contained in place p0 – cf. Figure 6.4 – given

that colour c is handled by the subnet) ensures that the random service policy is retained when

multiple customer classes exist. The transition text is simply used to allow tokens to exit the

subnet and to restore the shared resource to server num; thus, its weight is set equal to one.

6.2 Customer Routing

In this section we present another limitation of the existing processing pipeline that can be

overcome with the use of coloured tokens. Often, in customer-processing systems, routing

is not probabilistic but deterministic with several phases of processing. Also, the journey

through these processing phases may involve repeated visits to the same service centres. An

example is shown in Figure 6.5 whereby customers enter the system and immediately proceed

to Service Area A. Then customers are processed by Service Area B and Service Area C in

respective order. Finally, they revisit Service Area A and as soon as they complete service

there, they exit the system. Examples of real life customer-processing systems which exhibit

such behaviour include hospitals and assembly lines. We also note that customers may request

a different type of service when revisiting a service area. For this reason we keep separate sets

of service time samples for repeated visits of customers to the same service area. Of course,

there are also systems which exhibit more complex behaviour; customers may perform the same

cyclic service sequence multiple times. However, in this research we restrict our approach to a

more common and useful use-case where the cyclic service sequence is performed only once.

If we model the system described above (cf. Figure 6.5) using GSPNs we would obtain the

model depicted in Figure 6.6. Although the structure of the model appears to be correct, it

fails to express the desired behaviour and routing of the customers in the system. This failure

arises due to the race condition between the outgoing transitions of the place Server 0, t1 and

t4. When a token is created in Server 0 after t9 fires, t1 and t4 are simultaneously enabled. In

particular, the selection of the transition to be fired is purely probabilistic and the probability



6.2. Customer Routing 163

Service
Area A

Service
Area B

Service
Area C

System entry

System exit

1

2

34

5

Figure 6.5: A system which provides services to customers in a cyclic fashion. Arrows indicate the
flow of customers in the system.
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Figure 6.6: The GSPN model (non-parameterised version) for the system depicted in Figure 6.5,
using our existing methodology.

depends on the firing rates of the two transitions. Under this scenario, two mutually exclusive

events can occur: t1 fires and a token is transferred to the place Travel 0 connecting Server 0

and Server 1, or t4 fires and a token is eventually transferred to the Repository place, meaning

that the customer has exited the system. The latter scenario must be avoided as it does not

model the true behaviour of the customers in the system, i.e. a customer (token) arriving at

Server 0 for the first time must obtain the services of Server 1 and Server 2 before routed to



164 Chapter 6. Pipeline Extensions

the Repository.

The main idea is to identify when and where this type of routing occurs and to use different

types of tokens to express the “phases of service” of the customers. When cyclic services are

identified in a system, we need to differentiate between the customers who have obtained service

from each service area contained within the cycle and the ones about to enter it. We classify

the former and latter groups of customers as serviced and unserviced respectively. Since we

assume that neither knowledge of the system’s structure nor behaviour is readily available –

apart from the customer traces provided by the RTLS – it is clear that firstly we need to detect

whether cyclic services are incorporated in the system being modelled.

6.2.1 Cycle Detection

Here, we exploit the elegant graphical representation of Petri Nets in order to convert the non-

parameterised version of the PNPM into a directed graph. On this graph we apply Johnson’s

algorithm [64] to examine the presence of cycles in the model’s structure. By definition, Petri

Nets are directed bipartile graphs, i.e. places can only be connected to transitions and vice-

versa [14]. We map each place in the model to a vertex and each transition – along with its

incident arcs – to a directed edge (see Figure 6.7). This mapping is possible since in our models

the set of pre-places and post-places of each transition, i.e. •t and t• respectively, has exactly

one element. We note that the latter is not true for the service time transitions of service areas

that are subject to some synchronisation condition(s) (cf. Figure 5.3) and for the immediate

transitions tent, text, contained in the (C)GSPN subnet which is used to reflect the time delay of

the fitted HErD (only for the service time transition representation – cf. Figure 6.4). However,

these two cases do not pose a problem here since they occur after the model is examined for the

presence of cycles. In particular, the presence-based synchronisation detection mechanism is

applied immediately after cycle detection is performed and the replacement of timed transitions

by (C)GSPN subnets takes place during the fourth stage of the processing pipeline.

To convert a PNPM into a directed graph we first create an N×N integer matrix, the adjacency

matrix, where N is the number of places in the model and every entry is initialised to zero. We
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Figure 6.7: Converting a PNPM (non-parameterised version) to a directed graph.

then enumerate all constructed transitions and for each transition t retrieve the identities of its

input and output places. The identities of the places in •t and t• are used to identify the row

and column of the element to be marked in the adjacency matrix respectively. For example,

if a transition is used to connect the places p1 and p5, the entry located in the first row and

fifth column of the matrix is set equal to one. The graph can be visualised by drawing all the

places in the model as vertices and directed edges connecting the places whose corresponding

entry in the adjacency matrix is not zero. Figure 6.8 shows the directed graph for the GSPN

model depicted in Figure 6.6.

Repository

Arrived Server 0 Travel 0 Server 1

Server 2

Travel 1Travel 2

Intermediate

Figure 6.8: The directed graph produced for the Generalised Stochastic PNPM depicted in Figure 6.6.
The paths consisting of black and red edges are two elementary cycles beginning at vertex Server 0.
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Before we apply Johnson’s algorithm on the graph we take advantage of some structural prop-

erties of the underlying PNPM. First, let us formally define the concept of a service cycle in a

customer-processing system.

Definition 6.1. Consider a physical customer-processing system consisting of the set of service

areas S = {Si | i = 1, . . . , N}, for some finite N ∈ IN. A finite sequence of distinct service areas

from which the customers of the system obtained some service, is said to be a service cycle given

that the following conditions hold:

1. If the customers initiate their service sequence at Si, Si ∈ S, they must also terminate it

at Si after service completion at Sk, Sk ∈ S and i 6= k.

2. When the customers complete their service at Si for the second time, i.e. after obtaining

service at Sk, they do not repeat the same service sequence.

The service area which marks the initiation and termination of the service cycle is called the

head of the service cycle.

If we observe Figure 6.8 we notice that only the vertex which corresponds to Server 0 has four

adjacent vertices: two successors and two predecessors. This gives rise to the following theorem:

Theorem 6.1. Given a customer-processing system and its corresponding directed graph, a

service cycle exists only if the vertex vj which corresponds to head of the service cycle Sj has

at least two predecessors and at least two successors.

Proof: We consider a physical customer-processing system consisting of the set of service areas

S = {Si | i = 1, . . . , N}, for some finite N ∈ IN. Assume that a service cycle exists in the

given customer-processing system, and consider the directed graph which corresponds to the

PNPM (non-parameterised version) of the underlying system. We define:

1. Sc ⊆ S to be the subset of service areas that consist the service cycle,
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2. Pc = {vj, vj+1, . . . , vj+k} to be the set of vertices which correspond either to the places

representing service areas Si ∈ Sc or to the travel places that exist between pairs of service

areas Si, Sk, i 6= k, Si, Sk ∈ Sc.

We examine the two conditions of the theorem individually:

At least two predecessors are required.

If no predecessor of the vertex vj which corresponds to Sj, exists, then it is trivial that no

service cycle exists. Now let us assume that only one predecessor of the vertex vj exists, say vp

with p 6= j. We need to consider two cases. If vp ∈ Pc, it corresponds to the travel place which

connects the last service area of the service cycle, say Sl, l 6= j, Sl ∈ Sc, to the head of the

service cycle Sj. This means that the customers initiated their service sequence at the service

area Sl ∈ Sc. But since Sj is the head of the service cycle and j 6= l, we reach a contradiction.

If vp /∈ Pc, then vj is not accessible from any vertex v ∈ Pc, and consequently customers cannot

reach Sj from the last service area of the service cycle, meaning that no service cycle exists.

Thus, we obtain a contradiction.

At least two successors are required.

If no successor of the vertex vj which corresponds to Sj exists, then it is trivial that no service

cycle exists. Now assume that only one successor of the vertex vj exists, say vp, p 6= j. If

vp ∈ Pc, it corresponds to the travel place which connects Sj to the next service area in the

service cycle, say Sj+1. Since no other vertex is a successor of vj this means that all customers

completing their service cycle will be re-routed to Sj+1, thus repeating the same service cycle.

This violates the second condition of definition 6.1 and therefore, a contradiction is obtained.

If vp /∈ Pc, then none of the vertices corresponding to service areas Sl, l = j + 1, . . . , j + k, are

accessible from Sj, hence no service cycle exists. Again, we reach a contradiction.

Johnson’s algorithm, as explained in Section 2.4.2, is used to enumerate all elementary cycles of

a directed graph. The direct application of this algorithm the directed graph G, obtained from

the non-parameterised version of a PNPM, would always return at least one elementary cycle
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which will include the Repository place, e.g. see Figure 6.8. As we mentioned earlier, this place

of the PNPM represents the entry/exit point of the underlying system and thus, is actually not

part of any service cycle. To avoid such unwanted cycles will be detected by the algorithm we

examine the subgraph of G induced by the set of vertices V −{Repository} instead of G. Also,

instead of examining for cycles starting at each vertex of the strong component of the graph,

we use Theorem 6.1 and restrict the algorithm’s search to begin only with vertices vi which

have at least two predecessors and at least two successors. This eliminates the “requirement”

to calculate the strongly connected component of the graph (see Section 2.4.2), thus making

the cycle detection process even faster.

Consider the previous example of the customer-processing system shown in Figure 6.5 and its

corresponding PNPM (Figure 6.6). When we apply Johnson’s algorithm on the graph – formed

as described above – we obtain the ordered list of vertices which constitute the elementary cycle

and subsequently the ordered list of places that correspond to the representation of the service

cycle in our model, i.e. Server 0, Travel 0, Server 1, Travel 1, Server 2, Travel 2, Server 0.

In order to eliminate the race condition described earlier we must identify the participating

transitions and change their firing mode. That is, referring to the previous example, if transi-

tions t1 and t4 have different firing modes with respect to the type of tokens they support, the

race condition between them ceases to exist. In this way, we are able to distinguish between

customers who are about to enter the service cycle and customers who have just completed

it. The desired coloured version of the PNPM which implements the latter idea is depicted

in Figure 6.9. We notice that the race condition between t1 and t4 is resolved since the two

transitions now require different types of tokens to be enabled; t1 requires one black (default)

token and t4 one red. The behaviour of this model is as follows (for simplicity assume that

the Repository place is marked with only one black token): one black token is destroyed from

the Repository place and another is created in the Arrived place. Then t9 is enabled and fires

instantly, transferring the token to Server 0. Now, since t4 is no more enabled, the only en-

abled transition is t1 which, when fired, transfers the black token to Travel 0. A sequence of

transition firings will eventually transfer the token to the travel place Travel 2. When t7 fires,

the black token in Travel 2 will be destroyed and a red token will be placed on Server 0. Since
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t1 requires a black token to be enabled, the token cannot re-enter the service cycle and it will

be routed though t4 towards the Repository place once again. If we consider the token to be

a customer, and its colour to represent its service status, we see that the behaviour of the real

system is modelled accurately using this CGSPN model since the earlier probabilistic routing

of a customer at Server 0 (see Figure 6.6) is now deterministic. Note that the transition t10 is

used to “recycle” tokens, i.e. restore them to their original state and place them back to the

Repository place. The question that follows is how we achieve this, given the original GSPN

model and the sequence of places which constitute the service cycle.

Repository

Arrived

t8

Server 0 Travel 0 Server 1

Server 2

Travel 1Travel 2

t9 t1

t7

t4

Intermediatet10

t3

t2

t6

t5

1

1

11

1

1

Figure 6.9: The CGSPN model (non-parameterised version) for the system depicted in Figure 6.5,
which enables the distinction between serviced (red tokens) and unserviced (black tokens) customers.
Where no arc inscription is explicitly shown one black (default) token is assumed.

We begin by retrieving the sets of input and output transitions of the place p
(i)
h which corre-

sponds to the head of the ith service cycle. For each transition tin contained in •p
(i)
h we obtain

its input place which is the only element of •tin and similarly, for each transition tout con-

tained in p
(i)
h • we obtain its output place which is the only element contained in tout•. Again,

considering the previous example, we have:
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• p
(0)
h = Server 0,

• •Server 0 = {t7, t9},

• Server 0• = {t1, t4},

• •t7 = {Travel 2}, •t9 = {Arrived},

• t1• = {Travel 0}, t4• = {Intermediate}.

The next step is to determine the transition tin, tin ∈ •p
(i)
h whose input place is contained

within the sequence of places which define the ith service cycle and change its firing mode.

In particular, we only need to modify its forward incidence function to support another token

type. That is,

I+(p
(i)
h , tin)(black) = 1 → I+(p

(i)
h , tin)(c) = 1

for some (hitherto unused) colour c other than black. Now, we need to accommodate the

introduction of the new colour c in the model so that the required behaviour can be achieved,

e.g. in the latter example, the new token of colour c placed in p
(0)
h must be routed towards the

Repository place. This is performed in the following way.

First, we identify the transition tout in p
(i)
h • whose output place pk is not contained within the

sequence of places which make up the service cycle i, and change both its backward and forward

incidence functions accordingly, i.e.

I−(p
(i)
h , tout)(black) = 1 → I−(p

(i)
h , tout)(c) = 1

I+(pk, tout)(black) = 1 → I+(pk, tout)(c) = 1.

We proceed by recursively changing the backward and forward incidence functions of all subse-

quent connected transitions in the non-parameterised model; we consider two transitions ti, tj

to be connected if ti • ∩ • tj 6= ∅. This process continues until we reach the transition whose

output place is the Repository. For this transition we only change its backward incidence func-

tion since we wish the original colour of the token to be restored in the Repository. Table 6.2
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lists the required changes of the transitions’ firing mode for our example.

Transition Original Firing Mode Modified Firing Mode

t4 I−(Server 0, t4)(black) = 1 I+(Interm., t4)(black) = 1 I−(Server 0, t4)(red) = 1 I+(Interm., t4)(red) = 1

t7 I−(Travel 2, t7)(black) = 1 I+(Server 0, t7)(black) = 1 I−(Travel 2, t7)(black) = 1 I+(Server 0, t7)(red) = 1

t10 I−(Interm., t10)(black) = 1 I+(Rep., t10)(black) = 1 I−(Interm., t10)(red) = 1 I+(Rep., t10)(red) = 1

Table 6.2: The required firing mode modifications, if any, for each transition of the PNPM shown
in Figure 6.6 to enable the accurate modelling of the underlying system’s customer flow (Figure 6.5).
Interm. and Rep. denote the places labelled as Intermediate and Repository.

6.2.2 Integration with Multiple Customer Classes

The approach presented in Section 6.2.1 assumed the presence of one customer class in the

system. In Section 6.1 we described the modifications of the data processing pipeline to support

multiple customer classes and their representation in the coloured PNPM. Unfortunately, it

transpires that the developed approach for detecting cycles contained in the underlying graph

of our model is not applicable when multiple customer classes exist. Here, we demonstrate the

reason the latter approach fails and propose a solution.
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Repository
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Intermediate 0
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Figure 6.10: Figure 6.10(a) shows the CGSPN model (non-parameterised version) for the system de-
picted in Figure 6.5 using our existing methodology, when two customer classes exist. Its corresponding
2-graph is shown in Figure 6.10(b).

Consider the customer-processing system shown in Figure 6.5 and assume the existence of two
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customer classes. Following the methodology presented in Section 6.1 we obtain the CGSPN

model depicted in Figure 6.10. If we were to map the places and transitions of that model to

vertices and edges to form the corresponding directed graph (as described in Section 6.2.1), we

would obtain a directed multigraph, also known as p-graph with p = 2 (see Figure 6.10(b)).

In a p-graph, p denotes the maximum number of arcs having the same initial and terminal

vertices. If we have a system with three customer classes where each class performs the same

service cycle, the corresponding graph of the PNPM for that system would be a 3-graph.

While Theorem 6.1 is still applicable for this graph, Johnson’s algorithm considers the three

elementary cycles as being the same and thus outputs only one. The original approach fails

since we can neither generalise the detected service cycle to all customer classes, nor deduce

the class which performs the service cycle. Even if an alternative approach to represent the

customer flow in the model was employed, i.e. one transition with multiple firing modes (one

firing mode for each customer class), the problem would remain; in this case we would need to

consider each supported firing mode as a different edge in the corresponding graph.

The key idea to resolve this issue is to obtain the directed graph that represents the flow of

customers of each class – one graph for each customer class – and then iteratively apply the

same approach as before, on each graph. To find these graphs we proceed as follows. Assuming

that we have N customer classes in the system, we decompose the set of the model’s transitions

T into disjoint subsets Tci , i.e.

T =
N
⋃

i=1

Tci ,
N
⋂

i=1

Tci = ∅,

where ci, i = 1, . . . , N , denotes the token type that a transition’s firing mode supports. We

note that this decomposition is unique since at this stage of model construction there is a one-

to-one correspondence between each customer class and each token type. Of course, when the

modelling approach presented in Section 6.2.1 is applied, a one-to-many, in particular 1 : k+1,

correspondence will exist between each customer class and each token type. Here, k denotes

the number of service cycles that are sequentially performed by a particular customer class.

Then, for each Tci – along with the complete set of places in the model – we apply the same

mapping as before to derive the directed graph that corresponds to the journey undertaken
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Repository
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Server 0 Travel 0 Server 1

Server 2

Travel 1

Travel 2

Intermediate 0

Intermediate 1

(a) G1 = (V,Eblack) – Customer Class 1

Repository

Arrived

Server 0 Travel 0 Server 1

Server 2

Travel 1

Travel 2

Intermediate 0

Intermediate 1

(b) G2 = (V,Ered) – Customer Class 2

Figure 6.11: The directed graph produced from the CGSPN model of the system (Figure 6.10(a)),
for each supported customer class.

by each customer class. In our example we assumed two classes of customers, represented by

black and red tokens respectively, i.e.N = 2, c1 := black, c2 := red. If we denote the set of

edges that were formed from the mapping of Tblack as Eblack, and similarly those formed from

the mapping of Tred as Ered, then the directed graphs that corresponds to the first and second

customer classes are, respectively, G1 = (V,Eblack) and G2 = (V,Ered) (see Figure 6.11).

The CGSPN model which is obtained using this extended version of our initial approach, for

the latter example, is shown in Figure 6.12.

In Section 6.1 we mentioned that if multiple, say n, customer classes are serviced at a particular

service area then we have n sets of service time samples, one for each customer class, associated

with that service area. If the same service area is also the head of a service cycle, then 2n sets

of service time samples will be associated with it. That is, assuming that all customer classes

perform the service cycle, one set of service time samples for each customer class and each visit.
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Figure 6.12: The CGSPN model (non-parameterised version) of the system depicted in Figure 6.10(a)
using the extended cycle detection approach when two customer classes exist. Black and green tokens
are used to distinguish between unserviced and serviced customers of class one. Similarly, red and
blue tokens are used to distinguish between unserviced and serviced customers of class two.

6.3 Inter-routing probabilities

In this section we present a straightforward extension of the processing pipeline which allows

the calculation and representation of inter-routing probabilities of the system’s customer flow.

During the service and travelling time extraction process (Stage 3), we count the total number

of customers of each class who received service at each service area. For each service area Si we

maintain tables – one for each customer class – whose tuples consist of two fields: the identity

of another service area Sk, k 6= i, and the number of customers who visited Sk immediately

after they completed their service at Si.

To calculate the routing probability from Si to Sk for some k, k 6= i, we divide the number

of customers of class j who visited Sk immediately after Si, say n
(j)
i,k , by the total number of

customers of the same class who were serviced by Si, n
(j)
i . The routing of each customer class
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j is represented in the model as follows:

1. For each service area Si and for each customer class j, an intermediate place is created,

where tokens are placed after the associated service time transition fires.

2. For each destination service area Sk of each origin service area Si, immediate transitions

are created from the intermediate places of Si to a travel place. Their weights are set

equal to n
(j)
i,k/n

(j)
i .

3. Travelling time transitions are created, connecting each constructed travel place to the

corresponding destination service area Sk.

Figure 6.13 shows an example of a part of system that supports only one class of customers and

that has multiple routes, as well as the way it is modelled as a GSPN using the latter approach.

Service
Area A

Service
Area B

Service
Area C

Service
Area D

nA = 100

nA,D = 30

nA,B = 15

nA,C = 55

Server 0 Intermediate Travel 1 Server 2

Travel 0 Server 1

Server 3Travel 2

t1

w3 = 0.55

t3

t2

w2 = 0.15

w4 = 0.30

t4

t5

t6

t7

Figure 6.13: Representing the inter-routing probabilities of the customer flow of a system (left) in a
Generalised Stochastic PNPM (right). The immediate transitions t2, t3 and t4 have weights equal to
the routing probability of service areas B, C and D respectively, i.e. 0.15, 0.55 and 0.30.

Another more compact way of representing the routing probabilities other than using immediate

transitions was considered, yet discarded. As we know from the stochastic theory of Petri Nets,

when n timed transitions are simultaneously enabled at a particular markingM , the probability

of a transition ti, i = 0 . . . n−1, to fire first is given by λi∑n−1
j=0 λj

(Equation 2.9). We also note that

the sojourn time in M is exponentially distributed with parameter λ, where λ =
∑n−1

j=0 λj [14].
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Thus, one timed transition can be split into several ones with the appropriate firing rates so

that the required probability is formed. Given that t1 fires with rate λ and we wish to split it

into three transitions – one for each possible destination – and form the required probabilities,

we solve

Λ = λ · P (6.1)

where Λ = (λ1, λ2, λ3) is the vector of rates, one for each transition and P = (p1, p2, p3) is the

vector which contains the probabilities for each transition respectively. In the example depicted

in Figure 6.13 we have, P = (0.15, 0.55, 0.30) for destinations Server 1, 2 and 3 respectively.

Assume that t1 fires with rate equal to four, i.e. λ = 4 customers per second. Using Equation 6.1

we obtain that the rates for the transitions that will be used to replace t1 are 0.6, 2.2 and 1.2

in respective order. The structure of the updated PNPM can be seen in Figure 6.14.

Server 0

Intermediate Travel 1 Server 2

Travel 0 Server 1

Server 3Travel 2

t1

w3 = 0.55
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t5

λ2 = 0.6

λ4 = 1.2

t7

t2

t4

Figure 6.14: Representing the inter-routing probabilities of the customer flow of a system in a Gen-
eralised Stochastic PNPM using immediate transitions (left), and by splitting transition t1 (right).
Assume that λ1 = 4 customers per second.

However, the timed transitions that are contained in the model at this point (third stage of the

pipeline) are not yet parameterised and thus the latter technique cannot be applied. Further-

more, the service and travelling time transitions are subsequently replaced by the GSPN2 sub-

nets (stage four) which are used to represent the HErDs that were fitted to the extracted service

or travelling time samples . The structure of these subnets, e.g. see Figures 4.13 and 4.14, pro-

2Could also be CGSPN subnets in the scenario of multiple customer classes, e.g. see Figure 6.4.
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hibits the application of the latter technique since each branch of the subnet has an associated

probability (the weight of the corresponding immediate transition) and the timed transitions of

each branch have fixed firing rates. We conjecture that the technique of splitting the transition

rates to represent the routing probabilities of customers cannot be applied in parallel with our

existing methodology, at least not while we incorporate the HErD in our models.

Sometimes, during the service and travelling time extraction process, the speed-based heuristic

which is used to distinguish the cases where a customer simply passes through a service area

without requesting service (cf. Section 4.3), fails. This failure causes the routing of customers

to false destinations with a minor probability. To avoid this problem we set a probability cut-off

threshold and eliminate destinations whose corresponding routing probability is less than this

threshold. The removed probability is equally distributed among the remaining destinations

which satisfy the latter condition. The default value of the cut-off threshold is set to 2% but we

do provide the user with the option to change it (see Section 7.1). For example, if rare events

are important in a customer-processing system, e.g. failures or faulty parts in an assembly line,

then the value of this threshold should be reduced.

6.4 Evaluation

In this section we present three case studies and analyse their results. The purpose of these

case studies is to evaluate the pipeline’s newly added features presented in this chapter, and

demonstrate their integration in our methodology. As before, we use the extended version

of LocTrackJINQS [56], presented in Chapter 3, to generate the input customer location

tracking traces.

6.4.1 Case Studies

For all case studies presented in this section, we assume that each service area consists of

a single customer-processing server and a random service discipline, and that the customers’
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speed within the system, as well as the location update error are normally distributed. The

error distribution has a mean of 0.15m and a standard deviation of 0.2m, while the parameters

of the customers’ speed distribution are varied in each case study.

Figure 6.15: The experimental setup in terms of abstract system structure for case study 1. The
arrows represent the customer flow in the system and customers initially must complete the service
cycle defined by S1, S2, S3 and S1. The service areas contained in the dotted rectangle are subject
to a synchronisation condition which is represented by the dotted red arrow. Its source indicates
the synchronising service area and its target the service area to be synchronised. The number of
customers required to be present in the synchronising service area so that service can be performed
in the synchronised service area is indicated by the weight of the dotted red arrow. Furthermore, the
branching of the customer flow to S4 and S5 occurs with probability 0.65 and 0.35 respectively.

The experimental setup for the first case study is depicted in Figure 6.15. The simulation

takes place in a virtual 35m× 25m environment with customer movements as illustrated by

the arrows. This customer-processing system contains a service cycle which consists of the

service areas S1, S2, S3 and S1, and imposes a synchronisation condition on service area S5. In

particular, service area S5 requires the presence of at least two customers in service area S4 in

order to service its customers. For this case study we assume one class of customers and that the

customer speed distribution has mean 0.5m/s and standard deviation 0.1m/s. Furthermore,
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whenever a customer completes the service cycle, i.e. obtains service from S1 for the second

time, he is routed to service area S4 or S5 with probability 0.65 and 0.35 respectively.

Figure 6.16: The experimental setup in terms of abstract system structure for case study 2. The
arrows represent the customer flow in the system and it is independent with respect to the customer’s
class. The initial routing of customers to S1 and S2 occurs with probability 0.4 and 0.6 respectively,
and the service cycle in the system consists of service areas S4, S5, S6 and S4.

The second case study focuses on the integration of multiple customer classes and service cycles.

The system is emulated in a 25m× 25m virtual environment and it supports three customer

classes. Each customer class has a different speed distribution (see Table 6.3) and similarly,

requires a different type of service from each service area in the system. Initially, customers

who enter the system are routed to S1 or S2 with probability 0.4 and 0.6 respectively; this does

not depend on their class. Service areas S4, S5 and S6 specify a service cycle with S4 being the

head. Figure 6.16 shows the experimental setup for this case study.

A simplified model of an accident and emergency department is used for our third case study.

This model comprises five service areas: a reception (S1), an examination room (S2), an x-ray

operation room (S3), an x-ray room (S4) and a treatment room (S5). The simulation takes place
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Customer Class Mean (m/s) Standard Deviation (m/s)

0 0.5 0.1

1 0.3 0.1

2 0.65 0.2

Table 6.3: Case study 2: the parameters of the customer speed distribution (Normal) for each
customer class.

Customer Class Mean (m/s) Standard Deviation (m/s)

0 0.38 0.1

1 0.25 0.1

2 0.4 0.2

3 0.5 0.15

Table 6.4: Case study 3: the parameters of the customer speed distribution (Normal) for each
customer class.

in a 40 m× 28 m virtual environment and the experimental setup is depicted in Figure 6.17. We

assume minor and major patient classes that correspond to customer classes zero and one re-

spectively. Furthermore, another two customer classes exist: nurses and radiologists (customer

classes two and three). Patients who enter the system are routed to the reception to register

and then proceed to the examination room. From there they either get discharged, or are sent

to the x-ray room or to the treatment room. This routing of patients occurs with probability

0.3, 0.4 and 0.3 respectively. Patients routed to the x-ray and treatment rooms, after service

completion, must revisit the reception to schedule a followup examination and then exit the

system. Nurses and radiologists are immediately routed to the x-ray operation room and when

their service is terminated exit the system. In order for the scanning process of patients to be

initiated in the x-ray room, at least one nurse and one radiologist are required to be present in

the x-ray operation room. Table 6.4 shows the speed distribution for each customer class.

The actual location and service radius of each service area, as well as its service time density,

for each case study are depicted in Table 6.5.

6.4.2 Results

Results similar to those of chapters 4 and 5 are presented here. In addition, we present the

computed inter-routing probabilities (where applicable) and list the service areas that make up

each detected service cycle.
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Figure 6.17: The experimental setup in terms of abstract system structure for case study 3. The
red arrows represent the flow of customer class zero and one. Blue arrows are used to indicate the
flow of customer class two and three. The blue dotted arrow (contained in the blue dotted rectangle)
indicates the synchronisation conditions imposed by S3 on S4; one nurse (customer class 2) and one
radiologist (customer class 3) must be present in the x-ray operation room (S3) so that the screening
process of patients in the x-ray room (S4) can be initiated.

For the first case study, six sets of service time samples were extracted. For case studies two

and three, twenty-one and twelve sets of service time samples were extracted respectively and

therefore, only a selection is included in this section. In particular, the best-fit HErD results and

the corresponding Kolmogorov-Smirnov tests obtained for each service area with respect to the

first customer class (class 0) are presented for case study two. Similar results with respect to the

second customer class (class 1) are presented for the third case study. Furthermore, for service

area S4 in case study two, we include only results regarding the customers’ second visit (exit

from service cycle). For completeness, the remaining results can be seen in Appendix B.

As in the previous case studies the location and radii of the service areas are in general ap-

proximated well (see Table 6.6). The maximum location inference error is 0.084, 0.155 and

0.320metres for case studies one, two and three respectively. In the same ordering, the maxi-

mum service radius approximation error is 0.148, 0.098 and 0.277metres.
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Server Service Service Time
Location Radius Density

C
as
e
S
tu
d
y
1

S1 (15.0, 15.0) 0.5 Erlang(2, 0.18)

S2 (30.0, 15.0) 0.6 Exp(0.06)

S3 (22.5, 22.5) 0.9 Exp(0.08)

S4 (10.0, 5.0) 0.7 Erlang(2, 0.08)

S5 (20.0, 5.0) 0.8 Exp(0.12)

C
as
e
S
tu
d
y
2

S1 (10.0, 5.0) 0.7
Customer Class 0 Erlang(2, 0.08)
Customer Class 1 Exp(0.08)
Customer Class 2 Hyper-Exp(0.5, 0.35, 0.15; 0.05, 0.08, 0.12)

S2 (10.0,15.0) 0.8
Customer Class 0 Exp(0.05)
Customer Class 1 Erlang(5, 0.15)
Customer Class 2 HErD(1, 3; 0.6, 0.4; 0.02, 0.12)

S3 (17.0,5.0) 0.5
Customer Class 0 Erlang(2, 0.09)
Customer Class 1 Exp(0.028)
Customer Class 2 Erlang(3, 0.065)

S4 (17.0,15.0) 0.65
Customer Class 0 HErD(1, 5, 2; 0.4, 0.1, 0.5; 0.02, 0.25, 0.12)
Customer Class 1 Exp(0.035)
Customer Class 2 Erlang(8, 0.2)

S5 (23.0,15.0) 0.55
Customer Class 0 Hyper-Exp(0.5, 0.5; 0.03, 0.08)
Customer Class 1 Exp(0.04)
Customer Class 2 Erlang(3, 0.1)

S6 (20.0,20.0) 0.7
Customer Class 0 Exp(0.025)
Customer Class 1 Erlang(2, 0.085)
Customer Class 2 Exp(0.05)

C
as
e
S
tu
d
y
3

S1 (10.0, 12.5) 1.0
Customer Class 0 Exp(0.033)
Customer Class 1 Exp(0.05)

S2 (20.0,12.5) 0.95
Customer Class 0 Erlang(2, 0.035)
Customer Class 1 Normal(40, 10)

S3 (33.0,10.0) 1.33
Customer Class 2 Erlang(6, 0.05)
Customer Class 3 Erlang(5, 0.04)

S4 (38.0,15.0) 1.8
Customer Class 0 Exp(0.033)
Customer Class 1 Exp(0.033)

S5 (28.0,22.0) 1.5
Customer Class 0 Exp(0.013)
Customer Class 1 Erlang(2, 0.013)

Table 6.5: The parameters for each service area in the system, for each case study. Server locations
and their corresponding service radii are given in metres. The parameters of the HErDs represent the
phase lengths, weights and rate for each branch respectively, separated by a semi-colon. Using the
same notation we represent the weights and rates of the Hyper-Exponential distributions. The unit
of the rate parameters for phase-type distributions is customers per second. The mean and standard
deviation of the Normal distribution are given in seconds.

The quality of the extracted service time samples and the best-fit HErD are assessed by

Kolmogorov-Smirnov tests which examine their compatibility (see Table 6.8). As before, we
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Server Location Service Radius

Real Inferred (3 d.p.) Error (3 d.p.) Real Inferred (3 d.p.) Absolute Error

C
as
e
S
tu
d
y
1

S1 (15.0, 15.0) (15.014, 14.977) 0.027 0.5 0.580 0.080

S2 (30.0, 15.0) (30.000, 14.938) 0.062 0.6 0.693 0.093

S3 (22.5, 22.5) (22.420, 22.508) 0.080 0.9 0.982 0.082

S4 (10.0, 5.0) (9.970, 5.026) 0.040 0.7 0.809 0.109

S5 (20.0, 5.0) (20.069, 4.952) 0.084 0.8 0.948 0.148

C
as
e
S
tu
d
y
2

S1 (10.0, 5.0) (9.893,5.112) 0.155 0.7 0.789 0.089

S2 (10.0, 15.0) (10.009, 14.985) 0.017 0.8 0.889 0.089

S3 (17.0, 5.0) (17.010, 5.007) 0.012 0.5 0.598 0.098

S4 (17.0, 15.0) (17.007, 14.991) 0.011 0.65 0.735 0.085

S5 (23.0, 15.0) (23.041, 14.954) 0.062 0.55 0.630 0.080

S6 (20.0, 20.0) (19.983, 19.881) 0.120 0.7 0.795 0.095

C
as
e
S
tu
d
y
3

S1 (10.0, 12.5) (9.955, 12.511) 0.046 1.0 1.095 0.095

S2 (20.0, 12.5) (20.014, 12.546) 0.048 0.95 1.025 0.075

S3 (33.0, 10.0) (33.017, 10.014) 0.022 1.33 1.454 0.124

S4 (38.0, 15.0) (37.814, 14.976) 0.188 1.8 2.077 0.277

S5 (28.0, 22.0) (28.136, 22.290) 0.320 1.5 1.609 0.109

Table 6.6: The inferred location and service radius for each service area in the system accompanied
with the absolute error, for each case study. These values are given in metres.

use the AIC to select the best-fit HErD from an enumeration of all HErDs up to a maximum

number of states which depends on the coefficient of variation of the set of extracted time sam-

ples3. Table 6.7 shows the parameters of the best-fit HErD for each service area and customer

class (for which results are included in this section), as well as the corresponding relative en-

tropy values. Again, we observe some discrepancies between the parameters of the theoretical

service time density function and the fitted HErD, e.g. S2, S3 – case study 1, S5 – case study 2,

S1 – case study 3, but in general, as we can see from Figures 6.18, 6.19 and 6.20 and the

3The rule for selecting the maximum number of states for HErD enumeration is described in Section 4.5.2.
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corresponding relative entropy values, good fits have been obtained. In some of the the cases

where the best-fit HErD is not as accurate, e.g. Figures 6.19(c), 6.19(d), B.4(b), we observe a

relatively small number of samples. Naturally, the number of available samples depends on the

number of customers who visited that particular service area. In turn, this number depends

on several factors such as the topology of the system, e.g. service areas which are the furthest

away from other service areas or they are visited last will likely have fewer service time sam-

ples, the system’s customer flow, e.g. probabilistic routing of customers to several service areas

immediately diminishes the number of service time samples for each destination service area,

the duration of the system’s monitoring period, etc.

In the first case study the service cycle formed by service areas S1, S2 and S3 has been correctly

identified and modelled (see Figure 6.21). In the constructed model, service areas S1, S2, S3,

S4 and S5 correspond to the places labeled as Server 0, Server 2, Server 4, Server 1 and

Server 3 in respective order. The computed inter-routing probabilities from S1 to destination

service areas S4 and S5, represented by the weights of the immediate transitions T2 and T4,

are approximated well with values 0.669 and 0.331 (3 d.p.) respectively. Furthermore, the

synchronisation condition between S4 (synchronising service area) and S5 (synchronised service

area) has been included in the model with the appropriate synchronisation marking, i.e. two

customers are required to be present in S4 so that customers in S5 can be serviced.

The constructed PNPM for the second case study is illustrated in Figure 6.22. We observe

that the structure of the model matches the abstract system structure of the model used in

the simulation. Service areas S1, S2, S3, S4, S5 and S6 correspond to the places with labels

Server 4, Server 0, Server 5, Server 1, Server 2 and Server 3 in the constructed model. The

service areas S4, S5 and S6 which make up the service cycle have been correctly detected.

Furthermore, the subnets (shown in compact transition form) – one for each customer class –

which transfer the tokens back to S4 to complete the service cycle, successfully change the colour

of the appropriate token class and thus, accurately represent the customer flow of the simulated

system. Black (customer class 0) tokens become purple, red tokens (customer class 1) become

green and blue tokens (customer class 2) become turquoise. The simulated and computed initial

routing probability of the customer flow in the system is presented in Table 6.9.
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Service Time Fitted HErD Relative
Density Parameters Entropy

Phase LengthsRate (3 d.p.)Weights (3 d.p.) (3 d.p.)

C
as
e
S
tu
d
y
1

S1 - (1st visit) Erlang(2, 0.18) 2 0.175 1.000 0.001

S1 - (2nd visit) Erlang(2, 0.18) 2 0.172 1.000 0.002

S2 Exp(0.06) 2, 2 0.078, 0.324 0.644, 0.356 0.057

S3 Exp(0.08) 2, 2 0.121, 0.472 0.721, 0.279 0.057

S4 Erlang(2, 0.08) 2 0.076 1.000 0.003

S5 Exp(0.12) 1 0.097 1.000 0.023

C
as
e
S
tu
d
y
2

S1 Erlang(2, 0.08) 2 0.085 1.000 0.003

S2 Exp(0.05) 1 0.045 1.000 0.005

S3 Erlang(2, 0.09) 1 0.036 1.000 0.142

S4 - (2nd visit)HErD(1, 5, 2; 0.4, 0.1, 0.5; 0.02, 0.25, 0.12) 1, 3 0.013, 0.182 0.426, 0.574 0.037

S5 Hyper-Exp(0.5, 0.5; 0.03, 0.08) 2 0.085 1.000 0.324

S6 Exp(0.025) 2 0.048 1.000 0.193

C
as
e
S
tu
d
y
3

S1 - (1st visit) Exp(0.05) 2, 2 0.084, 1.184 0.899,0.101 0.054

S1 - (2nd visit) Exp(0.05) 1, 2 0.070, 0.088 0.325, 0.675 0.045

S2 Normal(40, 10) 17 0.385 1.000 0.119

S3 N/A N/A N/A N/A N/A

S4 Exp(0.033) 1 0.027 1.000 0.016

S5 Erlang(2, 0.013) 2 0.013 1.000 0.001

Table 6.7: The HErD parameters fitted by G-FIT for each service area’s service time density with
the relative entropy (in nat) between the theoretical and fitted probability density function, for each
case study. for each case study. For case studies two and three we show the results only for the first
and second customer class respectively. The parameters of the HErDs represent the phase lengths,
weights and rate for each branch respectively, separated by a semi-colon.

Figure 6.23 depicts the model obtained for case study three. Customer classes 0, 1, 2 and 3

are represented with red, blue, green and black colours respectively. Places Server 0, Server 1,

Server 3, Server 2 and Server 4 correspond to service areas S1 (reception), S2 (examination
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Case Study 1 Case Study 2 - Class 0 Case Study 3 - Class 1

S1 - (1st visit) Test Statistic 0.0398 0.0787 0.0638
α 0.1 0.05 0.1 0.05 0.1 0.05

Critical Values 0.0723 0.0824 0.1544 0.1761 0.0877 0.0999
Compatible ? Yes Yes Yes Yes Yes Yes

S1 - (2nd visit) Test Statistic 0.0564

N/A

0.0422
α 0.1 0.05 0.1 0.05

Critical Values 0.0733 0.0836 0.1110 0.1265
Compatible ? Yes Yes Yes Yes

S2 Test Statistic 0.0238 0.0880 0.0455
α 0.1 0.05 0.1 0.05 0.1 0.05

Critical Values 0.0720 0.0821 0.1498 0.1708 0.0901 0.1027
Compatible ? Yes Yes Yes Yes Yes Yes

S3 Test Statistic 0.0257 0.1589

N/A
α 0.1 0.05 0.1 0.05

Critical Values 0.0728 0.0830 0.1578 0.1799
Compatible ? Yes Yes No Yes

S4 Test Statistic 0.0636 0.0441 0.1293
α 0.1 0.05 0.1 0.05 0.1 0.05

Critical Values 0.0898 0.1024 0.1578 0.1799 0.1443 0.1645
Compatible ? Yes Yes Yes Yes Yes Yes

S5 Test Statistic 0.1049 0.1010 0.1011
α 0.1 0.05 0.1 0.05 0.1 0.05

Critical Values 0.1317 0.1502 0.1513 0.1725 0.1671 0.1905
Compatible ? Yes Yes Yes Yes Yes Yes

S6 Test Statistic

N/A

0.1325

N/A
α 0.1 0.05

Critical Values 0.1513 0.1725
Compatible ? Yes Yes

Table 6.8: Kolmogorov-Smirnov test at significance levels 0.1 and 0.05 applied to the extracted service
time samples for each service point from case studies one, two and three. The null hypothesis is that
each extracted sample belongs to the corresponding best-fitted HErD.

room), S3 (x-ray operation room), S4 (x-ray room) and S5 (treatment room). The two service

cycles involving service areas S1, S2, S4 and S1, S2, S5 have been correctly identified and

modelled. Subnets with labels HErD21 and HErD15 connect S4 and S5 (via their travel places)

back to S1 to complete the service cycles of customers of class 0 and similarly, subnets HErD19

and HErD13 complete the same service cycles of customers of class 1. We note the token colour

change for the first customer class (class 0) from red to brown (by HErD21 and HErD15) and

for the second customer class (class 1) from blue to yellow (by HErD19 and HErD13), which

correctly models the underlying system’s customer flow. The inferred routing probability from

S2 to S4, S5 and sink (represented by the repository place) is shown in Table 6.10. In addition,
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Destination Service Area Customer Class Simulated Probability Inferred Probability (3 d.p.)

S1
0 0.4 0.485
1 0.4 0.333
2 0.4 0.470

S2
0 0.6 0.515
1 0.6 0.667
2 0.6 0.530

Table 6.9: The simulated and inferred initial routing probability of the customer flow, for each
customer class, for case study two.

Destination Service Area Customer Class Simulated Probability Inferred Probability (3 d.p.)

S4
0 0.4 0.429
1 0.4 0.397

S5
0 0.3 0.280
1 0.3 0.298

Sink
0 0.3 0.291
1 0.3 0.305

Table 6.10: The simulated and inferred routing probability of the customer flow from service area S2
for case study three.

the synchronisation conditions between S3 (synchronising service area) and S4 (synchronised

service area) have been modelled correctly; one nurse (green colour) and one radiologist (black

colour) are required to be present in S3 so that patients in S4 can be scanned.

In Chapter 4 (cf. Section 4.5.2) we have discussed the possibilities of model analysis in order to

assess the underlying system’s performance and the modification of the constructed models to

perform “what-if” analysis. Before we conclude this chapter, we must note the impact of the

presented extensions on the complexity of model analysis. In particular, analysis is likely to be

bedevilled by a state-space explosion caused by:

1. the use of different token types to support multiple customer classes, and

2. the exponential increase in the number of HErD subnets used to replace the non-parameterised

service and travelling time transitions for each customer class.

Possible techniques that could be employed to mitigate this problem are discussed in Section 8.3.
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6.4.3 Conclusion

In this chapter we have presented three extensions, two of which have been made possible by

the introduction of CGSPNs, which extend the domain of applicability and modelling power of

our original methodology.

The first extension discards the assumption of single customer class as it enables the support

of multiple customer classes. Each customer class is assigned one token colour and a distinct

set of transitions to model its flow throughout the model. The second extension captures the

presence of single service cycles in the system (if they exist) and models them in such a way

so that the flow customers is accurately represented. The model (before parameterisation) is

converted into a directed graph on which we apply Johnson’s algorithm [64] which enumerates

all elementary cycles contained in the graph. We then identify the appropriate transitions (see

Section 6.2.1) which are connected to the place that represents the head of the service cycle

and change the assigned token type of their firing mode so that any race conditions between

them are eliminated. This action guarantees that the customer flow of the underlying is ac-

curately reflected by the model. The final extension of the pipeline allows the calculation and

representation of the inter-routing probabilities of the customer flow between service areas.

These extensions and their integration with the existing methodology presented in Chapters 4

and 5 are evaluated in case studies one, two and three. In particular, the third case study

examines all supported features of our approach, i.e. the presence of synchronisation and service

cycles, in parallel with multiple customer classes. The corresponding results provide evidence

which reinforces the validity of earlier results, and suggests that these extensions perform well.

Furthermore, the integration of these extensions with our earlier work has been successful

and in fact, the integrated methodology is implemented under a unified framework by the

PEPERCORN tool; this is presented in the next chapter.
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Case Study 1: Cumulative histogram of extracted service time samples for S1 (1st visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 1: Cumulative histogram of extracted service time samples for S1 (2nd visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 1: Cumulative histogram of extracted service time samples for S2
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(c)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

F
(X

)

X

Case Study 1: Cumulative histogram of extracted service time samples for S3
and its best-fit distribution compared with the theoretical distribution
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Case Study 1: Cumulative histogram of extracted service time samples for S4
and its best-fit distribution compared with the theoretical distribution
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Case Study 1: Cumulative histogram of extracted service time samples for S5
and its best-fit distribution compared with the theoretical distribution
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Figure 6.18: Case Study 1: Graphs 6.18(a), 6.18(b), 6.18(c), 6.18(d), 6.18(f) and 6.18(f) show the
cumulative histogram of the extracted service time samples (adjusted for synchronisation in 6.18(f))
and its best-fit hyper-Erlang distribution compared with the theoretical distribution for S1 (entry to
service cycle), S1 (exit from service cycle), S2, S3, S4 and S5 respectively.
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Case Study 2: Cumulative histogram of extracted service time samples for S1 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S2 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S3 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S4 - Class 0 (2nd visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S5 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S6 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Figure 6.19: Case Study 2: Graphs 6.19(a), 6.19(b), 6.19(c), 6.19(d), 6.19(e) and 6.19(f) show the
cumulative histogram of the extracted service time samples for customer class 0 and its best-fit hyper-
Erlang distribution compared with the corresponding theoretical distribution for S1, S2, S3, S4 (exit
from service cycle), S5 and S6 respectively.
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Case Study 3: Cumulative histogram of extracted service time samples for S1 - Class 1 (1st visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S1 - Class 1 (2nd visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S2 - Class 1
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S4 - Class 1
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S5 - Class 1
and its best-fit distribution compared with the theoretical distribution
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Figure 6.20: Case Study 3: Graphs 6.20(a), 6.20(b), 6.20(c), 6.20(d) and 6.20(e) show the cumulative
histogram of the extracted service time samples (adjusted for synchronisation in 6.20(d)) for cus-
tomer class 1 and its best-fit hyper-Erlang distribution compared with the corresponding theoretical
distribution for S1 (entry to service cycle), S1 (exit from service cycle), S2, S4 and S5 respectively.
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Figure 6.21: The inferred CGSPN performance model for case study one, viualised in PIPE2 (in compact transition form).
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Figure 6.22: The inferred CGSPN performance model for case study two, visualised in PIPE2 (in compact transition form). Black, red and blue
tokens represent the first, second and third customer class respectively.
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Figure 6.23: The inferred CGSPN performance model for case study three, visualised in PIPE2 (in compact transition form). Red, blue, green and
black tokens represent customer class 0, 1, 2 and 3 in respective order.



Chapter 7

PEtri net PERformance model

COnstRuctioN tool - PEPERCORN

This chapter presents the PEPERCORN tool, developed to demonstrate the feasibility of the

automated methodology, presented throughout Chapters 4, 5 and 6, under a unified frame-

work. PEPERCORN provides a user-friendly environment which allows users – who are not

necessarily familiar with performance model construction – to construct PNPMs from high-

precision location tracking data. This tool has been implemented in Java for two reasons: it is

a platform-independent language and it provides good support for GUI development.

The chapter is organised as follows. We first provide an overview of PEPERCORN’s interface

and demonstrate its operation. In fact, the screen shots we include here were produced while

processing the location tracking data generated by simulating the A&E department presented

in the third case study of Chapter 6. We then present an outline of PEPERCORN’s software

architecture and conclude this chapter with a description of the mining process that extracts the

data – apart from the locations and radii of the system’s service areas – required to construct

and parameterise the PNPM.

195
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7.1 Overview

PEPERCORN’s main interface, shown in Figure 7.1, comprises of four components: a menu

bar, a toolbar, a drawing panel and a status bar. The menu bar contains actions which initialise

and execute the processing pipeline, e.g. open file, process file and export PNPM (quick access

to these actions is also provided by the toolbar), as well as additional options which allow the

user to modify various adjustable parameters of the pipeline.

Menu bar

Toolbar

Drawing
Panel

Status bar

Figure 7.1: The main interface of PEPERCORN.

The status bar guides the user through the various stages of the data processing pipeline; it

displays the stage and action that is currently being performed. This also includes a progress

bar which shows an estimate of the overall progress of the pipeline (as a percentage) until the

PNPM is constructed and ready to be exported (cf. Figure 7.2).

Figure 7.2: PEPERCORN’s status bar.

In order to construct a PNPM using PEPERCORN, the user must first import a file which

should contain the raw location tracking updates retrieved from a particular customer-processing

system. As we mentioned earlier, PEPERCORN currently supports location tracking data
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Open File

Process
File

Export
PNPM

View
Results

Animate

Disable
Synchro-
nisation
Detection

Enable
Synchro-
nisation
Detection

(a) The actions provided by the toolbar.

Animate
Customer
Movement

Animate
Speed
Filter

Animate
Density
Filter

Animate
Clustering

(b) Additional animation actions which are available once the ‘Animate’ button is pressed.

Figure 7.3: PEPERCORN’s toolbar (above) and its expanded view, once the ‘Animate’ button is
pressed (below).

obtained from a Ubisense UWB-based RTLS and synthetic ones, generated by LocTrack-

JINQS [56]. In particular, these files should contain a stream of tuples of the form (tagName,

x, y, z, date, time, milliseconds, stderr, type) and (tagName, type, time, x, y,

stderr) respectively. Such files can be imported in PEPERCORN via the ‘Open File’ but-

ton (cf. Figure 7.3), which can be also accessed through the ‘File’ menu.

Once a supported file has been imported, the user can initiate the data processing pipeline

by clicking the ‘Process File’ button which is also found on the toolbar (cf. Figure 7.3) and

under the ‘File’ menu. However, if the user wishes to adjust some of the pipeline’s default

parameters or disable the synchronisation detection mechanism, the user must do so before

processing commences. Specifically, through the ‘Advanced Settings’ menu (submenu of ‘Op-

tions’ – cf. Figure 7.4), one can modify the following parameters:
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Figure 7.4: The ‘Options’ menu of PEPERCORN’s menu bar.

1. the maximum allowable speed which is used as a threshold to discard erroneous location

updates during the initial data filtering process (cf. Section 4.1),

2. the values of MinPts and Eps for the density filter (cf. Section 4.2.2),

3. the value of the synchronisation acceptance threshold sthresh (cf. Section 5.1),

4. the threshold probability used for the calculation of the inter-routing probabilities of the

customer flow (cf. Section 6.3), and

5. the maximum number of states of the HErD to be fitted, in cases where the coefficient

of variation of the extracted service or travelling time samples is less than 0.4 (see Sec-

tion 4.4).

The option to disable the synchronisation detection mechanism is provided because false posi-

tives may sometimes arise in systems where all customers must sequentially visit several service

areas, with long service time, in the same order, e.g. a system with a structure similar to that

of the first case study presented in Chapter 4.
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A user can select to animate the different processing phases of the second stage of the data

processing pipeline by pressing the ‘Animate’ button (cf. Figure 7.3); this is displayed on the

drawing panel. If this button is pressed before or during the initiation of the second stage of

the pipeline, each of the stage’s three layers is animated in “real time”, i.e. the speed filter, the

density filter and the execution of the DBSCAN clustering algorithm. The user can further

specify which layer of this stage to animate, including the customers movement before the speed

and density filters are applied (see Figure 7.3(b)). If the ‘Animate’ button is pressed after the

second stage has been completed, only the clustering result is displayed (cf. Figure 7.5(e)). An

example is shown in Figures 7.5(a), 7.5(b) and 7.5(c).

After the speed and density filters have been applied to all customer paths, the DBSCAN

clustering algorithm is applied on the aggregated filtered dataset. However, before clustering

initiates, a dialog is displayed to the user; this dialog shows the aggregated dataset and the

4-dist graph, along with the automatically selected value for Eps (cf. Figure 7.5(d)). If the Eps

value is not (automatically) approximated well, then the user can tune the this value manually

by clicking on the desired 4-dist value of the 4-dist graph (see Section 4.2.3). After the Eps

value is specified, no further user input is required.

When the execution of the data processing pipeline is completed, the user can export the

constructed PNPM in an XML file (a custom variation of the PNML) so it can be visualised

and/or analysed in PIPE2 (cf. Figure 7.5(f)). This action is performed by clicking the ‘Export

PNPM’ button on the toolbar or via the ‘PNPM’ menu.

PEPERCORN also allows users to examine key quantitative results, such as the service and

travelling time distribution fits, the compatibility of extracted time samples with the fitted

distribution, and service area locations, before exporting the model (see Figure 7.6). This

action is performed by the ‘View Results’ button (located also in the ‘PNPM’ menu) which

becomes enabled as soon as the fourth stage of the pipeline is completed.

Additional actions are also provided through the application menus. The ‘Clear’ action, located

in the ‘PNPM’ menu, erases all data stored in memory and deletes temporary files created dur-

ing the operation of the data processing pipeline, i.e. the standardised data file, the separated
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(a) (b) (c)

(d)

(e)

(f)
Figure 7.5: Figures 7.5(a), 7.5(b) and 7.5(c) show the animation of a customer’s path and, the speed
and density filters applied on that path respectively. Figures 7.5(d) and 7.5(e) show the Eps selection
dialog and the clusters produced by the DBSCAN algorithm. Figure 7.5(f) shows the constructed
PNPM as visualised in PIPE2 (in compact transition form).
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Figure 7.6: The results window of PEPERCORN.

customer paths and the files which contain the extracted service and travelling time samples.

This action should be performed when processing terminates, after the PNPM has been ex-

ported, and before processing another set of location tracking traces. Finally, the ‘Export

Clustering’ menu, located within the ‘File’ menu, allows the user to export the clustering result

as an image file.

7.2 Software Architecture

PEPERCORN was designed to be a stand-alone tool, initially implementing the original data

processing pipeline presented in Chapter 4. However, new features were subsequently intro-

duced to the methodology in order to facilitate the modelling of more complex customer-

processing systems, i.e. presence-based synchronisation detection (cf. Chapter 5), support mul-

tiple customer classes and service cycles (cf. Chapter 6). For this reason, an evolutionary

approach [100] was employed in PEPERCORN’s development.
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7.2.1 Resources

For the purpose of developing PEPERCORN, the following external resources were used:

1. The Java Spatial Index (JSI) RTree library [66]: this library is used to store spatial data

efficiently and answer spatial queries. In PEPERCORN, this library is used during the

second stage of the processing pipeline by the DBSCAN clustering algorithm; it stores

the 2D points of the aggregated filtered dataset. This library was modified to support

two more queries: retrieve the points that lie in the Eps-Neighbourhood of a point p and

retrieve the Nth nearest neighbour of p (required to compute the 4-dist graph).

2. G-FIT [105]: this tool is used to fit a HErD to a set of samples, using the EM algorithm.

PEPERCORN uses G-FIT to fit several HErDs to each set of extracted service and

travelling time samples. Furthermore, in order to select the best-fit HErD using the AIC,

we have slightly modified G-FIT so that it returns the log-likelihood value for each fit.

3. JFreeChart Java library [63]: this library facilitates the creation of various types of

charts which can be displayed as, including other formats, swing1 components. In

PEPERCORN, JFreeChart is used to produce and display the filtered dataset and 4-

dist graphs (see Figure 7.5(d)), as well as the service and travelling time cumulative

density functions shown in the results window (see Figure 7.6).

7.2.2 Outline

The current version of PEPERCORN contains a total of sixty-five classes divided into six main

packages (see Figure 7.7). The filtering package contains three classes which implement the

three filters described in Sections 4.1, 4.2.1 and 4.2.2. Package fitting contains four classes

that are used to obtain and evaluate2 the best-fit HErD for a given set of service or travelling

1swing is a core Java package which contains important classes for adding a GUI to an application.
2This automated evaluation performs a Kolmogorov-Smirnov test in order to test the hypothesis that the

extracted time samples match the best-fit HErD. The relative entropy values between the best-fit HEr and
theoretical distributions (presented in the previous chapters) were computed manually using Wolfram Mathe-
matica 8.
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Figure 7.7: UML package diagram for the main packages of PEPERCORN.

time samples. gui contains a set of classes which construct PEPERCORN’s user interface and

handle user interaction.

Package petriNet consists of two subpackages: netComponents and modelData. Classes

which represent the elements of the PNPM such as arcs, places, transitions, etc., and the

net itself, are located within netComponents. The UML class diagram which depicts the

relations between the basic classes of this package is shown in Figure 7.8. The netComponents

package contains four additional classes which are not included in Figure 7.8: ServerPlace,

TravelPlace, HErDSubnet and PetriNet. ServerPlace and TravelPlace are specialisations

of the Place class, and are used to represent service areas and customer movements (between

pairs of service areas) respectively. An instance of ServerPlace stores and process the data

associated with the service area which represents. Similarly, an instance of TravelPlace stores

and process the data associated with the movement of customers between a pair of two service

areas. Auxiliary classes which are used to hold data associated with customers and the model,

e.g. the number of customer classes, the inferred synchronisation conditions and the colour

associated with each token type that is employed in the PNPM, are contained in modelData.
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The pipeline package contains the classes which implement the stages of the integrated data

processing pipeline, one class for each stage. tools includes various utility classes, as well as

the dbscan package whose classes implement the DBSCAN clustering algorithm. The utility

classes provide methods to perform low-level tasks, such as customer path separation, data

standardisation, or define data structures which are used by other classes. We note that dbscan

includes the rtree package which contains the Java Spatial Index (JSI) RTree library [66].
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Figure 7.8: UML class diagram for the basic classes in netComponents.

7.2.3 Data Mining Process

One of the main challenges we encountered while developing PEPERCORN was to extract and

aggregate the data from each customer path so that it could be processed to yield the PNPM.

In particular, apart from the location and service radius of each service area in the system, the

following data is required in order to construct and parameterise the PNPM:

1. the timestamps required to compute the sojourn (response) time sample(s) of each cus-

tomer at each service area,

2. the timestamps required to compute the travelling time sample(s) of each customer be-

tween pairs of service areas and from the system’s entry point until the first service area

is reached,
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3. the number of customer classes supported by the system and the total number of cus-

tomers of each class that were processed by the system,

4. the number of customers of each class who arrived at a service area after their entry in

the system – required to approximate the initial routing probability of the customer flow,

5. the destination(s) of each customer after completing its service at a particular service

area – required to approximate the inter-routing probabilities of the customer flow, and

6. the last two recorded locations of each customer processed by the system. These are used

to determine if a customer has reached the system’s exit point.

Most of this data is associated with the processing of customers at the system’s service areas.

For this reason, we implemented the CustomerData class. An instance of this class is used to

represent each customer processed at each service area and it also stores data related to the

customer’s service experience at the service area. This data includes the customer’s tag id, its

class, the timestamps required to compute the customer’s service time and the ordered list3

of destinations after the customer’s departure from the service area. CustomerData instances

are stored in ServerPlaces (in particular, they are stored in the ServerPlace instance that

corresponds to the service area the customers were processed by) and accessed via a hash map

which uses the customer’s tag id as key.

The CustomerData instances of each ServerPlace instance are populated during the data min-

ing process which is performed by the mine method of the DataMiner class. However, before

mine() is executed, each customer path must be interpolated so that the time interval ∆t be-

tween consecutive location updates is no greater than 0.25 seconds. This action is taken in order

to account for the “lost” readings that were filtered out during the first stage of the data process-

ing pipeline and thus, obtain better estimates for the response and travelling time samples. To

demonstrate how an interpolated location update is generated consider the following diagram

where p1 and p2 denote the customer’s position at time t1 and t2 respectively (t2 > t1 + 0.25),

i.e. the position of the customer as indicated from location updates l1 and l2.

3Multiple entries in this list denote multiple visits by the customer to the service area, i.e. existence of cyclic
services. In this scenario, the ith entry of the list, holds the id of the destination that the customer was observed
at, after its ith visit to the service area.
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p1

p2

d

∆x
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θ

The Cartesian coordinates p′x, p
′
y of the kth interpolated point p′k are given by

p′x = p1x +
d

∆t
t cos θ

p′y = p1y +
d

∆t
t sin θ

where p1x and p1y denote the x and y coordinate of p1, ∆t = t2−t1 and t is the kth cumulative time

increment, i.e. t = 0.25 ·k, k ∈ {i | i ∈ IN, 0.25 · i < ∆t}. The kth interpolated location update is

then (tagName, p′x, p′y, t, stderr, type) where stderr and type are equal to the values

of the corresponding fields in l2. The latter process is performed by the PathInterpolation

class contained within tools.

The key idea behind the implementation of mine() is that the state of a customer during its

stay in the system can be characterised by three events: system entry, arrival at a service area,

departure from a service area. Thus, a customer path4 can be decomposed into a sequence of

states, say A, B and C, where state A initiates upon the customer’s entry in the system, state B

initiates upon the customer’s arrival at a service area and state C initiates upon the customer’s

departure from a service area. This is shown graphically in Figure 7.9.

Transitions between states are identified by examining the values of two Place instances, last

and next. last holds a reference to the last service area where the customer was observed

to be present and next to the current one. These objects are initialised as null. Each state,

as well as a transition between two states, is identified by considering the values of these two

objects at each location update:

4Recall that a customer path is a collection of all (time-ordered) location updates associated with a particular
customer.
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Figure 7.9: The states of a typical customer path. State A means that the customer has entered the
system and that is moving towards the first service area. State B denotes that the customer is inside a
service area waiting or being serviced, and state C that the customer is moving between service areas
or that is headed towards the system’s exit point.

• If last == null and next == null, then the customer has entered the system and is

moving towards the first service area, i.e. the customer is in state A.

• If last == null and next != null, then the customer has reached the first service area,

i.e. transition A�B occurs.

• If last != null and next == null, then the customer has completed its service at the

service area which corresponds to last and is moving towards the next service area or

towards the system’s exit point, i.e. transition B�C occurs.

• If last != null and next != null, then the customer is either in state B, i.e. waiting

or being serviced at the service area that corresponds to last, or has left the service area

that corresponds to last and has reached some other service area, i.e. transition C�B.

We distinguish between these two cases by comparing the ids of last and next.

Whenever a value not equal to null is observed for next, we set last equal to next and next

equal to null so a transition to another state can be identified.

When A�B occurs the method increases the number of initial customers (of the appropriate

customer class) of the service area which corresponds to the place (ServerPlace) next. This

information is used later to compute the initial routing probabilities of the customer flow. The

timestamps required to compute the entry time of the customer at next are also extracted

here. In particular, the timestamp of the last location update in state A corresponds to the last

disappearance timestamp and the timestamp of the first update in state B corresponds to the
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first disappearance timestamp (cf. Figure 4.11). These location updates are passed as arguments

to the addLastDisappearanceTime and addFirstAppearanceTime methods of next.

When C�B occurs we store the id of next in a list (one for each customer) within the

place (ServerPlace) last. These lists are processed to yield the routing probabilities of cus-

tomers processed by the service area that corresponds to last. The same procedure as above,

i.e. transition A�B, is employed to store the timestamps that are required to compute the entry

time of the customer at the service area that corresponds to next.

The last appearance and first disappearance timestamps (required to compute the exit time –

cf. Figure 4.11) of the customer at a service area are identified when the transition B�C is

observed. The methods addLastAppearanceTime and addFirstDisappearanceTime of last

are now invoked with arguments the last location update in state B and the first location update

in state C respectively.

Instances of TravelPlace are dynamically created during the runtime of this method as follows:

when a customer transits from a service area to another, i.e. transition C�B occurs, a new

TravelPlace object associated with the customer movement between the service areas that

correspond to last and next is created. That is, only if no other instance of TravelPlace

associated with the two service areas already exists; otherwise the existing instance is retrieved.

Within that object we store the timestamps required to compute the travelling time samples of

customers (via the addTimestamp method): the last appearance and first disappearance times

of the customer at the service area which corresponds to last and, the last disappearance

and first appearance times of the same customer at the service corresponding to next. For the

computation of travelling time samples from the system’s entry point until the first service area,

we consider three timestamps: the system entry time, i.e. the timestamp of the first reading of

the customer’s path5, and, the last disappearance and first appearance times of the customer

at the service area which corresponds to next.

5This assumes that customers are tagged as soon as they enter the system.
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7.3 Conclusion

This chapter has presented an overview of the capabilities and software architecture of the

PEPERCORN tool. This is a Java-based implementation of the automated Petri Net perfor-

mance model inference pipeline that was presented in Chapters 4, 5 and 6.

PEPERCORN has been evaluated through six case studies. These case studies were con-

ducted using synthetic location tracking data and assessed PEPERCORN under several types of

customer-processing systems, including systems with synchronisation, multiple customer classes

and service cycles. The obtained results suggest that PEPERCORN is capable of inferring the

abstract structure, stochastic features and high-level customer flow of complex systems (sub-

ject to the modelling assumptions presented in Section 1.2), at least when synthetic location

tracking data is used.

The synthetic location traces are generated using an extended version of the location-aware

Queueing Network simulator LocTrackJINQS which was presented in Chapter 3.



Chapter 8

Conclusion

8.1 Summary of Achievements

This thesis has explored the automated extraction and construction of Petri Net performance

models from high-precision location tracking data. The availability of such automated tech-

niques can increase the applicability domain of performance modelling since the modelling pro-

cess will be faster, more affordable – compared with traditional techniques – and will provide

more accurate results. Previous work in this area focused on developing application-specific au-

tomated extraction and/or construction techniques, e.g. [114, 71], whose application is limited

only to a narrow spectrum of customer-processing systems.

The key contribution of this thesis is the methodology presented in Chapter 4 and its exten-

sions presented in Chapters 5 and 6. The incrementally developed methodology provides a

unified framework under which performance models can be inferred from the location track-

ing traces of the system’s customer flow. Its coarse-grained approach is based on a four-stage

data processing pipeline and aims to provide high-level information regarding the customer and

resource flow of the underlying system. The system’s performance can be examined through

the computation of end-to-end response time distributions and quantiles for the constructed

model (cf. Section 4.5.2). The processing pipeline can be applied to general-type customer-

processing systems given that they satisfy certain assumptions (cf. Section 1.2).

210
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The first stage of the pipeline prepares the raw location tracking data for processing by the

subsequent stages. Initially, the input data is converted into a standardised format and sepa-

rated into customer paths. A speed-based filter is then applied on each customer path in order

to remove possibly erroneous location updates. The second stage infers the locations and radii

of service areas in the system. It consists of a three-layer technique and operates under the

assumption that customers stop or slow down while receiving service. The three layers are:

speed filtering, density filtering and the application of the DBSCAN clustering algorithm [41]

on the aggregated filtered data. The centroids of the produced clusters are used to approxi-

mate the locations of the system’s service areas. The radius of a service area is conservatively

approximated as the 110% of the 95th percentile of the distance between the corresponding

cluster’s centroid and each of its contained points. Stage three constructs the basic structure

of the derived PNPM, beginning with places and transitions required to represent the flow of

customers in the system. During this stage timed transitions are not parameterised; they are

replaced in the next stage by GSPN subnets that accurately reflect the distributions of the

relevant time delays. In preparation for this, the response time samples – for each customer

processed by a service area – are computed and broken down into waiting and service time.

Samples of the time required by each customer to transit between two service areas are also

computed (travelling time samples). In the fourth stage of the processing pipeline the timed

transitions are replaced by GSPN subnets that reflect the distributions of the corresponding

service and travelling time samples computed during stage three. For each set of these time

samples we fit several hyper-Erlang distributions (HErDs) using the G-FIT tool [106]. Each

GSPN subnet is constructed in a way it reflects the best-fit HErD selected using the Akaike

Information Criterion (AIC) [3].

To address the lack of support for synchronisation, we have developed a mechanism which

can automatically detect presence-based synchronisation between two or more service areas

and calculate the corresponding synchronisation conditions. This mechanism employs two

algorithms which gather evidence that indicates whether the processing of customers at a

service area depends on the presence of customers at other service areas. This evidence consists

of two components: the first is the maximum number of customers which were present at other
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service areas during the customer’s service time interval; the second is the number of customers

present at other service areas upon the customer’s service termination. A third algorithm

aggregates this evidence for all customers processed at each service area and assesses whether the

evidence suffices to infer synchronisation. When synchronisation is inferred, the synchronisation

conditions are calculated. The presence-based synchronisation detection mechanism and its

incorporation into the existing methodology is presented in Chapter 5 and is evaluated through

three case studies (cf. Chapters 5 and 6).

To provide support for multiple customer classes, we introduce CGSPNs into the methodology.

Each class of customers in the underlying system is modelled by a distinct token type (colour).

This is achieved by extrapolating the earlier methodology, and in particular stages three and

four of the data processing pipeline, to each customer class. In stage three, distinct transitions –

each with a different firing mode – are created in order to model the movements of customers of

different classes. Furthermore, the extracted service time samples for each service area and the

travelling time samples for each pair of service areas are now separated into subsets, one subset

for each customer class that was processed at the particular service area. During the fourth

stage, several HErDs are fitted to each of the latter subsets of time samples and for each subset

the best-fit HErD is selected as before; these HErDs are now modelled by CGSPN subnets.

CGSPNs are also employed to enable the accurate representation of the flow of customers in

systems which contain service cycles. To achieve this, we examine the system for the presence

cyclic services using Johnson’s algorithm [64]. This algorithm is applied to a directed graph –

obtained by mapping the places of the non-parameterised PNPM to vertices and similarly, its

transitions, along with their incident arcs, to directed edges – and it enumerates all elementary

cycles that are contained in that graph. Each detected cycle in the directed graph corresponds

to a service cycle in the underlying system. The service areas that make up each service cycle are

identified by reversing the mapping that was used to obtain the directed graph. Customers are

then accurately routed through the service cycle by changing the token colour that corresponds

to their class upon their second visit to the first service area of the service cycle, i.e. the head

of the service cycle. This modelling approach is applied to each service cycle and it allows

the distinction between customers that have completed the service cycle and those that are
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about to enter it. Another extension enables the calculation and representation of the inter-

routing probability of the customer flow between the system’s service areas. These extensions

are presented and evaluated (via three case studies) in Chapter 6.

The design and execution of physical experiments to support and validate location-based re-

search is costly, both in terms of time and resources. Furthermore, the success of such exper-

iments depends – in addition to precise design – on the behaviour of the participating indi-

viduals and on the degree of accuracy that the RTLS is calibrated. Thus, inaccurate and/or

non-representative data is likely to be obtained which may encumber the validation process. To

this end, we have developed a tool which can build and simulate Queueing Networks, namely

LocTrackJINQS [56]. This tool facilitates a well defined and controlled environment for run-

ning location-based experiments and is able to generate location tracking data similar to those

collected from actual RTLSs. LocTrackJINQS is based on the extensible library JINQS [43]

which allows the high-level specification and event-driven simulation of multiclass Queueing

Networks. LocTrackJINQS preserves the high-level features provided by JINQS and in

addition, allows the specification of low-level spatial information such as location of servers,

service radii and user-defined customer paths. Finally, its inherited extensibility from JINQS

permits users to specify specialised entities, service and queueing policies, making it suitable

for simulating a variety of physical customer-processing systems.

The work presented in this thesis has demonstrated that the automated construction of per-

formance models is a viable and feasible option to be considered in performance modelling.

In particular, the results obtained from the case studies suggest that the developed methodol-

ogy has the ability to construct accurate Petri Net performance models of physical customer-

processing systems (which satisfy the set of modelling assumptions stated in Section 1.2) by

analysing the location tracking traces of the system’s customer flow, at least when synthetic

location tracking data is used. Naturally, there is a dependency between the collected location

tracking data and the inferred model. This implies that the inferred model will accurately

reflect the underlying system’s structure and behaviour during the period that the system was

monitored. For example, if the system is monitored during a period of heavier customer traffic

load, additional synchronisation conditions, bottlenecks and/or service areas may be discovered
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compared to those detected from location tracking data collected (from the same system) dur-

ing periods of lower workloads. Our work is supplemented with two tools: PEPERCORN and

LocTrackJINQS. The former is a Java-based implementation of the developed methodology

and the latter, also implemented in Java, can be used as a stand-alone tool or as a library in

order to formulate and simulate physical customer-processing systems as Queueing Networks.

8.2 Applications

The generic nature of the research presented allows the developed data processing pipeline to be

applied to several types of physical systems which process customers or goods and which satisfy

the modelling assumptions stated in Section 1.2. Evidently, our methodology presupposes the

availability of high-precision location tracking data describing the (low-level) flow of customers

in the system to be modelled. RTLSs, especially UWB-based ones, can provide accurate and

continuous monitoring of indoor environments and are mainly employed in healthcare, man-

ufacturing and supply chain management. This currently restricts the immediate domain of

applicability of our methodology to such applications. However, if the service areas in a system

are relatively large, and thus interactions between customers and resources take place over large

areas, then less accurate tracking can be used, e.g. GPS. Furthermore, state of the art GPS

systems, namely GPS III, are to be deployed in the near future and can achieve an accuracy

within one metre [38]. The use of data provided by such widely adopted tracking technologies

can lead to further applications.

This methodology is particularly suitable for assessing the performance of small-scale indoor

customer-processing systems characterised by complex processes which are difficult to capture

via manually collected data. For example, the developed data processing pipeline may be easily

applied to A&E departments in order to locate system bottlenecks and assess the QoS received

by patients; if QoS is not acceptable, the obtained PNPM can also be used as a virtual lab-

oratory whose purpose is to examine whether the addition of resources is a viable solution to

this issue. Other types of customer-processing systems which fall into the applicability do-
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main of our methodology include banks, post offices and airports. However, the widespread

adoption of RTLSs by such organisations is currently limited since it requires a heavy up-

front investment. Nevertheless, it is clear that such data will become increasingly available as

the ever-progressing wireless technology enables the realisation of the Internet of Things [5],

whereby numerous everyday objects – especially mobile phones equipped with location track-

ing sensors [69] – are networked. Currently, the scalability of our methodology mainly depends

on three components: the DBSCAN clustering algorithm, the presence-based synchronisation

detection mechanism and the G-FIT tool. The worst-case computational complexity of these

components is O(n · logn), where n is the total number of points to be clustered, O(N2 · n3),

where N is the number of service areas in the system and n is the number of customers pro-

cessed by each service area1, and O(M ·K) per iteration of the EM algorithm, where M is the

number of Erlang branches and K is the sample size. Therefore, the main bottleneck that (cur-

rently) prohibits the application of our methodology to large-scale systems is the presence-based

synchronisation detection mechanism.

Real time modelling of physical customer-processing systems is another possible application,

given that the model is not constructed from a “blank” state. This would require the availability

of a considerable amount of historical data. For example, if a model for the underlying system

has been already inferred from historical data, then a stream of new location tracking data can

be used to fine-tune the model’s parameters, e.g. initial and inter-routing probabilities of the

customer flow, service and travelling time distributions. Another possible real time application

of our methodology, assuming that the model of a system has already been inferred, is system

security. That is, the real time movements of customers can be compared against the expected

behaviour specified by the inferred model. If the movement of a customer is not compliant

with the general movement of its class, then the behaviour of that customer can be flagged as

irregular. For example, if we consider a hospital, this application can be used to generate alerts

if customers classified as visitors are observed in surgery rooms.

1Assuming that all service areas in the system process the same number of customers.
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8.3 Future Work

There are numerous possible extensions to the work presented in this thesis. The current

methodology assumes a unique tag identifier for each customer processed by the system, i.e. a

one-to-one mapping between tags and customers. Sometimes in real systems, such as hospi-

tals, tags are assigned to customers, when they enter the system, and are recycled upon the

customers’ exit. By detecting the departure of customers from the system, we can flag the

initiation of a new customer path when an already existing tag identifier re-appears. This will

enable us to discard the latter assumption and increase the scalability of our methodology.

Furthermore, in the scenario of multiple customer classes, we currently assume that the class

of each customer remains constant throughout the customer’s presence in the system. In the

future, we wish to support the dynamic allocation of customer classes. That is, customers in

the system can be assigned to a different class after the termination of their service at a ser-

vice area. This feature will enable the modelling of more realistic customer-processing systems

since in reality, it is often the case that customers are classified after their arrival in a system,

e.g. hospitals, and, also, they may be assigned to a different class later on, as they pass through

the various processing stages, e.g. factory assembly lines. This feature can be supported by

examining the class of a customer before and after service completion at a service area. If

the class of a customer is changed, we can use service time transitions which “modify” the

colour of the token that is associated with that particular customer class, one for each observed

combination of customer class change.

The structure of the constructed Petri Net models and, in particular, that of the subnets used

to simulate the service delays of the system (cf. Figures 4.14 and 6.4) provides support for

multiple servers. To be precise, the number of tokens contained in the complementary place

of these subnets – which controls the number of tokens (customers) that can be in the subnet

simultaneously – can be adjusted accordingly so that multiple servers are modelled2. Currently,

our methodology assumes single-server semantics. It would be interesting to investigate for

mechanisms which would allow the inference of the number of servers that consist a particular

2For timed transitions inside these subnets we assume infinite-server semantics.
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service area from location tracking data.

In real life systems it is often the case that certain classes of customers are serviced with higher

priority. As an example, consider an A&E department where patients are categorised and

treated based on the criticality of their condition. Although our methodology considers multi-

ple customer classes, priority is not explicitly supported. Therefore, another possible extension

would be the support for customer class priority. This feature can be implemented either by

developing and incorporating subnets in the PNPM which will use immediate transitions to give

priority to certain customer classes over others, or by employing Petri Nets with priority [77].

This subclass of Petri Nets is defined as GSPNs but introduces an additional function, which

assigns to each transition an integer which corresponds to the transition’s priority. The imple-

mentation of FIFO queueing discipline (which is often the case in physical customer-processing

systems) is certainly another possible extension. However, this is not inherently supported in

Petri Nets since tokens are indistinguishable and therefore, subnets which model the selection

algorithm need to be developed. Another possible way to tackle this issue would be to employ

Queueing Petri Nets [13].

As we discussed earlier (cf. Chapters 4, 5 and Section 8.1), the constructed PNPM is highly

dependent on the set of location tracking data collected during the monitoring period of the

underlying customer-processing system. It would be very interesting to investigate for ways

to support model refinement based on several iterations of the PNPM for different sets of

location tracking data. An initial direction to tackle this would be to characterise the system’s

workload that corresponds to each dataset as low, medium or heavy. One possible way this

can be achieved is by computing (for each dataset) the ratio between the total number of

customers processed by the system and the duration of the system’s monitoring period. Then,

an aggregate model may be build by considering the properties of each PNPM that are likely

to be best captured under each workload type. For example, synchronisation between service

areas and their corresponding synchronisation conditions are (most likely) correctly inferred

during low or medium customer traffic loads. Also, assuming that the system’s structure and

resource allocation is static, bottlenecks, e.g. regions of high-customer traffic, can be easily and

automatically detected by identifying any discrepancies between the number and locations of
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the inferred service areas of a low (or medium workload model) and a heavy workload model.

We would also like to characterise the robustness and precision of our methodology in the face

of increasing levels of noise. Initial experiments, focused on the second case study of Chapter 4,

indicate that the methodology is robust for normally distributed errors of up to mean 0.5 m

and standard deviation 0.4 m. Nevertheless, we expect that after a certain level of noise, our

methodology will break down. This is because the filtering techniques employed to clean the

data and to infer the locations and radii of the system’s service areas will likely fail due to the

apparently erratic movement of customers.

Ultimately, the goal of our research is to utilise the automatically constructed Petri Net perfor-

mance models in order to assess the underlying system’s performance and to identify bottlenecks

that may elude the manual model construction. Therefore, an important part of our future

work is to compute the end-to-end response time distributions for some of the case studies

that were presented in this thesis. This will also provide additional evidence that supports the

accuracy of the constructed models. However, we must take into consideration the increasing

model complexity (proportional to the underlying system’s complexity) which may lead to a

state-space explosion (cf. Section 6.4.2). A possible technique that could mitigate this problem

would be adopting a Semi-Markov Stochastic Petri Net (SM-SPN) [25, 24] representation the

travelling and service delays delays of each customer class at each service area; SM-SPNs allow

transitions to fire with generally-distributed time and thus the use of subnets to reflect each

best-fitted HErD will no longer be required. In extreme cases (where the state-space remains

unmanageably large) the latter approach can be complemented with aggregation techniques for

Semi-Markov processes [49].

There are several extensions which can be implemented in LocTrackJINQS so that more

realistic simulations can be constructed. Extending customer paths into two dimensions, i.e. the

addition of path width, is a primary objective since this could be used to restrain the, currently

unrestrained, flow of customers. Furthermore, customer speed can be adjusted according to

customer density in a path so that customers move more realistically. The incorporation of

more complex-shaped service areas, possibly user-defined, is also another possible extension.
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Finally, the exportation of the constructed Queueing Networks to other tools via the PMIF2 [98]

would be a very useful feature to include. However, it is likely that location-based information

will be lost as PMIF2 does not (currently) provide support for location information regarding

the network’s entities.
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[47] M.C. González, C.A. Hidalgo, and A.-L. Barbási. Understanding individual human mo-

bility patterns. Nature, 453(5):779–782, June 2008.

[48] The Guardian. Number of A&E patients waiting more than four hours is highest since

2004. http://www.guardian.co.uk/society/2012/may/31/patients-waiting-four-

hours-2004.

[49] M.C. Guenther, N.J. Dingle, J.T. Bradley, and W.J. Knottenbelt. Passage-time Com-

putation and Aggregation Strategies for Large Semi-Markov Processes. Performance

Evaluation, 68(3):221–236, 2011.

[50] G. Hamerly and C. Elkan. Learning the k in k-means. Technical report, University of

California, San Diego, 2002.

[51] T.R. Hansen, J.E. Bardram, and M. Soegaard. Moving Out of the Lab: Deploying

Pervasive Technologies in a Hospital. IEEE Pervasive Computing, 5(3):24 –31, 2006.

[52] P.G. Harrison and W.J. Knottenbelt. Passage Time Distributions in Large Markov

Chains. In Proc. 2002 ACM SIGMETRICS International Conference on Measurement

and Modeling of Computer Systems (SIGMETRICS 2002), pages 77–85, Marina Del Rey,

California, June 2002.



226 BIBLIOGRAPHY

[53] P.G. Harrison and N.M. Patel. Performance Modelling of Communication Networks and

Computer Architectures (International Computer S). Addison-Wesley Longman Publish-

ing Co., Inc., Boston, MA, USA, 1st edition, 1992.

[54] M. Heiner, D. Gilbert, and R. Donaldson. Petri Nets for Systems and Synthetic Biology.

In Proc. Formal Methods for the Design of Computer, Communication, and Software

Systems 8th International Conference on Formal Methods for Computational Systems

Biology (SFM 2008), pages 215–264, Bertinoro, Italy, June 2008.

[55] L. M. Hillah, E. Kindler, F. Kordon, L. Petrucci, and N. Tréves. A Primer on the Petri
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A.1 LocTrackJINQS Manual

As mentioned in Section 3.1, simulations in LocTrackJINQS can be specified either pro-

grammatically or through the GUI. Here, we demonstrate the simulation construction process

for both approaches.

In order to construct a simulation programmatically, a new class must be implemented. This

must contain the simulation components and parameters, as well as instantiate three objects:

GUI Sim, DrawingPanel and JFrame1. The simulation components and parameters must be

defined within the buildNetwork() method. An example of a class used to instantiate a new

simulation environment is shown in Code A.1.

1 pub l i c c l a s s SampleSimulation{

2

3 GUI Sim s imula to r ;

4 JFrame mainFrame ;

5 DrawingPanel ownerPanel ;

6

7 pub l i c SampleSimulator ( double stopTime ) {

8

9 mainFrame = new JFrame ( "Example Simulation" ) ;

10 ownerPanel = new DrawingPanel (mainFrame ) ;

11

12 mainFrame . add ( ownerPanel ) ;

13 mainFrame . s e t S i z e (1000 ,800 ) ; // Frame dimensions - adjustable

14 mainFrame . s e tDe fau l tC lo seOperat i on ( JFrame .EXIT ON CLOSE) ;

15 mainFrame . s e tV i s i b l e ( t rue ) ;

16

17 s imu la to r = new GUI Sim( ownerPanel ) ;

18 s imu la to r . setTerminateTime ( stopTime ) ;

19 buildNetwork ( ) ; // this method defines the structure and parameters of the simulation

20

21 }

22

23 pub l i c void s imulate ( ) {

24

25 s imu la to r . run ( ) ;

26

27 }

28

29

30 }

Code A.1: An example class used to instantiate a simulation environment.

If the user wishes to setup the simulation using the GUI, the user must do so through Loc-

TrackJINQS’s main window. This is presented to the user when LocTrackJINQS is run

as a stand-alone application, as it is shown in Figure A.1. A status bar, placed on the bottom

left corner of the main window, displays messages which guide new users through the simulation

1The JFrame instance is used as a container for the DrawingPanel.
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construction process.

Figure A.1: LocTrackJINQS GUI - main window.

A.1.1 Setting-up the Simulation Environment

A.1.1.1 Initial Setup

Initially, users must specify the number of different customer classes they wish to include

in the simulation. This is required so that LocTrackJINQS can determine the number

of parameters that should be expected for each node, e.g. customer speed and service time

distribution(s), class priorities, etc.

In the programmatic specification of the simulation, i.e. in the buildNetwork() method, the

user must first explicitly initialise the Network and NetworkMonitor classes by invoking their
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respective initialisation methods, i.e.

Network.initialise();

NetworkMonitor.initialiseMonitor();

The number of customer classes must then be specified; if the programmatic specification

approach is employed, this is done through setCustomerClass(int) method of the Network

class. Alternatively, through the GUI, the user must press the ‘Customer Classes’ button which

will display an input dialog to set-up this value. Similarly, via another dialog, the location

update error distribution can specified. These dialogs are shown in Figure A.2. Subsequently,

users can create various nodes, specify their parameters and connect them via various types of

links.

Mouse Click

Mouse Click

Figure A.2: LocTrackJINQS GUI - customer class and location update error dialog.

A.1.1.2 Creating Nodes

In LocTrackJINQS, service areas2 (including source and sink) can be differentiated into two

main categories: simple and multiple. A simple service area represents a conventional service

point consisting of one or more servers which share the same service area and queue. A multiple

service area consists of many servers – each with an associated service radius and service time

distribution – that share only one queue.

Users that follow the GUI specification approach, can select the category of the service area

they wish to create by pressing the ‘Service Area’ button (see Figure A.3(a)); however, this

2A service area (excluding its spatial information) refers to what is known as a node in Queueing Networks.
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(a) (b)

Figure A.3: Menu for selecting the category of the service area to be added (left) and input location
selection method menu for simple service areas (right).

button becomes enabled once the number of customer classes participating in the simulation is

specified3.

Simple Service Areas

If the simple service area category is selected (cf. Figure A.3(a)), another menu is displayed

which allows the user to specify the service area’s location by either clicking at some location

within the simulation environment (the drawing panel), or by manually entering its coordinates.

This menu is shown in Figure A.3(b). Depending on the user’s selection, another dialog is

created; this dialog, examples of which are shown in Figures A.4, A.5, A.6, A.7 and A.8,

enables users to select the type of service area they wish to create. The types of simple service

areas that are currently supported include the Generic Server, Source, Sink, Infinite Server,

Queueing Server and Preemptive Server. Furthermore, the latter dialog asks for the input

required to parameterise the selected type of service area. For each type of parameter, the

following metrics are assumed:

1. spatial parameters: metres (m)

2. service time distribution parameters: customers per second (c/s)

3. speed distribution parameters: metres per second (m/s).

The Generic Server provides no real service and may be used as a routing node. Therefore,

it only requires the specification of its location and service radius (see Figure A.4). Identical

3This is a precaution taken in order to reduce the possibility of error during the simulation specification
process.
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Figure A.4: Input dialog for Generic Server.

input is required for the creation of a Sink. Programmatically, these two types of service areas

are created by instantiating new objects of their respective classes and setting their location

and service radius as follows:

Server genericServer = new Server();

genericServer.setCurrentLocation(2.0,2.0);

genericServer.setServiceRadius(0.5);

Network.addNode(genericServer);

Figure A.5: Input dialog for Source.

The addNode( · ) method must be called whenever a new service area is created so that this

can be added to the Queueing Network.

The Source requires no service radius. However, in addition to the location specification, it

requires users to specify – for each customer class – the type and parameters of the customers’

speed distribution, and similarly, the customers’ inter-arrival time distribution. The type of the

distribution is selected through a drop-down menu which contains all available distributions (see

Figure A.5). The programmatic specification of source nodes differs for single and multiple

customer classes. If there is only one class of customers, then an instance of the Source class
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should be created; otherwise, a SourceWithClassDist object must be instantiated. A Source

is instantiated as follows:

DistributionSampler arrivalSampler = new Exp(0.05);

Source source = new Source(arrivalSampler);

DistributionSampler speedSampler = new Normal(0.5,0.1);

source.setCustomerSpeedDistribution(speedSampler);

source.setCurrentLocation(5.0,5.0);

Network.addNode(source);

The SourceWithClassDist instantiation requires an array of inter-arrival and speed distribu-

tions, one for each customer class. An example implementation, involving two customer classes,

can be seen below. We note that the first argument in the constructor of SourceWithClassDist

corresponds to the number of customer classes that are supported and is of type int.

DistributionSampler[] arrivalSampler = new DistributionSampler[2];

arrivalSampler[0] = new Exp(0.05);

arrivalSampler[1] = new Erlang(2,0.08);

SourceWithClassDist source = new SourceWithClassDist(2,arrivalSampler);

DistributionSampler[2] speedSampler = new DistributionSampler[2];

speedSampler[0] = new Normal(0.5,0.1);

speedSampler[1] = new Normal(0.3,0.1);

source.setCustomerSpeedDistribution(speedSampler);

source.setCurrentLocation(5.0,5.0);

Network.addNode(source);

Figure A.6: Input dialog for Infinite Server.

The Infinite Server requires the same spatial information as the Generic Server, i.e. location

and service radius, as well as the specification of a service time distribution for each supported

customer class. Once the distribution type is selected from the drop-down list (similar to
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Figure A.5), the appropriate parameters, along with type of input they require, are displayed

to the user (see Figure A.6). In order to define service time distribution(s) in the programmatic

implementation of Infinite Server, the Delay or DelayWithCustClass classes must be used. For

example, if one class of customers is supported, then this should be implemented as:

Delay serviceTimeDelay = new Delay(new Exp(0.05));

InfiniteServer infServer = new InfiniteServer(serviceTimeDelay);

and for two customer classes as:

DistributionSampler[] distributions = new DistributionSampler[2];

distributions[0] = new Exp(0.05);

distributions[1] = new Erlang(5,0.1);

DelayWithCustClass serviceTimeDelay = new DelayWithCustClass(distributions);

InfiniteServer infServer = new InfiniteServer(serviceTimeDelay);

The Queueing Server is similar to the Infinite Server, but it requires some additional informa-

tion: the queueing discipline, the queue capacity and the number of servers contained in the

service area (see Figure A.7). The number of servers is specified in the service time distribution

tab. Programmatically, for a Queueing Server, the service time distributions are specified in

the same way as for the Infinite Server. The constructor of a QueueingServer takes three

arguments: the service time, number of servers and queueing discipline, i.e.

QueueingServer queueServer = new QueueingServer(serviceTimeDelay,1,new FIFOQueue());

Figure A.7: Input dialog for Queueing Server.

The last type of service area that can currently be created through LocTrackJINQS’s GUI

is the Preemptive Resume Server; this type supports service preemption. Optionally, the user
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can specify priority service preemption which uses as criterion each customer’s class. Under

this service policy, an on-going service of a low priority customer, will be interrupted so that

customers of higher priority can be serviced (see Figure A.8). The interrupted service of cus-

tomers is resumed immediately after the service of the higher priority customers is completed.

PreemptiveResumeServer objects are constructed in the same way as QueueingServer ones.

However, if the user wishes to implement the priority preemption service policy, the priority of

Figure A.8: Input dialog for Preemptive Server.

each customer class must be explicitly defined. An example, for two customer classes is shown

below:

int[] priorityPolicy = new int[2];

priorityPolicy[0] = 1;

priorityPolicy[1] = 0;

preemptiveResumeServer.setPriorityAssignPolicy(priorityPolicy);

This example specifies that customers of class 0 have higher priority than customers of class 1.

We note that if a priority queueing discipline is used, then the assigned service preemption

priorities must be the same as the queueing ones.

Multiple Service Areas

The creation of multiple service areas is quite similar to that of simple service areas, especially

when they are created though LocTrackJINQS’s interface. First, the user must define the

(rectangular) area in which the queue and simple service areas are to be included. This can

be easily done by pressing (and holding) the left mouse button and dragging the mouse in the

drawing panel (see Figure A.9(a)). As soon as the mouse button is released, the area is drawn on

the panel and a dialog is displayed to the user which requests the number of simple service areas
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to be added. The location of each such service area must be specified by clicking on a location

within the grey area. The dialog which allows the user to specify the parameters of the service

area is then displayed. This is similar to the corresponding dialog used for simple service areas,

e.g. see Figure A.7. We note that the only type of service area that is currently supported

by multiple service areas is the Queueing Server. The location and parameter specification

process, presented above, is repeated for each Queueing Server that is to be included in the

multiple service area. An example of multiple service area, consisting of two Queueing Servers

is depicted in Figure A.9(b).

Left mouse click

Drag here

and release

mouse button

(a) (b)

Figure A.9: Defining the area for multiple service area (left) and the result after adding two service
areas (right). The white filled rectangle within the multiple service area (grey area) represents the
shared queueing area.

Programmatically, a multiple service area is created by instantiating a MultiQueueingServers

class, i.e.

MultiQueueingServers multiServer = new MultiQueueingServers(10,5,5,5);

The constructor arguments are of type double. The first two numbers specify the location of

multiple service area (the location of the rectangle’s top left corner). The third number specifies

the service area’s width and the fourth one its height. As mentioned above, the only type of

simple service area that may currently be added to a multiple service area is the Queueing

Server. However, in this case, the Queueing Server is not identical to the one presented earlier;
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this is a special type which uses the multiple service area’s queueing area as its queue, and it

is implemented by the QueueingServerExternQueue class. Furthermore, the location of such

service areas must be within the multiple service area. QueueingServerExternQueue objects

are instantiated and added to a multiple service area in the following way:

QueueingServerExternQueue s1 = new QueueingServerExternQueue(new Delay(new Exp(0.5)),

1, multiServ.getQueueArea());

s1.setCurrentLocation(11, 6);

s1.setServiceRadius(0.3);

multiServ.addServer(s1);

As it happens with simple service areas, when a multiple service are is parameterised and

its Queueing Servers are added, it must also be added to the network via the addNode( · )

method.

A.1.1.3 Creating Links

In LocTrackJINQS, there are two major categories of links: single and routing. A single

link provides a one-to-one connection between two service areas. A routing link is used to

connect one service area (source) to two or more service areas (destinations). Links can be

added through the GUI by clicking the ‘Link’ button. When this button is pressed, the link

dialog is displayed to the user (see Figure A.11).

Mouse Click

Figure A.10: LocTrackJINQS GUI - link dialog.

If the user wishes to create a single link, it is sufficient to select the source node and the

destination node; the nodes that are available to be used as a source and as a destination are
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(a) (b)

Figure A.11: Link dialog for specifying the parameters of the probabilistic link (left) and customer
class based link (right).

listed in the dialog. The link is created once the ‘Create Link’ button is pressed, provided that

the source and destination nodes have been selected.

Routing links consist of two types: probabilistic and customer class based. In order to create a

probabilistic link, the user must first select the ‘Probabilistic Branch’ option (cf. Figure A.11).

Next, the source and destinations must be selected. Once these are selected, the user must

specify the routing probability for each destination node. This is done by pressing the ‘Finalise

Selection’ button; when this button is pressed, the routing probability specification panel is

displayed (see Figure A.11(a)). The link is created by pressing the ‘Create Link’ button. The

customer class based link may only be used when multiple customer classes are supported in

the current simulation. Via this type of routing link, the user can create a routing rule based

on each customer’s class. To create a customer class based link, the user must first select the

‘Customer Class Based Branch’ option. Subsequently, the source and destination nodes must

be chosen and finalised; this process is performed in the same way as in the probabilistic link

case. However, in this case, when the ‘Finalise Selection’ button is pressed, another panel is

displayed that allows the user to specify which customer class is routed from the source node

to each destination node (see Figure A.11(b)).

When a link is created, it is drawn as a straight line segment(s) connecting the source and the

destination(s) nodes. However, the path of customers forwarded by that link can be customised

via the addition of break points. If one presses the right mouse button on a link contained in

the drawing panel of LocTrackJINQS (the ‘Select’ button must be pressed first), a pop-up
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menu will be displayed. This menu allows the user to add a break points or delete the selected

link (see Figure A.12). If a break point is added, it can be then dragged to another location

and thus customise the representation of the link which ultimately defines the customer path.

Figure A.12: Pop-up menu for deleting links and entering new break points.

In order to create links programmatically, the link’s representation, i.e. the collection of straight

line segments, must be first specified. For example, if we consider a single link connecting two

nodes, S0 and S1, a possible representation, which includes three break points, may be defined

as:

ArrayList<Line2D.Double> path = new ArrayList<Line2D.Double>();

path.add(new Line2D.Double(S0.giveLocation(), new Point2D.Double(25,12.5)));

path.add(new Line2D.Double(new Point2D.Double(25,12.5), new Point2D.Double(25,18)));

path.add(new Line2D.Double(new Point2D.Double(25,18), new Point2D.Double(38,18)));

path.add(new Line2D.Double(new Point2D.Double(38,18),S1.getLocation()));

Then, the link can be created in the following way:

TransportLink l1 = new TransportLink(S1);

l1.setPathSegments(path);

S0.setLink(l1);

Network.addLink(l1);

A similar approach applies for the creation of routing links. An example, containing both

probabilistic and customer class-based routing links, can be seen in the following section.
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A.1.2 An Example

Here, we demonstrate the programmatic simulation construction process through an exam-

ple. The complete implementation of the buildNetwork() method can be seen in Code A.2.

This implementation is associated with Code A.1, which creates the frame and initiates the

simulation, and it produces the network depicted in Figure A.13.

Figure A.13: An example of a simulation environment constructed via the buildNetwork() method
shown in Code A.2.

1 pub l i c void buildNetwork ( ) {

2

3 Network . i n i t i a l i s e ( ) ; // initialise network

4 NetworkMonitor . i n i t i a l i s eMon i t o r ( ) ; // initialise network monitor

5 Network . setCustomerClass (3 ) ; // set the number of customer classes

6

7 Dist r ibut ionSample r e r r o rD i s t r i b u t i o n = new Normal ( 0 . 15 , 0 . 2 ) ; // specify error

distribution

8 Network . systemError = e r r o rD i s t r i b u t i o n ; // assign error distribution

9

10 /*Creating source*/

11

12 Dist r ibut ionSample r [ ] s amp l e r a r r i v a l = new Dis t r ibut ionSample r [ Network . getCustomerClass

( ) ] ;

13 s amp l e r a r r i v a l [ 0 ] = new Exp ( 0 . 0 1 ) ; // arrival distribution for customer class 0

14 s amp l e r a r r i v a l [ 1 ] = new Exp (0 . 0 08 ) ; // arrival distribution for customer class 1

15 s amp l e r a r r i v a l [ 2 ] = new Exp (0 . 0 04 ) ; // arrival distribution for customer class 2

16

17 Dist r ibut ionSample r [ ] s amper ve l o c i ty = new Dis t r ibut ionSample r [ Network . getCustomerClass

( ) ] ;

18 samper ve l o c i ty [ 0 ] = new Normal ( 0 . 38 , 0 . 1 ) ; // speed distribution for class 0

19 samper ve l o c i ty [ 1 ] = new Normal ( 0 . 25 , 0 . 1 ) ; // speed distribution for class 1

20 samper ve l o c i ty [ 2 ] = new Normal ( 0 . 4 , 0 . 2 ) ; // speed distribution for class 2

21

22 SourceWithClassDist source = new SourceWithClassDist ( n u l l , Network . getCustomerClass ( ) ,

s amp l e r a r r i v a l ) ;

23 source . se tCurrentLocat ion (5 , 5 ) ;

24 source . setCustomerSpeedDistr ibut ion ( samper ve l o c i ty ) ;

25 source . setTagged ( f a l s e ) ;

26 Network . addNode ( source ) ;

27

28 /*End of source*/

29

30 /*Creating sink*/

31
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32 Sink s ink = new Sink ( ) ;

33 s ink . se tCurrentLocat ion (20 , 5) ;

34 s ink . s e tSe rv i c eRad iu s ( 0 . 5 ) ;

35 s ink . setTagged ( f a l s e ) ;

36 Network . addNode ( s ink ) ;

37

38 /*End of sink*/

39

40 /*Creating Queueing Server S1*/

41

42 // for customer class 0 - no other customer classes are routed here

43

44 Delay s1ServiceTime = new Delay (new Erlang2 (3 , 0 . 065 ) ) ; // service time delay - follows

an Erlang distribution

45 QueueingServer s1 = new QueueingServer ( s1Serv i ceTime , 1 , new FIFOQueue ( ) ) ;

46 s1 . se tCurrentLocat ion (10 , 2 ) ;

47 s1 . s e tSe rv i c eRad iu s ( 0 . 8 ) ;

48 s1 . setTagged ( f a l s e ) ;

49 Network . addNode ( s1 ) ;

50

51 /*End of S1*/

52

53

54 /*Creating Queueing Server S2*/

55

56 // for customer class 1 - no other customer classes are routed here

57

58 // define the parameters of hyper -Erlang distribution

59 double [ ] herdWeights = {0 .5 , 0 . 5 } ;

60 double [ ] herdRates = {0 .05 , 0 . 4 8 } ;

61 i n t [ ] herdLengths = {2 , 2 } ;

62

63 Delay s2ServiceTime = new Delay (new HyperErlang ( herdRates , herdLengths , herdWeights ) ) ;

// service time delay - follows a hyper -Erlang distribution

64 QueueingServer s2 = new QueueingServer ( s2Serv i ceTime , 1 , new FIFOQueue ( ) ) ;

65 s2 . se tCurrentLocat ion (10 , 5 ) ;

66 s2 . s e tSe rv i c eRad iu s (1 ) ;

67 s2 . setTagged ( f a l s e ) ;

68 Network . addNode ( s2 ) ;

69

70 /*End of S2*/

71

72

73 /*Creating Queueing Server S3*/

74

75 // for customer class 2 - no other customer classes are routed here

76

77 Delay s3ServiceTime = new Delay (new Exp (0 . 0 05 ) ) ; // service time delay - follows an

Exponential distribution

78 QueueingServer s3 = new QueueingServer ( s3Serv i ceTime , 1 , new FIFOQueue ( ) ) ;

79 s3 . se tCurrentLocat ion (10 , 8 ) ;

80 s3 . s e tSe rv i c eRad iu s ( 0 . 6 5 ) ;

81 s3 . setTagged ( f a l s e ) ;

82 Network . addNode ( s3 ) ;

83

84 /*End of S3*/

85

86

87

88

89 /*Creating Queueing Server S4*/

90

91 // all customer classes are routed here

92

93 Dist r ibut ionSample r [ ] s4ServiceTime = new Dis t r ibut ionSample r [ Network . getCustomerClass ( )

] ;

94 s4ServiceTime [ 0 ] = new Exp ( 0 . 0 5 ) ; // service time distribution for class 0

95 s4ServiceTime [ 1 ] = new Erlang2 (3 , 0 . 0 8 ) ; // service time distribution for class 1

96 s4ServiceTime [ 2 ] = new Exp (0 . 0 04 ) ; // service time distribution for class 2
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97

98 QueueingServer s4 = new QueueingServer (new DelayWithCustClass ( s4ServiceTime ) , 1 ,new

RandomQueue ( ) ) ;

99 s4 . se tCurrentLocat ion (15 , 5 ) ;

100 s4 . s e tSe rv i c eRad iu s (1 ) ;

101 s4 . setTagged ( f a l s e ) ;

102 Network . addNode ( s4 ) ;

103

104 /*End of S4*/

105

106

107 /*Creating class based link L1 connecting source to S1, S2 and S3*/

108

109 // path1 connects source to S1

110 ArrayList<Line2D . Double> path1 = new ArrayList<Line2D . Double>() ;

111 path1 . add (new Line2D . Double ( source . getLocat ion ( ) , s1 . getLocat ion ( ) ) ) ;

112 t h i s . ownerPanel . addCustomPath ( path1 ) ; // add path in drawing panel

113

114 // path2 connects source to S2

115 ArrayList<Line2D . Double> path2 = new ArrayList<Line2D . Double>() ;

116 path2 . add (new Line2D . Double ( source . getLocat ion ( ) , s2 . getLocat ion ( ) ) ) ;

117 t h i s . ownerPanel . addCustomPath ( path2 ) ; // add path in drawing panel

118

119 // path3 connects source to S3

120 ArrayList<Line2D . Double> path3 = new ArrayList<Line2D . Double>() ;

121 path3 . add (new Line2D . Double ( source . getLocat ion ( ) , s3 . getLocat ion ( ) ) ) ;

122 t h i s . ownerPanel . addCustomPath ( path3 ) ; // add path in drawing panel

123

124 INode [ ] d e s t i n a t i on sFo r l 1 = { s 1 , s 2 , s 3 } ;

125 i n t [ ] l1RoutingRule = {0 , 1 , 2 } ; // each entry corresponds to a customer class and

contains the index of the destination for that customer class

126 ClassBasedRouting l 1 = new ClassBasedRouting ( d e s t i n a t i o n sFo r l 1 , Link .TRANSPORTLINK,

l1RoutingRule ) ;

127 ( ( TransportLink ) l 1 . getLink (0 ) ) . setPathSegments ( path1 ) ;

128 ( ( TransportLink ) l 1 . getLink (0 ) ) . setOwner ( source ) ;

129 ( ( TransportLink ) l 1 . getLink (1 ) ) . setPathSegments ( path2 ) ;

130 ( ( TransportLink ) l 1 . getLink (1 ) ) . setOwner ( source ) ;

131 ( ( TransportLink ) l 1 . getLink (2 ) ) . setPathSegments ( path3 ) ;

132 ( ( TransportLink ) l 1 . getLink (2 ) ) . setOwner ( source ) ;

133 source . se tL ink ( l 1 ) ;

134 Network . addLink ( l 1 ) ;

135

136 /*End of L1*/

137

138

139 /*Creating probabilistic link L2 connecting S1 to S4 and sink*/

140

141 // path4 connects S1 to S4

142 ArrayList<Line2D . Double> path4 = new ArrayList<Line2D . Double>() ;

143 path4 . add (new Line2D . Double ( s1 . getLocat ion ( ) , new Point2D . Double (15 , 2 ) ) ) ;

144 path4 . add (new Line2D . Double (new Point2D . Double (15 , 2 ) , s4 . getLocat ion ( ) ) ) ;

145 t h i s . ownerPanel . addCustomPath ( path4 ) ; // add path in drawing panel

146

147 // path5 connects S1 to sink

148 ArrayList<Line2D . Double> path5 = new ArrayList<Line2D . Double>() ;

149 path5 . add (new Line2D . Double ( s1 . getLocat ion ( ) , new Point2D . Double (20 , 2 ) ) ) ;

150 path5 . add (new Line2D . Double (new Point2D . Double (20 , 2 ) , s ink . getLocat ion ( ) ) ) ;

151 t h i s . ownerPanel . addCustomPath ( path5 ) ; // add path in drawing panel

152

153 INode [ ] d e s t i n a t i on sFo r l 2 = { s 4 , s i n k } ;

154 double [ ] l 2 P r o b a b i l i t i e s = {0 .60 , 0 . 4 0 } ; // routing probability for each destination

respectively

155 Probab i l i s t i cRou t i ng l 2 = new Probab i l i s t i cRou t i ng ( d e s t i n a t i o n sFo r l 2 , Link .

TRANSPORTLINK, l 2 P r o b a b i l i t i e s ) ;

156 ( ( TransportLink ) l 2 . getLink (0 ) ) . setPathSegments ( path4 ) ;

157 ( ( TransportLink ) l 2 . getLink (0 ) ) . setOwner ( s1 ) ;

158 ( ( TransportLink ) l 2 . getLink (1 ) ) . setPathSegments ( path5 ) ;

159 ( ( TransportLink ) l 2 . getLink (1 ) ) . setOwner ( s1 ) ;

160
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161 s1 . se tL ink ( l 2 ) ;

162 Network . addLink ( l 2 ) ;

163

164 /*End of L2*/

165

166 /*Creating single link L3 connecting S2 to S4*/

167

168 // path6 connects S2 to S4

169 ArrayList<Line2D . Double> path6 = new ArrayList<Line2D . Double>() ;

170 path6 . add (new Line2D . Double ( S2 . getLocat ion ( ) , s4 . getLocat ion ( ) ) ) ;

171 t h i s . ownerPanel . addCustomPath ( path6 ) ; // add path in drawing panel

172

173 TransportLink l 3 = new TransportLink ( s4 ) ;

174 l 3 . setPathSegments ( path6 ) ;

175 s2 . se tL ink ( l 3 ) ;

176 Network . addLink ( l 3 ) ;

177

178 /*End of L3*/

179

180

181 /*Creating single link L4 connecting S3 to S4*/

182

183 // path7 connects S3 to S4

184 ArrayList<Line2D . Double> path7 = new ArrayList<Line2D . Double>() ;

185 path7 . add (new Line2D . Double ( S3 . getLocat ion ( ) , s4 . getLocat ion ( ) ) ) ;

186 t h i s . ownerPanel . addCustomPath ( path7 ) ; // add path in drawing panel

187

188 TransportLink l 4 = new TransportLink ( s4 ) ;

189 l 4 . setPathSegments ( path7 ) ;

190 s3 . se tL ink ( l 4 ) ;

191 Network . addLink ( l 4 ) ;

192

193 /*End of L4*/

194

195 /*Creating single link L5 connecting S4 to Sink*/

196

197 // path8 connects S4 to sink

198 ArrayList<Line2D . Double> path8 = new ArrayList<Line2D . Double>() ;

199 path8 . add (new Line2D . Double ( S4 . getLocat ion ( ) , s ink . getLocat ion ( ) ) ) ;

200 t h i s . ownerPanel . addCustomPath ( path8 ) ; // add path in drawing panel

201

202 TransportLink l 5 = new TransportLink ( s ink ) ;

203 l 5 . setPathSegments ( path8 ) ;

204 s4 . se tL ink ( l 5 ) ;

205 Network . addLink ( l 5 ) ;

206

207 /*End of L5*/

208 }

Code A.2: An example of a programmatic network setup.
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A.2 XML Node Definitions

Distribution

1 <d i s t r i b u t i o n>

2 <type>"Distribution Type"</type>

3 <parameter name = "ParameterName ">"Parameter Value"</parameter>

4 ·

5 ·

6 ·

7 <parameter name = "ParameterName ">"Parameter Value"</parameter>

8 </d i s t r i b u t i o n>

System Error

1 <l ocat ionUpdateError>

2 "Distribution Definition"

3 </ locat ionUpdateError>

Queue

1 <type>"Queue type"</type>

2 <capac i ty>"Queue Capacity"</capac i ty>

3 <supportedCustomerClasses>"Customer Class Values"</supportedCustomerClasses>

4 <subQueueDisc ip l ine>"Sub -queue Type"</subQueueDisc ip l ine>

Delay

1 <s e rv i c eT imeDi s t r i bu t i on>

2 "Distribution Definition"

3 </ s e rv i c eT imeDi s t r i bu t i on>

Queueing Area (for multiple servers sharing a common queue)

1 <queueingArea id = "Queueing Area ID">

2 <type>abstract</type>

3 < l o c a t i o n>

4 <Point2D id = "pt1">

5 <x>"Upper Left X-Coordinate"</x>

6 <y>"Upper Left Y-Coordinate"</y>

7 </Point2D>

8 </ l o c a t i on>

9 <width>"Width Value"</width>

10 <he ight>"Height Value"</he ight>

11 <queue ingD i s c i p l i n e>

12 "Queue Definition"

13 </queue ingD i s c i p l i n e>

14 </queueingArea>
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Link

1 < l i n k id = "Link Source ID" to "Link Destination 1 ID,. . . ,Link Destination N ID">

2 <type>"Link Type"</type>

3 <owner>"Source ID"</owner>

4 <t a r g e t id = "1">"Destination 1 ID"</ ta rge t>

5 ·

6 ·

7 ·

8 <t a r g e t id = "N">"Destination N ID"</ ta rge t>

9 <p r o b a b i l i t i e s>

10 <p r obab i l i t y id = "Destination 1 ID">"Probability Value"</p r obab i l i t y>

11 ·

12 ·

13 ·

14 <p r obab i l i t y id = "Destination N ID">"Probability Value"</p r obab i l i t y>

15 </ p r o b a b i l i t i e s>

16 <cus tomerClas sDes t inat ions>

17 <c la s sRout ing id ="Destination 1 ID">"Customer Class Value"</c la s sRout ing>

18 ·

19 ·

20 ·

21 <c la s sRout ing id ="Destination N ID">"Customer Class Value"</c la s sRout ing>

22 </cus tomerClas sDest inat ions>

23 <pathsAndPoints>

24 <path id ="Source ID" to "Destination 1 ID">

25 <Point2D id = "pt 1">

26 <x>"Point 1 X-Coordinate"</x>

27 <y>"Point 1 Y-Coordinate"</y>

28 </Point2D>

29 ·

30 ·

31 ·

32 <Point2D id = "pt K">

33 <x>"Point K X-Coordinate"</x>

34 <y>"Point K Y-Coordinate"</y>

35 </Point2D>

36 </path>

37 ·

38 ·

39 ·

40 <path id ="Source ID" to "Destination N ID">

41 <Point2D id = "pt 1">

42 <x>"Point 1 X-Coordinate"</x>

43 <y>"Point 1 Y-Coordinate"</y>

44 </Point2D>

45 ·

46 ·

47 ·

48 <Point2D id = "pt K">

49 <x>"Point K X-Coordinate"</x>

50 <y>"Point K Y-Coordinate"</y>

51 </Point2D>

52 </path>

53 </pathsAndPoints>

54 </ l i nk>
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Node (Simple Service Area)

1 <node id = "Node ID">

2 <tagType>Server</tagType>

3 <tagged>"True or False"</tagged>

4 <updateRate>"Tag Update Rate Value"</updateRate>

5 < l o c a t i o n>

6 <Point2D id = "pt1">

7 <x>"X-Coordinate Value"</x>

8 <y>"Y-Coordinate Value"</y>

9 </Point2D>

10 </ l o c a t i on>

11 <type>"Node Type"</type>

12 <s e rv i c eRad iu s>"Service Radius Value"</se rv i c eRad ius>

13 <numberOfServers>"Server Value"</numberOfServers>

14 <s e r v i c eP r i o r i t yP o l i c y id = "Customer Class">"Priority Value"</ s e r v i c eP r i o r i t yPo l i c y>

15 "Delay Definition"

16 < i n t e r a r r i v a lT imeD i s t r i bu t i on>

17 "Distribution Definition"

18 </ i n t e r a r r i v a lT imeD i s t r i bu t i on>

19 <v e l o c i t yD i s t r i b u t i o n>

20 "Distribution Definition"

21 </v e l o c i t yD i s t r i b u t i o n>

22 <queue ingD i s c i p l i n e>

23 "Queue Definition"

24 </queue ingD i s c i p l i n e>

25 </node>

Multi-Queueing Server (Multiple service areas sharing a common queue)

1 <mult iQueueingServer id = "ID">

2 <x>"Upper Left X-Coordinate"</x>

3 <y>"Upper Left Y-Coordinate"</y>

4 <width>"Width Value"</width>

5 <he ight>"Height Value"</he ight>

6 <s e r v e rC lu s t e r>

7 <s e r v e r id = "1">"Service Area 1 ID"</ s e rv e r>

8 ·

9 ·

10 ·

11 <s e r v e r id = "N">"Service Area N ID"</ s e rv e r>

12 </ s e r v e rC lu s t e r>

13 "Queueing Area Definition"

14 "Internal Link Definition"

15 </mult iQueueingServer>
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B.1 Case Study 2

Service Time Fitted HErD Relative
Density Parameters Entropy

Phase LengthsRate (3 d.p.)Weights (3 d.p.) (3 d.p.)

C
u
st
om

er
C
la
ss

1

S1 Exp(0.08) 2 0.150 1.0 0.195

S2 Erlang(5, 0.15) 6 0.158 1.0 0.060

S3 Exp(0.028) 1 0.023 1.0 0.015

S4 - (1st visit) Exp(0.035) 1 0.028 1.0 0.022

S4 - (2nd visit) Exp(0.035) 1 0.028 1.0 0.021

S5 Exp(0.04) 1 0.038 1.0 0.001

S6 Erlang(2, 0.085) 3,6 0.091,0.373 0.560,0.440 0.105

C
u
st
om

er
C
la
ss

2

S1 Hyper-Exp(0.5,0.35,0.15;0.05,0.08,0.12) 2 0.097 1.0 0.311

S2 HErD(1, 3; 0.6, 0.4; 0.02, 0.12) 1 0.025 1.0 0.036

S3 Erlang(3, 0.065) 3 0.058 1.0 0.021

S4 - (1st visit) Erlang(8, 0.2) 7 0.169 1.0 0.009

S4 - (2nd visit) Erlang(8, 0.2) 1,8 0.899,0.211 0.038,0.962 0.050

S5 Erlang(3, 0.1) 3 0.107 1.0 0.007

S6 Exp(0.05) 2 0.098 1.0 0.192

Table B.1: The HErD parameters fitted by G-FIT for each service area’s service time density with the
relative entropy (in nat) between the theoretical and fitted probability density function for case study
two of Chapter 6. Results are shown for the second (class 1) and third (class 2) customer class. The
parameters of the HErDs represent the phase lengths, weights and rate for each branch respectively,
separated by a semi-colon.
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Customer Class 1 Customer Class 2

S1 Test Statistic 0.1394 0.1461
α 0.1 0.05 0.1 0.05

Critical Values 0.1513 0.1725 0.1443 0.1645
Compatible ? Yes Yes No Yes

S2 Test Statistic 0.0456 0.1002
α 0.1 0.05 0.1 0.05

Critical Values 0.1070 0.1220 0.1359 0.1549
Compatible ? Yes Yes Yes Yes

S3 Test Statistic 0.0971 0.0758
α 0.1 0.05 0.1 0.05

Critical Values 0.1513 0.1725 0.1544 0.1761
Compatible ? Yes Yes Yes Yes

S4 - 1st Visit Test Statistic 0.0895 0.0809
α 0.1 0.05 0.1 0.05

Critical Values 0.1081 0.1232 0.1393 0.1588
Compatible ? Yes Yes Yes Yes

S4 - 2nd Visit Test Statistic 0.0800 0.1109
α 0.1 0.05 0.1 0.05

Critical Values 0.1227 0.1399 0.1470 0.1676
Compatible ? Yes Yes Yes Yes

S5 Test Statistic 0.0900 0.0742
α 0.1 0.05 0.1 0.05

Critical Values 0.1081 0.1232 0.1359 0.1549
Compatible ? Yes Yes Yes Yes

S6 Test Statistic 0.0431 0.0980
α 0.1 0.05 0.1 0.05

Critical Values 0.1081 0.1232 0.1359 0.1549
Compatible ? Yes Yes Yes Yes

Table B.2: Kolmogorov-Smirnov test at significance levels 0.1 and 0.05 applied to the extracted service
time samples for each service point from the second case study of Chapter 6. The null hypothesis is
that each extracted sample belongs to the corresponding best-fitted HErD.
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Case Study 2: Cumulative histogram of extracted service time samples for S1 - Class 1
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S2 - Class 1
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S3 - Class 1
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S4 - Class 1 (2nd visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S5 - Class 1
and its best-fit distribution compared with the theoretical distribution
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and its best-fit distribution compared with the theoretical distribution
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Figure B.1: Chapter 6, Case Study 2: Graphs B.1(a), B.1(b), B.1(c), B.1(d), B.1(e) and B.1(f) show
the cumulative histogram of the extracted service time samples for customer class 1 and its best-fit
hyper-Erlang distribution compared with the corresponding theoretical distribution for S1, S2, S3,
S4 (exit from service cycle), S5 and S6 respectively.
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Case Study 2: Cumulative histogram of extracted service time samples for S1 - Class 2
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Case Study 2: Cumulative histogram of extracted service time samples for S2 - Class 2
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S3 - Class 2
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S4 - Class 2 (2nd visit)
and its best-fit distribution compared with the theoretical distribution

Samples
Best-fit HEr distribution

Actual distribution

(d)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  20  40  60  80  100

F
(X

)

X

Case Study 2: Cumulative histogram of extracted service time samples for S5 - Class 2
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S6 - Class 2
and its best-fit distribution compared with the theoretical distribution
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Figure B.2: Chapter 6, Case Study 2: Graphs B.2(a), B.2(b), B.2(c), B.2(d), B.2(e) and B.2(f) show
the cumulative histogram of the extracted service time samples for customer class 2 and its best-fit
hyper-Erlang distribution compared with the corresponding theoretical distribution for S1, S2, S3,
S4 (exit from service cycle), S5 and S6 respectively.
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Case Study 2: Cumulative histogram of extracted service time samples for S4 - Class 0 (1st visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S4 - Class 1 (1st visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 2: Cumulative histogram of extracted service time samples for S4 - Class 2 (1st visit)
and its best-fit distribution compared with the theoretical distribution
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Figure B.3: Chapter 6, Case Study 2: Graphs B.3(a), B.3(b) and B.3(c) show the cumulative his-
togram of the extracted service time samples for S4 (entry to service cycle) and its best-fit hyper-Erlang
distribution compared with the corresponding theoretical distribution for customer classes 0, 1 and 2
respectively.
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B.2 Case Study 3

Service Time Fitted HErD Relative
Density Parameters Entropy

Phase LengthsRate (3 d.p.)Weights (3 d.p.) (3 d.p.)

C
u
st
om

er
C
la
ss

0

S1 - (1st visit) Exp(0.033) 1 0.034 1.000 0.001

S1 - (2nd visit) Exp(0.033) 1 0.034 1.000 0.001

S2 Erlang(2, 0.035) 2, 8 0.032, 5.686 0.985, 0.015 0.017

S4 Exp(0.033) 1 0.027 1.000 0.021

S5 Exp(0.013) 1 0.013 1.000 0.000

C
u
st
om

er
C
la
ss

2

S3 Erlang(6, 0.05) 5 0.037 1.000 0.049

C
u
st
om

er
C
la
ss

3

S3 Erlang(5, 0.04) 5 0.036 1.000 0.030

Table B.3: The HErD parameters fitted by G-FIT for each service area’s service time density with
the relative entropy (in nat) between the theoretical and fitted probability density function for case
study three of Chapter 6. Results are shown for the first (class 0), third (class 2) and fourth (class 3)
customer class.
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Customer Class 0 Customer Class 2 Customer Class 3

S1 - 1st Visit Test Statistic 0.0741

N/A N/A
α 0.1 0.05

Critical Values 0.0807 0.0920
Compatible ? Yes Yes

S1 - 2nd Visit Test Statistic 0.0798

N/A N/A
α 0.1 0.05

Critical Values 0.0973 0.1109
Compatible ? Yes Yes

S2 Test Statistic 0.0479

N/A N/A
α 0.1 0.05

Critical Values 0.0809 0.0922
Compatible ? Yes Yes

S3 Test Statistic

N/A

0.0708 0.1374
α 0.1 0.05 0.1 0.05

Critical Values 0.1370 0.1562 0.1430 0.1630
Compatible ? Yes Yes Yes Yes

S4 Test Statistic 0.1095

N/A N/A
α 0.1 0.05

Critical Values 0.1244 0.1418
Compatible ? Yes Yes

S5 Test Statistic 0.0928

N/A N/A
α 0.1 0.05

Critical Values 0.1529 0.1743
Compatible ? Yes Yes

Table B.4: Kolmogorov-Smirnov test at significance levels 0.1 and 0.05 applied to the extracted service
time samples for each service point from the third case study of Chapter 6. The null hypothesis is
that each extracted sample belongs to the corresponding best-fitted HErD.
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Case Study 3: Cumulative histogram of extracted service time samples for S3 - Class 2
and its best-fit distribution compared with the theoretical distribution
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Figure B.4: Chapter 6, Case Study 3: These graphs show the cumulative histogram of the extracted
service time samples for customer classes 2 (left) and 3 (right) and their best-fit hyper-Erlang distri-
bution compared with the corresponding theoretical distribution for S3.
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Case Study 3: Cumulative histogram of extracted service time samples for S1 - Class 0 (1st visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S1 - Class 0 (2nd visit)
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S2 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S4 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Case Study 3: Cumulative histogram of extracted service time samples for S5 - Class 0
and its best-fit distribution compared with the theoretical distribution
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Figure B.5: Chapter 6, Case Study 3: Graphs B.5(a), B.5(b), B.5(c), B.5(d) and B.5(e) show the
cumulative histogram of the extracted service time samples for customer class 0 and its best-fit hyper-
Erlang distribution compared with the corresponding theoretical distribution for S1 (entry to service
cycle), S1 (exit from service cycle), S2, S4 and S5 respectively.


