
University of London

Imperial College of Science, Technology and Medicine

Department of Computing

Parallel Algorithms for Hypergraph
Partitioning

Aleksandar Trifunović

Submitted in part fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of the University of London and

the Diploma of Imperial College, February 2006

Abstract

Near-optimal decomposition is central to the efficient solution of numerous prob-

lems in scientific computing and computer-aided design. In particular, intelligent

a priori partitioning of input data can greatly improve the runtime and scalabil-

ity of large-scale parallel computations. Discrete data structures such as graphs

and hypergraphs are used to formalise such partitioning problems, with hyper-

graphs typically preferred for their greater expressiveness. Optimal graph and

hypergraph partitioning are NP-complete problems; however, serial heuristic al-

gorithms that run in low-order polynomial time have been studied extensively

and good tool support exists. Yet, to date, only graph partitioning algorithms

have been parallelised.

This thesis presents the first parallel hypergraph partitioning algorithms, enabling

both partitioning of much larger hypergraphs, and computation of partitions

with significantly reduced runtimes. In the multilevel approach which we adopt,

the coarsening and refinement phases are performed in parallel while the initial

partitioning phase is computed serially. During coarsening and refinement, a two-

phase approach overcomes concurrency issues involved in distributing the serial

algorithms, while a hash-based data distribution scheme maintains load balance.

A theoretical analysis demonstrates our algorithms’ asymptotic scalability.

The algorithms are implemented in the Parkway tool. Experiments on hyper-

graphs from several application domains validate our algorithms and scalabil-

ity model in two ways. Very large hypergraphs (108 vertices) are partitioned

with consistent improvements in partition quality (of up to 60%) over an ap-

proximate approach that uses a state-of-the-art parallel graph partitioning tool.

The algorithms also exhibit good empirical scalability and speedups are observed

over serial hypergraph partitioning tools, while maintaining competitive parti-

tion quality. An application case study of parallel PageRank computation is

presented. Applying hypergraph models for one- and two-dimensional sparse

matrix decomposition on a number of publicly-available web graphs results in a

significant reduction in communication overhead and a halving of per-iteration

runtime.

i

Acknowledgements

I would like to thank the following people:

• Dr. William Knottenbelt, my supervisor, for his help, guidance and a never-

ending supply of enthusiasm.

• Keith Sephton and the London e-Science Centre for the use of the Viking

Beowulf Linux cluster.

• The Engineering and Physical Sciences Research Council (EPSRC) for pro-

viding me with the funding to do my PhD.

• Members of the AESOP research group, for the pub lunches and evenings

in the Holland club.

• The many people at the Department of Computing who made my PhD

such a great experience.

• My family, for their love and support throughout my PhD.

• Ruth Coles, whose love and support has meant so much.

ii

“I think there is a world market for maybe five computers.”
Thomas Watson (1874-1956), Chairman of IBM, 1943

iii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1

1.1 Motivation and Objectives . 1

1.1.1 Partitioning in Science and Engineering 1

1.1.2 Graphs and Hypergraphs 2

1.1.3 Applications of Graph and Hypergraph Partitioning 3

1.1.4 Limitations of Serial Partitioning 5

1.1.5 Thesis Objectives . 6

1.2 Contributions . 7

1.3 Thesis Outline . 9

1.4 Statement of Originality and Publications 12

2 Preliminaries 14

2.1 Introduction . 14

2.2 Problem Definition . 14

2.2.1 Introductory Definitions 14

2.2.2 Hypergraph Partitioning Problem 16

iv

CONTENTS v

2.3 Partitioning Objectives . 20

2.3.1 Bipartitioning Objectives 21

2.3.2 Multi-way Partitioning Objectives 22

2.4 Asymptotic Notation and Computational Complexity 24

2.4.1 Asymptotic Notation . 24

2.4.2 Computational Complexity 24

2.5 Background on Parallel Algorithms 26

2.5.1 Introduction . 26

2.5.2 Performance Metrics for Parallel Algorithms 28

2.5.3 Scalability of Parallel Algorithms 31

3 Related Work 33

3.1 Introduction . 33

3.2 Experimental Evaluation of Partitioning Algorithms in Literature 34

3.3 Graph Partitioning-Based Approaches To Hypergraph Partitioning 36

3.3.1 Hypergraph-to-Graph Transformations 37

3.3.2 Related Graph Partitioning Algorithms 37

3.4 Move-Based Algorithms . 41

3.4.1 Iterative Improvement Algorithms 41

3.4.2 Simulated Annealing . 56

3.4.3 Genetic Algorithms . 57

3.4.4 Tabu Search . 59

3.4.5 Other Move-Based Partitioning Approaches 61

3.5 Multilevel Algorithms . 61

3.5.1 Introduction . 61

CONTENTS vi

3.5.2 The Coarsening Phase . 64

3.5.3 The Initial Partitioning Phase 72

3.5.4 The Uncoarsening and Refinement Phase 74

3.5.5 Remarks on the Multilevel Paradigm 80

3.6 Parallel Graph Partitioning Algorithms 84

3.6.1 Data Distribution Strategies 84

3.6.2 Early Work . 85

3.6.3 Parallel Multilevel Recursive Spectral Bisection 87

3.6.4 Karypis and Kumar’s Two-Dimensional Parallel Algorithm 89

3.6.5 Karypis and Kumar’s One-Dimensional Parallel Algorithm 92

3.6.6 Walshaw’s Parallel Multilevel Graph Partitioning Algorithm 98

4 Parallel Multilevel Hypergraph Partitioning 101

4.1 Introduction . 101

4.2 Parallel Hypergraph Partitioning Considerations 102

4.2.1 Graphs vs. Hypergraphs 103

4.2.2 A Parallel Framework for the Multilevel Approach 104

4.3 An Application-Specific Disk-Based Parallel Algorithm 105

4.3.1 Data Distribution . 107

4.3.2 Parallel Coarsening Phase 108

4.3.3 Initial Partitioning Phase 111

4.3.4 Parallel Uncoarsening Phase 111

4.3.5 Implementation and Experimental Evaluation 111

4.4 Developing a General Parallel Hypergraph Partitioning Algorithm 114

4.4.1 Insights Gained From Preliminary Work 114

CONTENTS vii

4.4.2 Discussion of Parallelism in Multilevel Hypergraph Parti-

tioning . 115

4.5 Parallel Multilevel Partitioning Algorithms 121

4.5.1 Data Distribution . 121

4.5.2 Parallel Coarsening Phase 123

4.5.3 Serial Initial Partitioning Phase 126

4.5.4 Parallel Uncoarsening Phase 126

4.5.5 Parallel Multi-phase Refinement 127

4.6 Analytical Performance Model . 128

4.6.1 Performance Model of the Parallel Multilevel Algorithm . . 130

4.6.2 Model of Parallel Multilevel Algorithm with Multi-phase

Refinement . 134

4.7 A New Two-Dimensional Parallel Hypergraph Partitioning Algo-

rithm . 136

4.7.1 Parallel Coarsening Phase 136

4.7.2 Parallel Uncoarsening Phase 138

4.7.3 Parallel Recursive Bisection 138

4.7.4 Experimental Results . 139

5 Parallel Implementation and Experimental Results 140

5.1 Introduction . 140

5.2 Parkway2.0: A Parallel Hypergraph Partitioning Tool 140

5.2.1 Software Architecture . 140

5.2.2 Details of the Parkway2.0 Implementation 143

5.3 Experimental Evaluation . 146

5.3.1 Aims and Objectives . 146

CONTENTS viii

5.3.2 Experimental Setup . 146

5.3.3 Experiments to Evaluate Partition Quality 149

5.3.4 Experimental Runtime Analysis 153

5.3.5 Empirical Evaluation of Predicted Scalability Behaviour . 155

6 Application to Parallel PageRank Computation 160

6.1 The PageRank Algorithm . 161

6.1.1 Introduction . 161

6.1.2 Random Surfer Model . 162

6.1.3 Power Method Solution . 164

6.2 Parallel Sparse Matrix–Vector Multiplication 165

6.3 Hypergraph Models for Sparse Matrix Decomposition 166

6.3.1 One-Dimensional Sparse Matrix Decomposition 167

6.3.2 Two-Dimensional Sparse Matrix Decomposition 168

6.4 Case Study: Parallel PageRank Computation 170

6.4.1 Experimental Setup . 171

6.4.2 Experimental Results . 174

7 Conclusion 178

7.1 Summary of Achievements . 178

7.2 Applications . 181

7.3 Future Work . 182

A Test Hypergraphs 184

CONTENTS ix

B Summary of Experimental Results 187

B.1 Experiments Using Parkway1.0 188

B.2 Experiments Using Parkway2.0 189

B.3 Experimental Results From the PageRank Case Study 192

Bibliography 194

List of Tables

4.1 Percentages of match types in the edge coarsening algorithm dur-

ing the vertex connectivity analysis. 109

4.2 Parkway1.0 and ParMeTiS: variation in partition quality and run-

time for the voting250 hypergraph. 113

4.3 Parkway1.0 and ParMeTiS: variation in partition quality and run-

time for the voting300 hypergraph. 113

5.1 Significant properties of test hypergraphs. 148

5.2 Average, 90th, 95th and 100th percentiles of hyperedge length and

vertex weight of the voting hypergraphs. 157

5.3 Parkway2.0 isoefficiency experimental configuration: the hyper-

graphs and the numbers of processors used. 157

6.1 The main characteristics of the web matrices. 172

A.1 Significant properties of test hypergraphs. 185

A.2 Average, 90th, 95th and 100th percentiles of hyperedge length and

vertex weight of the test hypergraphs. 186

B.1 Parkway1.0 and ParMeTiS: variation in partition quality and run-

time for the voting250 hypergraph. 188

B.2 Parkway1.0 and ParMeTiS: variation in partition quality and run-

time for the voting300 hypergraph. 188

x

LIST OF TABLES xi

B.3 Parkway2.0 and PaToH/hMeTiS: variation of partition quality and

the number of processors on hypergraphs that were small enough

to be partitioned serially. 189

B.4 Parkway2.0: variation of partition quality and the number of pro-

cessors for hypergraphs that were too large to be partitioned serially.190

B.5 ParMeTiS: variation of partition quality and the number of pro-

cessors on hypergraphs that were too large to be partitioned serially.191

B.6 Parkway2.0 with parallel multi-phase refinement: variation of par-

tition quality and the number of processors on hypergraphs that

were small enough to be partitioned serially. 192

B.7 Parkway2.0: variation of runtime and the number of processors

on hypergraphs that were too large to be partitioned serially. . . . 193

B.8 ParMeTiS: variation of runtime and the number of processors on

hypergraphs that were too large to be partitioned serially. 194

B.9 Parkway2.0 with parallel multi-phase refinement: variation of run-

time and the number of processors on hypergraphs that were small

enough to be partitioned serially. 195

B.10 Parkway2.0 and PaToH/hMeTiS: variation of runtime and the num-

ber of processors on hypergraphs that were small enough to be

partitioned serially. 196

B.11 PaToH: variation of runtime on voting hypergraphs (including ex-

trapolated runtimes for voting250 and voting300). 197

B.12 PaToH: variation of partition quality on voting hypergraphs. 197

B.13 Parkway2.0: variation of runtime on voting hypergraphs. 197

B.14 Parkway2.0: variation of partition quality on voting hypergraphs. 197

B.15 Parkway2.0: variation of processor efficiencies on voting hyper-

graphs. 197

B.16 Stanford web graph parallel PageRank computation results. 198

LIST OF TABLES xii

B.17 Stanford Berkeley web graph parallel PageRank computation results.199

B.18 india-2004 web graph parallel PageRank computation results. . . . 200

List of Figures

1.1 An example of a graph and a hypergraph. 2

2.1 Approaches to computing a k-way partition. 21

3.1 The gain bucket data structure used in the Fidduccia Mattheyses

algorithm. 45

4.1 The parallel multilevel hypergraph partitioning pipeline. 105

4.2 An example of a semi-Markov transition matrix generated by breadth-

first state traversal. 107

4.3 An example of conflict occurrence during parallel coarsening. . . . 116

4.4 An example of conflict occurrence during parallel refinement. . . . 120

5.1 High-level diagram of the Parkway2.0 software architecture. . . . 141

5.2 Parkway2.0 and hMeTiS/PaToH: variation of partition quality with

the number of processors used. 151

5.3 Parkway2.0 and ParMeTiS: variation of partition quality with the

number of processors used for k = 8. 152

5.4 Parkway2.0: variation of partition quality with the number of

processors used, with and without parallel multi-phase refinement. 153

5.5 Parkway2.0: variation of speedup over the PaToH serial base-case

with the number of processors used. 154

xiii

LIST OF FIGURES xiv

5.6 PaToH: variation of runtimes on the voting hypergraphs. 158

5.7 PaToH: the log-log plot of the variation of runtimes on the voting

hypergraphs. 158

5.8 Parkway2.0: variation of processor efficiency with the number of

processors used on the voting hypergraphs. 159

6.1 Parallel PageRank computation pipeline. 173

6.2 Total per-iteration communication volume for 16-processor Stan-

ford Berkeley PageRank computation (note log scale on communi-

cation volume axis). 175

6.3 Per-iteration execution time for 16-processor Stanford Berkeley Page-

Rank computation. 175

Chapter 1

Introduction

1.1 Motivation and Objectives

1.1.1 Partitioning in Science and Engineering

Partitioning is a process of decoupling that is fundamental across science and

engineering. There are numerous applications of partitioning in both academia

and industry. These include domain decomposition (in areas such as fluid dy-

namics, computational chemistry and astrophysics), load balancing for parallel

computation, computer-aided design of very large digital circuits and data min-

ing. For example, in the physical design process of very large digital circuits,

effective partitioning is critical for achieving peak chip performance and reducing

the cost and time of the design and manufacturing process.

Partitioning decomposes a set of interrelated objects into a set of subsets or

parts to optimize a specified objective. In general, it is required that any two

objects within the same part should be strongly related in some sense, whereas

the converse should hold for any two objects found in different parts.

Partitioning also requires that the relationship between the objects is specified

and the corresponding degree of association is quantified. These requirements

are usually expressed using data structures such as graphs and hypergraphs.

1

1.1. Motivation and Objectives 2

e1

e2

e4

e5

e3
e1 e2

e3

v 4
v 5 v 5

v 1
v 1 v 2

v 4

v 3
v 3

v 2

Graph Hypergraph

Figure 1.1. An example of a graph and a hypergraph.

1.1.2 Graphs and Hypergraphs

In a set-theoretic sense, graphs and hypergraphs are set systems. That is to say,

they are collections of subsets of a given set of objects. The objects in this set

are called vertices. The subsets within the collection are called edges when the

collection is a graph, and hyperedges when it is a hypergraph. In a graph, the

cardinality of any edge is two. On the other hand, the cardinality of a hyperedge

may be any number greater than zero, up to and including the cardinality of the

vertex set (cf. Figure 1.1).

Graphs and hypergraphs may also be considered as data structures that represent

a set of related objects. The objects are represented by the vertices of the graph

or the hypergraph. The existence of a relationship between objects is represented

by an edge in the graph, or by a hyperedge in a hypergraph. A scalar weight is

assigned to each edge or hyperedge to capture the degree of association between

the vertices that the edge or the hyperedge connects.

Both graphs and hypergraphs may be partitioned to optimise some objective.

Specifically, the set of vertices is partitioned, while the partitioning objective is

usually defined over the set of edges or hyperedges. The next subsection discusses

practical applications of graph and hypergraph partitioning.

Because there is no restriction on hyperedge cardinality, hypergraphs are more

expressive than graphs in the context of modelling sets of related objects. That

is to say, hypergraphs can capture a relationship between a group of objects,

1.1. Motivation and Objectives 3

whereas graphs can only capture binary relationships between objects.

1.1.3 Applications of Graph and Hypergraph Partitioning

Load Balancing of Parallel Computations

Load balancing (the assignment of work to processors) is a fundamental problem

in parallel computing. The aim is to maximise parallel performance by ensuring

that processor idle time and interprocessor communication time are as low as

possible.

Load balancing is difficult in parallel applications that exhibit irregular com-

putational structures. Irregularities are common in many applications, such as

physical simulation and performance modelling. Since näıve problem decompo-

sitions are not satisfactory, load balancing is achieved through partitioning.

Load balancing may be static or dynamic. In applications with constant work-

loads, static load balancing is used as a pre-processing step to the parallel compu-

tation and partitioning is only done once. An example of static load balancing is

sparse matrix partitioning prior to parallel sparse matrix–vector multiplication.

Applications with changing workloads, for example due to evolution of the phys-

ical simulation, require dynamic load balancing. Here, partitioning may be done

many times during the parallel computation. An example of such applications

are adaptive finite element methods.

Traditionally, graphs have been used to model the computation and communi-

cation requirements of a parallel program. The vertices are used to model a

subcomputation and the edges the communication requirement between the sub-

computations.

However, graph models have a number of deficiencies; the most significant is

that, in general, they can only approximate communication volume [Hen98]. As

a result, hypergraph models for data partitioning (which quantify communica-

tion volume exactly) have been shown to be superior to graph models in many

1.1. Motivation and Objectives 4

cases of practical interest, including parallel sparse matrix–vector multiplication

and computational modelling in areas such as electrical systems, biology, linear

programming and nanotechnology [cA99, HBB02, UA04, VB05, DBH+05].

VLSI Computer-Aided Design

The task of designing integrated circuits is complex, as modern circuits have a

very large number of components. Here, the hypergraph partitioning problem

most commonly arises in the context of dividing a circuit specification into clus-

ters of components (subcircuits), such that the cluster interconnect is minimised.

Each subcircuit can then be assembled independently, speeding up the design

and integration processes.

A circuit specification includes cells, which are pre-designed integrated circuit

modules that implement a specific function and have input and output terminals.

A net is a collection of input and output terminals connected together and is used

to connect a group of cells together. Each connection between a cell and a net

occurs at a pin. Cell connectivity information for the entire circuit is provided

by the netlist, which specifies all the nets for a given circuit.

A hypergraph is used to represent the connectivity information from the circuit

specification. Each vertex in the hypergraph represents a cell in the circuit and

each hyperedge represents a net from the circuit’s netlist. The weights on the

vertices and hyperedges can, for example, convey information about the physical

size of the cells and signal delay in the nets, respectively. The equivalence between

a circuit specification and its hypergraph representation is exact if each net in the

circuit has at most one pin on any cell [AHK95]. The application of hypergraph

partitioning within VLSI design is longstanding and has been well-addressed in

literature. For an extensive overview, see the surveys in [AHK95, Kah98, CRX03].

1.1. Motivation and Objectives 5

Data Mining

Hypergraph partitioning has been applied in the field of data mining. Clustering

in data mining is a process that seeks to group data such that the intracluster

similarity is maximised, while intercluster similarity is minimised. Hypergraph

modelling of the clustering process is described in [HKKM97], where the set of

vertices corresponds to the set of data items being clustered and each hyperedge

corresponds to a set of related items. An application of this method to web

document categorisation is presented in [BGG+99].

Parallel Databases

In high-performance database systems, where the amounts of data to be retrieved

for individual queries is large, the I/O bottleneck is overcome through parallel

I/O across multiple disks. The disks are accessed in parallel while a query is

being processed; consequently, the response time can be reduced by balancing the

amount of data that needs to be retrieved on each disk. The resulting declustering

problem is to partition the data across multiple disks so that the data items that

are more likely to be retrieved together are located in separate disks, while the

disk capacity constraint is maintained. In [KA05], the declustering problem is

modelled by a hypergraph where the set of vertices corresponds to the set of data

items while the queries in the database system correspond to the hyperedges of

the hypergraph.

1.1.4 Limitations of Serial Partitioning

The hypergraph partitioning problem has been extensively studied in literature

and very good serial tool support exists. However, the performance of serial

partitioning tools is limited because they can only run on a single processor.

This imposes a limit on the size of the problem that can be tackled and also on

the runtimes that can be achieved.

1.1. Motivation and Objectives 6

There are an increasing number of applications that demand large-scale par-

titioning which cannot be performed using serial partitioners. In [BDKW03,

BDKW04], the hypergraph model for sparse matrix decomposition is key to scal-

ability of the iterative Laplace Transform inversion algorithm that is, amongst

other applications, used in the response time analysis of queueing systems. This

is because parallel sparse matrix–vector multiplication is the kernel operation in

such solvers. The authors note that in order to perform analysis of models that

are of practical interest, parallel partitioning of hypergraphs that are too large

for current serial hypergraph partitioners is necessary.

[DBH+05] describes forthcoming challenges in the field of dynamic load balancing.

The authors emphasise that hypergraph models address many of the deficiencies

of the hitherto-popular graph models. However, for large-scale dynamic load-

balancing problems, parallel hypergraph partitioning is required.

Recently, direct implementation into reconfigurable hardware of programs written

using high-level languages has attracted attention from researchers [BVCG04].

Currently, when compiling programs into hardware, circuit partitioning using

serial hypergraph partitioners is performed [Mis04]. We anticipate that as the

complexity of high-level programs for compilation into reconfigurable hardware

increases, parallel hypergraph partitioning will be required1.

1.1.5 Thesis Objectives

The aims of this thesis are:

• To develop scalable parallel algorithms for the hypergraph partitioning

problem.

• To implement them in a parallel hypergraph partitioning tool.

• To conduct theoretical and empirical evaluations of the algorithms’ scala-

bility and partition quality comparisons with current state-of-the-art. In

1Personal communication with Mahim Mishra (http://www.cs.cmu.edu/~phoenix/).

1.2. Contributions 7

particular, the objectives are:

– To assess speedups achieved over serial hypergraph partitioning tools

on a suite of test hypergraphs from a range of application domains.

– To compare the quality of partitions produced by the parallel hyper-

graph partitioning algorithms with the quality of those produced by

serial hypergraph, and parallel graph, partitioning tools.

• To investigate extensions to existing applications of hypergraph partitioning

and develop novel applications.

1.2 Contributions

This thesis presents the first parallel multilevel algorithms for the hypergraph

partitioning problem and describes their implementation within the parallel hy-

pergraph partitioning tool Parkway. The work enables the solution of very large

hypergraph partitioning problems that were hitherto intractable by serial com-

putation. In addition, good empirical scalability enables faster solution of hyper-

graph partitioning problems. Solution quality is comparable with state-of-the-art

serial multilevel hypergraph partitioning tools (typically within 5%).

Hypergraph partitioning algorithms based on the multilevel paradigm have been

parallelised, using a one-dimensional distribution of the hypergraph across the

processors. Serial partitioning algorithms based on the multilevel paradigm first

construct a sequence of hypergraph approximations during the coarsening phase,

and then, having computed a partition of the coarsest approximation during

the initial partitioning phase, they project this partition onto the original hyper-

graph through the successive hypergraph approximations during the uncoarsening

phase.

The approach taken parallelises the coarsening and uncoarsening phases of this

paradigm, while the initial partitioning phase proceeds using existing serial hy-

pergraph partitioning algorithms. The proposed parallel algorithms use a hash

1.2. Contributions 8

function to balance computational load and a two-phase communication schedule

to resolve interprocessor conflicts that potentially arise as a result of concurrent

decision-making during the coarsening and uncoarsening phases. In addition, a

serial multi-phase refinement technique (also known as V-cycling) is parallelised;

this allows the quality of partition produced by the parallel multilevel algorithm

to be further improved at an additional runtime cost.

An analytic average-case perfomance model of the parallel algorithms is pre-

sented. This shows that the proposed algorithms are asymptotically cost-optimal

on a hypercube parallel architecture under the assumption that the input hyper-

graph is very sparse, i.e. has a very small average vertex degree; this is the case

for hypergraphs across many areas of practical interest. The isoefficiency func-

tion of the parallel algorithms is also derived and is observed to be of the same

order as Karypis and Kumar’s parallel multilevel graph partitioning algorithm.

The proposed parallel algorithms are implemented in a parallel hypergraph parti-

tioning tool Parkway. The tool is used as a basis for an experimental evaluation

of the proposed parallel algorithms on a number of hypergraphs from various

application domains. The experiments validate the parallel hypergraph parti-

tioning algorithms against state-of-the-art serial multilevel hypergraph partition-

ing tools or (when the hypergraphs are too large to be partitioned serially) a

state-of-the-art parallel graph partitioning tool. An empirical evaluation of the

parallel hypergraph partitioning algorithm’s runtime is performed and speedups

over state-of-the-art serial multilevel tools are observed. We also perform exper-

iments in order to investigate the scalability behaviour of the parallel multilevel

hypergraph partitioning algorithms, as predicted by our analytic performance

model. These seek to maintain a near-constant level of processor efficiency by

increasing the problem size according to the isoefficiency function, as the number

of processors is increased.

The Parkway parallel hypergraph partitioning tool is used to accelerate parallel

PageRank computation. The substantial increase in partitioning capacity offered

by our parallel algorithms is exploited by applying one- and two-dimensional

1.3. Thesis Outline 9

hypergraph partitioning-based schemes for sparse matrix decomposition. Such

schemes previously could not be used because of the capacity limits of serial

hypergraph partitioners. The use of the hypergraph partitioning-based schemes

within parallel iterative PageRank computation yields a halving in per-iteration

runtimes over existing purely load-balancing schemes on a gigabit Ethernet clus-

ter.

1.3 Thesis Outline

The remainder of this thesis is set out as follows:

Chapter 2 formally introduces the definitions of a hypergraph and the hyper-

graph partitioning problem. A section on asymptotic notation and com-

putational complexity is also included. Finally, we present background

material relating to parallel algorithms. This consists of a brief overview

of analytical modelling of parallel algorithm performance and scalability

behaviour, as well as definitions of desirable properties that are sought in

parallel algorithm design.

Chapter 3 presents related work on serial algorithms for graph and hypergraph

partitioning and parallel algorithms for graph partitioning. Since the opti-

mal graph and hypergraph partitioning problems are NP-complete, many

suboptimal heuristic algorithms have been proposed. The most successful

algorithms to date (such as Kernighan-Lin and Fidduccia-Mattheyses al-

gorithms) are based on the iterative improvement strategy. More recently,

these iterative improvement algorithms have been incorporated within the

multilevel framework, which has significantly increased their ability to con-

sistently compute good-quality solutions across a wide range of problem

instances. We present a comprehensive survey of iterative improvement

algorithms, and in the context of graph partitioning algorithms, we review

spectral partitioning. A detailed summary of the multilevel paradigm is

1.3. Thesis Outline 10

also presented. A number of general combinatorial optimisation approaches

have also been evaluated in partitioning literature. These include Simulated

Annealing, Genetic Algorithms and Tabu search. We describe a summary of

their application to graph and hypergraph partitioning. The chapter closes

with a discussion of parallel graph partitioning. In particular, parallel mul-

tilevel graph partitioning algorithms are described in detail because they

provide insight into possible parallel formulations for multilevel hypergraph

partitioning algorithms.

Chapter 4 presents our work on parallel hypergraph partitioning. Drawing on

experience from parallel graph partitioning, we note that only the coarsen-

ing and uncoarsening phases need to be parallelised. We first present an

application-specific disk-based parallel multilevel hypergraph partitioning

algorithm. In terms of partition quality, our algorithm consistently out-

performs the approximate partitioning approach based on parallel graph

partitioning. However, due to slow disk-access times and poor processor

utilisation, its observed parallel runtimes are long. We then present the

parallel multilevel hypergraph partitioning algorithms that are the main

contribution of this thesis. In particular, parallel formulations of the serial

coarsening and uncoarsening phases, based on a one-dimensional hyper-

graph distribution across the processors, are presented. The serial multi-

phase refinement algorithm is also parallelised. Finally, we describe an

average-case analytical performance model of our parallel algorithms. Our

model assumes that the input hypergraphs are sparse and have a low av-

erage vertex degree. Under these assumptions, asymptotic cost-optimality

of the parallel algorithms is shown and the algorithms’ isoefficiency func-

tion is derived. A description of an alternative approach to parallel hyper-

graph partitioning, developed at Sandia National Laboratories, concludes

the chapter.

Chapter 5 describes the implementation of the parallel hypergraph partition-

ing algorithms proposed in Chapter 4 within the parallel hypergraph parti-

1.3. Thesis Outline 11

tioning tool Parkway2.0. We also describe the experimental evaluation of

the algorithms using Parkway2.0. In order to provide a high-performance

testbed for the parallel hypergraph partitioning algorithms, the London

eScience’s Beowulf cluster (comprised of 64 dual-processor nodes, with In-

tel 2.0GHz Xeon processors and 2GB RAM connected by Myrinet with

peak throughput of 2Gbps) was used. The experiments were carried out

on hypergraphs from several application domains. We compare the quality

of partition produced by the parallel hypergraph partitioning algorithms

with the quality of partitions produced by state-of-the-art serial multilevel

partitioners and also with those produced by an approximate hypergraph

partitioning approach using a state-of-the-art parallel graph partitioning

tool. Speedup over a state-of-the-art serial multilevel partitioner achieved

by Parkway2.0 across a number of different hypergraphs is observed. Fi-

nally, we perform an experiment which attempts to maintain a constant

level of efficiency by increasing the problem size as the number of processors

is increased according to the isoefficiency function derived in Chapter 4.

Chapter 6 describes a case study application of the parallel multilevel hyper-

graph partitioning algorithms in order to obtain a more efficient parallel

PageRank computation. PageRank is typically computed using parallel it-

erative methods, whose kernel operation is parallel sparse matrix–vector

multiplication. State-of-the-art hypergraph partitioning-based sparse ma-

trix decomposition schemes could not be previously used in this context

because of the capacity limits of serial hypergraph partitioners. We demon-

strate that the use of hypergraph partitioning-based sparse matrix decom-

position schemes leads to a halving of per-iteration runtime when compared

to existing purely load-balancing sparse matrix decomposition schemes. In

order to provide a realistic experimental setup for our PageRank case-study,

a gigabit Ethernet-connected Beowulf Linux cluster was used. It comprised

of 8 dual-processor nodes, each with two Intel Pentium 4 3.0Ghz processors

and 2GB RAM.

1.4. Statement of Originality and Publications 12

Chapter 7 concludes the thesis by providing a summary and an evaluation of

the work presented. This chapter also discusses opportunities for future

work.

Appendix A describes in detail the hypergraphs used in the experiments in this

thesis.

Appendix B presents in detail all the experimental results drawn upon in this

thesis.

1.4 Statement of Originality and Publications

I declare that this thesis was composed by myself, and that the work that it

presents is my own, except where otherwise stated.

The publications referred to below arose from work carried out during the course

of this PhD. The chapters in this thesis where material from them appears are

indicated below:

• Workshop on Parallel and Distributed Scientific and Engineering

Computing 2004 (PDSECA 2004) [TK04c] and International Jour-

nal of Computational Science and Engineering 2006 (IJCSE 2006)

[TK06b] present an application-specific disk-based parallel formulation of

the multilevel k-way hypergraph partitioning algorithm. This was prelim-

inary work that led to the development of the parallel hypergraph parti-

tioning algorithms that form the main contribution of this thesis. Material

from these papers appears in Chapter 4.

• International Symposium on Parallel and Distributed Computing

(ISPDC 2004) [TK04b] presents the parallel multilevel algorithm for the

k-way hypergraph partitioning problem, described in Chapter 4. It also

compares the parallel hypergraph partitioning algorithm with the parallel

graph partitioning approach to computing a partition of the hypergraph.

Material from this paper appears in Chapter 4.

1.4. Statement of Originality and Publications 13

• International Symposium on Computer and Information Sciences

(ISCIS 2004) [TK04a] describes an asymptotic analytical performance model

for the proposed parallel multilevel hypergraph partitioning algorithms and

derives its isoefficiency function. A set of experiments using the Parkway2.0

tool in a comparison with state-of-the-art serial multilevel tools to evaluate

scalability properties are performed. Material from this paper appears in

Chapter 4 and Chapter 5.

• Journal of Parallel and Distributed Computing (submitted for pub-

lication) [TK06a] presents a detailed description of the parallel multilevel

hypergraph partitioning algorithms and their analytical performance model

from Chapter 4. It builds on earlier work in [TK04b] and [TK04a], by pre-

senting a parallel formulation of multi-phase refinement. An extensive ex-

perimental evaluation of the algorithms on hypergraphs from a wide range

of application domains is also included. Material from this paper appears

in Chapter 4 and Chapter 5.

• European Performance Evaluation Workshop (EPEW 2005) [BKdT05]

describes a case study application of parallel hypergraph partitioning to

parallel iterative PageRank computation. Material from this paper ap-

pears in Chapter 6. This was joint work with Jeremy Bradley and Douglas

de Jager.

Chapter 2

Preliminaries

2.1 Introduction

This chapter presents some preliminaries to the thesis. We define a hypergraph

and the hypergraph partitioning problem. The remaining sections present back-

ground material related to computational complexity and parallel algorithms.

Performance metrics used in the analysis of parallel algorithms are also intro-

duced.

2.2 Problem Definition

2.2.1 Introductory Definitions

Given a finite set of n vertices, V = {v1, . . . , vn}, a hypergraph on V is formally

defined as follows.

Definition 2.1 (Hypergraph). A hypergraph is a set system (V, E) on a set V ,

here denoted H(V, E), such that E ⊂ P(V), where P(V) is the power set of V .

The set E = {e1, . . . , em} is said to be the set of hyperedges of the hypergraph.

Given the definition of hypergraph as above, we note that when E ⊂ V (2), each

hyperedge has cardinality two and the resulting set system is known as a graph.

14

2.2. Problem Definition 15

Henceforth, in order to distinguish between graphs and hypergraphs, a graph

shall be denoted by G(V, E).

Definition 2.2 (Incidence). A hyperedge e ∈ E is said to be incident on a

vertex v ∈ V in a hypergraph H(V, E) if, and only if, v ∈ e and this is denoted

by e . v.

Definition 2.3 (Incidence Matrix). The incidence matrix of a hypergraph

H(V, E), V = {v1, . . . , vn} and E = {e1, . . . , em}, is the n×m matrix A = (aij),

with entries

aij =

1 if vi ∈ ej

0 otherwise
(2.1)

Furthermore, let NH denote the number of non-zeros in the hypergraph’s incidence

matrix A.

Note that the transpose of the incidence matrix, AT , defines the dual hypergraph

H∗(V ∗, E∗) [Bol86].

Definition 2.4 (Vertex adjacency). Vertices u, v ∈ V are said to be adjacent

in a hypergraph H(V, E) if, and only if, there exists a hyperedge e ∈ E such that

u ∈ e and v ∈ e (or equivalently, e . u and e . v).

Even though it is a hypergraph by definition, when talking about a graph G(V, E),

it is more usual to refer to its adjacency matrix instead of its incidence matrix.

Definition 2.5 (Adjacency Matrix). The adjacency matrix of a graph G(V, E),

V = {v1, . . . , vn} and E = {e1, . . . , em}, is the n×n matrix A = (aij), with entries

aij =

1 if there exists e ∈ E such that vi ∈ e, vj ∈ e

0 otherwise
(2.2)

By general convention, the adjacency matrix of a graph G(V, E) is also denoted

by the symbol A. Note that the adjacency matrix uniquely defines a graph, but

does not, in general, uniquely define a hypergraph. Notational confusion with an

2.2. Problem Definition 16

incidence matrix of a hypergraph is avoided, since the adjacency matrix will not

be used in the context of hypergraphs in the remainder of this thesis. This is

because it does not, in general, uniquely define a hypergraph. We also note that

the adjacency matrix of a graph is necessarily symmetric for undirected graphs.

Definition 2.6 (Vertex degree and hyperedge length). The degree of a

vertex v ∈ V is defined as the number of distinct hyperedges in E that are incident

on v. The length of a hyperedge e ∈ E is defined to be its cardinality |e|.

Henceforth, we let dmax denote the maximum vertex degree and emax denote the

maximum hyperedge length in a hypergraph H(V, E).

2.2.2 Hypergraph Partitioning Problem

Definition 2.7 (Hypergraph Partition). This is a partition Π ⊂ P(V) of

the vertex set V (i.e. a finite collection of subsets of V , called parts), such that

P ∩ P ′ = ∅ is true for all P, P ′ ∈ Π (P 6= P ′) and
⋃

i Pi = Π.

When |Π| = k and k > 2, the partition Π is called a k-way or a multi-way

partition. Otherwise (when k = 2), we call Π a bipartition. The process of

computing a k-way or multi-way partition is called k-way or multi-way partition-

ing. The process of computing a bipartition of a hypergraph is called hypergraph

bipartitioning.

In order to make the hypergraph partitioning problem more meaningful (i.e. in a

form where it could be used to model a practical problem), we define a partitioning

objective and a set of partitioning constraints that identify a subset of feasible

partitions from the set of all possible partitions. In order to precisely define the

partitioning objective and the partitioning constraints, a scalar weighting on the

vertices and hyperedges of the hypergraph is introduced.

In a hyperedge-weighted hypergraph H(V, E), each hyperedge e ∈ E is assigned an

integer weight (recall from Section 1.1 that the weight of a hyperedge may capture

the degree of association between the vertices connected by that hyperedge).

2.2. Problem Definition 17

Correspondingly, in a vertex-weighted hypergraph H(V, E), each vertex v ∈ V is

assigned an integer weight (recall from Section 1.1 that vertex weight may model

the size of the component or sub-computation being modelled by the vertex).

Note that the restriction to integer weights on the vertices and hyperedges is made

with common applications of hypergraph partitioning in mind. However, the

hypergraph partitioning problem definition is still meaningful when real-valued

vertex and hyperedge weights are used.

We will assume that a hypergraph is always both vertex- and hyperedge-weighted.

The weights of a vertex v ∈ V and a hyperedge e ∈ E are denoted by w(v) and

w(e) respectively.

As mentioned in Section 1.1.3, hypergraphs model systems that exhibit multi-

way intercomponent relationships. The common objective of partitioning such

hypergraphs is to divide the system into a number of sub-systems, such that

components within each sub-system are strongly connected and components in

different sub-systems are weakly connected. As a result, it is desirable to have

fewer hyperedges that have vertices in more than one part of the partition and

many hyperedges which have all their vertices in the same part. To model such

behaviour, additional definitions concerning the state of a hyperedge in the con-

text of a partition of the vertex set are required.

Definition 2.8 (Cut hyperedge). A hyperedge e ∈ E is said to be cut by

a partition Π if, and only if, there exist distinct parts P, P ′ ∈ Π and distinct

vertices v, v′ ∈ e such that v ∈ P and v′ ∈ P ′. A hyperedge that is not cut by a

partition Π is said to be uncut.

The set of hyperedges that are cut by the partition is called the cutset. The

cardinality of the cutset is called the partition cutsize. When the cardinality of

each hyperedge in the hypergraph is two, so that Π is a partition of a graph, the

cutset is also called an edge separator of the graph.

A hyperedge in the cutset of a partition Π has vertices in at least two distinct

parts. It is said that a hyperedge e ∈ E spans (or connects) the part P of a

2.2. Problem Definition 18

partition Π if, and only if, there exists a v ∈ V such that v ∈ e and v ∈ P .

We write λe to denote the number of parts spanned by hyperedge e ∈ E . We

also write Π(v) to denote the part that a vertex v has been assigned by partition

Π and P (e) to denote the number of vertices belonging to hyperedge e that are

assigned to part P by a partition Π.

The objective of partitioning a hypergraph may be expressed as a function of the

hypergraph H(V, E) and its partition Π. The objective thus defines a measure

of “quality” on the partition Π of H(V, E), in terms of the relationships between

the vertices (which are expressed by the set of hyperedges, E).

Definition 2.9 (Partitioning Objective Function). Let fo : (P(V),P(V)) →
Z denote a function such that fo(Π, E) represents a cost (or another quantitative

measure) of a partition Π when applied to a hypergraph H(V, E). The function

fo is called the partitioning objective function.

Once again, we note that the partitioning objective is expressed as an integer

quantity to reflect hypergraph partitioning applications; a real-valued objective

would also be meaningful. We also note that historically the word “cost” has been

used in partitioning literature to represent a quantitative measure of partition

quality. This is because hypergraph partitioning is commonly used to model de-

composition problems where the requirement is that the interconnect within the

decomposition (partition) is minimised and unneccesary interconnect is viewed

as additional cost.

Having defined a suitable partitioning objective, a set of partitioning constraints

is required. It is natural to define the partitioning constraints over the set of

vertices V that is being partitioned. Since the hypergraph is vertex-weighted,

it is possible to measure the weight of each part in the partition in terms of its

constituent vertex weights.

Definition 2.10 (Part weight). Let function fw : P(V) → Z be such that for

A ⊆ V , fw(A) defines the weight of a given subset of V . The function fw is then

used to define the weight of each part P ∈ Π.

2.2. Problem Definition 19

In almost all applications of hypergraph partitioning, the part weight function fw

is defined as the sum of the weights of the vertices within the part. Henceforth,

we also assume this definition of part weight.

It is natural that the partitioning constraint should ensure a balance between

the weights of different parts within the partition of the hypergraph. Formally,

we express the balance constraint as follows: given the average part weight Wavg

of a partition Π, the individual part weights should not exceed the average part

weight by more than a prescribed factor of ε, where 0 < ε < 1.

In practice, the precise value of ε is usually chosen to reflect the requirements

of the application domain. Note that in some applications [AHK95, Alp98,

DBH+06], strictly enforcing the partitioning constraint defined by ε is not crit-

ical; that is, a slightly “unbalanced” partition (i.e. in which the weight of some

part exceeds by a small factor the weight specified by the given value of ε) may

be preferred if it results in a significant improvement in the objective function.

However, we always aim to compute partitions that satisfy the specified parti-

tioning constraint. We expect that the algorithms presented in this thesis can be

relatively easily modified to suit different cases where strict enforcement of the

partitioning constraints is not critical.

We are now in a position to formally define the hypergraph partitioning problem.

Definition 2.11 (Hypergraph partitioning problem). Consider a hyper-

graph H(V, E). Given that functions fo and fw (as defined in Definition 2.9 and

Definition 2.10, respectively) exist, and given an integer k > 1 and a real-valued

balance criterion 0 < ε < 1, the goal is to find a partition Π = {P1, . . . , Pk}, with

corresponding part weights Wi = fw(Pi), 1 ≤ i ≤ k, such that:

Wi < (1 + ε)Wavg (2.3)

holds for all 1 ≤ i ≤ k (where Wavg =
∑k

i=1 Wi/k) and fo(Π, E) is optimised.

In this thesis, the terms “computing partitions”, “finding partitions” and “finding

solutions” are all interchangeable and refer to the process of solving the hyper-

graph partitioning problem.

2.3. Partitioning Objectives 20

We note that hypergraphs arising in partitioning problems are typically sparse

[Alp98, DBH+06]. Formally, we will say that a hypergraph H(V, E) (with n = |V |
and m = |E|) is sparse if, and only if, NH ¿ m × n. That is, a hypergraph is

sparse if, and only if, its incidence matrix is sparse.

2.3 Partitioning Objectives

This section describes the most important objective functions within hypergraph

partitioning literature. The computational complexity of hypergraph partitioning

with different objective functions is discussed in Section 2.4.

Recall that hypergraph partitioning has been most widely studied in the context

of VLSI CAD and sparse matrix decomposition for parallel computation. Within

these (and most other) application domains, the goal of the hypergraph parti-

tioning is to find the partition that minimizes the objective function (subject to

partitioning constraints). We assume this problem formulation in the remainder

of the thesis.

A k-way hypergraph partition may be computed directly or by recursively bi-

partitioning the hypergraph, until k parts have been constructed, as shown in

Figure 2.1. Recursive bisection is considered a divide-and-conquer approach.

However, it is not able to directly optimise certain objective functions which de-

pend on the knowledge of the parts spanned by a cut hyperedge. Examples of

these are the sum of external degrees objective and the k − 1 objective [Kar02].

In this thesis, parallel solution methods are primarily sought for the k-way hy-

pergraph partitioning problem with the k−1 partitioning objective. However, in

hypergraph partitioning literature a distinction is often made between objective

functions arising in bipartitioning problems (bipartitioning objectives) and objec-

tive functions arising in multi-way partitioning problems (multi-way partitioning

objectives) [Alp96, AHK95]. Consequently, in summarising the various partition-

ing objectives studied in literature, we will make a distinction between the bipar-

titioning and the k-way partitioning objectives (as was done in [Alp96, AHK95]).

2.3. Partitioning Objectives 21

Direct Partitioning Partitioning by Recursive Bisection

Figure 2.1. Approaches to computing a k-way partition.

Hypergraph (and graph) bipartitioning are also often called hypergraph (and

graph) bisection in literature, and we will use these terms interchangeably.

2.3.1 Bipartitioning Objectives

A relatively simple partitioning objective is to minimise the cardinality of the

cutset (i.e. the number of cut hyperedges). This defines the hyperedge cut or

the min-cut objective. In graph partitioning, the equivalent objective function is

called the edge-cut partitioning objective. The definition presented here sums the

weights of the hyperedges in the cutset; setting the weight of each hyperedge to

unity gives the problem formulation that minimises the cardinality of the cutset

(the cutsize).

Definition 2.12 (Hyperedge cut objective). The hyperedge cut objective

function is defined as:

fo(Π, E) =
∑

e∈E,λe>1

w(e) (2.4)

The hyperedge cut objective is the most widely studied partitioning objective in

VLSI CAD literature [Alp96]. Since the cardinality of the cutset of a partition

2.3. Partitioning Objectives 22

is called its cutsize, the value of the hyperedge cut objective for a particular

partition is often also called the partition cutsize in literature.

Different constraint formulations for min-cut bipartitioning are also addressed

in VLSI CAD literature, in addition to the partitioning constraint described in

Definition 2.11. For example, in size-constrained min-cut bipartitioning, explicit

lower and upper bounds on part weight are prescribed [AHK95].

It is possible to combine the objective function on the hyperedges with the balance

constraint on the part weights into a single objective function. In this problem

formulation, the balance constraint on the part weights (cf. Equation 2.3) is

omitted. In such an approach to partitioning, a balanced partition is implicitly

required in order to optimise the objective function. However, bounds on part

weight are not explicitly stated during the optimisation.

In [WC89], the ratio-cut objective, first proposed in [LR88], was studied in the

context of VLSI CAD. Here, the objective function is

fo(Π, E) =
1

fw(P1)fw(P2)

∑

e∈E,λe>1

w(e) (2.5)

where Π = {P1, P2}.

2.3.2 Multi-way Partitioning Objectives

We now consider partitioning objectives when k > 2 in Definition 2.11. Note

that the hyperedge cut objective can be computed for a general k ≥ 2 from

Equation 2.4. However, this may not always provide a good model of a physical

system because the hyperedge cut objective does not distinguish between hyper-

edges spanning two parts and hyperedges spanning many parts. For example, it

has been noted that in the context of VLSI CAD, nets that span multiple parts

can consume more I/O and timing resources than nets spanning only two parts

[AHK95]. Instead, objective functions that take into account the number of parts

spanned by each cut hyperedge are usually preferred.

2.3. Partitioning Objectives 23

Definition 2.13 (Min-cut k-way partitioning objective). The min-cut k-

way objective function is defined as:

fo(Π, E) =
∑

e∈E,λe>1

λew(e) (2.6)

The min-cut k-way partitioning objective is also known as the sum of external

degrees (SOED) objective [KK98b]. In a related objective, called the k − 1 ob-

jective function (or the k− 1 metric), each cut hyperedge e ∈ E is counted λe− 1

times [San89, CL98, KK98b].

Definition 2.14 (k− 1 partitioning objective). The k− 1 objective function

is defined as:

fo(Π, E) =
∑

e∈E,λe>1

(λe − 1)w(e) (2.7)

In [cA99], the k − 1 objective was shown to correctly model the exact communi-

cation volume of parallel matrix–vector multiplication. We consider this in more

detail in Section 6.3.

We note that for a bipartition, the k − 1 objective reduces to the hyperedge cut

objective (given by Equation 2.4). When the recursive bisection approach is used

to solve the k-way hypergraph partitioning problem with the k − 1 objective,

during each bisection step, the objective function becomes the hyperedge cut

objective.

Another objective related to the k − 1 and SOED objectives is the k(k − 1)/2

objective. Here, each cut hyperedge e that spans λe parts is counted λe(λe−1)/2

times [San93].

As is the case with bipartitioning objectives, it is also possible to combine the

objective function on the hyperedges with the balance constraint on the part

weights into a single objective function.

In [CSZ94], the minimum scaled cost objective was proposed:

fo(Π, E) =
1

n(k − 1)

k∑
i=1

|S(Pi)|
fw(Pi)

(2.8)

2.4. Asymptotic Notation and Computational Complexity 24

where S(Pi) is the set of all hyperedges that span the part Pi, without having

all their vertices in Pi. Alternatively, in [YCL92], the minimum cluster ratio

objective was proposed:

fo(Π, E) =
|C(Π, E)|∑k−1

i=1

∑k
j=i+1 fw(Pi)fw(Pj)

(2.9)

where C(Π, E) is the set of all hyperedges in E that are cut by the partition Π.

2.4 Asymptotic Notation and Computational Com-

plexity

2.4.1 Asymptotic Notation

Asymptotic notation is used to express bounds on functions and sequences of real

numbers in the limit as the function or sequence parameter becomes very large;

the bound is expressed as a function of the parameter. We consider a real-valued

function f(x):

The O notation: a function f(x) = O(g(x)) for some function g(x) if, and only

if, for a given constant c > 0 there exists an x0 ≥ 0 such that f(x) ≤ cg(x) for

all x ≥ x0.

The Ω notation: a function f(x) = Ω(g(x)) for some function g(x) if, and only

if, for a given constant c > 0 there exists an x0 ≥ 0 such that cg(x) ≤ f(x) for

all x ≥ x0.

The Θ notation: a function f(x) = Θ(g(x)) for some function g(x) if, and only

if, f(x) = O(g(x)) and f(x) = Ω(g(x)).

2.4.2 Computational Complexity

We briefly consider the computational complexity of algorithms from a theoretical

point of view and relate this to the hypergraph partitioning problem.

2.4. Asymptotic Notation and Computational Complexity 25

Computational complexity theory is concerned with characterizing the compu-

tational requirements (in terms of memory and time) for solving problems, ex-

pressed in terms of input size. The Turing model for sequential computation is

used. It specifies a finite set of program states K and a finite set of symbols

Σ (the alphabet). An algorithm begins in some initial state s ∈ K and evolves

according to a transition function 4 : K × Σ → K × Σ. The algorithm termi-

nates if it reaches one of the prescribed halting states in K. This describes a

deterministic Turing machine [Pap94]; in a nondeterministic Turing machine, 4
is instead a relation. Consequently, in a nondeterministic Turing machine, for

each state-symbol combination, there may be more than one (or no) appropriate

successor in K × Σ [Pap94].

Of particular interest are decision problems; i.e. problems that admit only a yes

or no as output of the computation. An example of a decision problem is “given

an integer, is it a prime number or not?”. Importantly, an arbitrary problem can

always be reduced to a decision problem. The hypergraph partitioning problem

can be reformulated as a decision problem by asking the question “does there exist

a partition satisfying Equation 2.3 such that the value of the objective function

is less than or equal to x?”. The optimal partition can be found by recomputing

the decision problem, choosing values of x according to a binary search.

The time complexity of a problem is the number of computational steps that

are required to solve an instance of the problem on a Turing machine using the

most efficient algorithm, expressed as a function of the size of the input. The

number of computational steps is quantified using asymptotic notation, which is

described in Section 2.4.1. Space complexity is defined in a similar manner in

terms of the memory (space) requirement [Pap94].

The set of problems whose time (or space) complexities are similar (for example,

polynomial in the size of input) are said to belong to the same complexity class

[Pap94]. The most important of these are the classes P and NP. A problem is

said to be in the class P if it can be solved in time polynomial in the size of

the input on a deterministic Turing machine. A problem is in NP if it can be

2.5. Background on Parallel Algorithms 26

solved in time polynomial in the size of the input on a non-deterministic Turing

machine. Clearly P ⊆ NP, i.e. a problem that is in P is also in NP.

A problem A can be shown to belong to a particular complexity class if another

problem B, which is already known to be in the complexity class, can be reduced

to A. The reduction is done by an algorithm that transforms each instance of

B to an equivalent instance of A. Of course, the complexity of the reduction

algorithm must be at most that which defines the complexity class. A problem A

is said to be complete with respect to a complexity class C if all other problems

within C can be reduced to A; note that the required reductions may be transitive

applications of simpler reduction algorithms (for example, it is enough to provide

a reduction from an existing C-complete problem). Completeness is central to

complexity theory because it categorizes the relative difficulty and enables a

comparison of seemingly unrelated problems.

A long-standing conjecture in theoretical computer science is that P 6= NP holds

true [GJ79, Pap94]. Evidence for this is the difficulty in finding polynomial-

time algorithms (polynomial in size of input) for problems in NP. In fact, if the

conjecture holds, there can be no polynomial-time algorithms for problems in

NP\P.

Optimal graph bipartitioning with the edge-cut objective is an NP-complete

problem, by reduction from number partitioning [GJ79]. Similarly, optimal hy-

pergraph bipartitioning and multi-way partitioning (with objective functions de-

scribed in Section 2.3) are NP-complete problems [GJ79], which suggests that

polynomial-time algorithms for these are also unlikely to exist.

2.5 Background on Parallel Algorithms

2.5.1 Introduction

Unlike a serial algorithm (that necessarily runs on a single processor), a parallel

algorithm is able to execute multiple instructions at the same time because it

2.5. Background on Parallel Algorithms 27

uses a computing environment with multiple processing units. The most general

control structure for a parallel computing environment is multiple instruction

stream, multiple data stream (MIMD).

The physical computing environment that a parallel algorithm runs on is called

the parallel architecture. It consists of p processors and a physical processor

interconnection network. In order to execute parallel programs, a parallel ar-

chitecture needs to incorporate a communication model. This specifies how the

parallel architecture resolves memory access.

A popular theoretical model of parallel computation is the Parallel Random Ac-

cess Machine (PRAM) [Vis93, GGKK03]. The PRAM consists of p processors

and a global memory of unbounded size that is uniformly accessible by all p pro-

cessors. All the processors share the same address space and common clock, but

are allowed to execute different instructions in each cycle. Types of PRAM are

classed by how they handle simultaneous access to a particular memory location.

In practice, the communication model most similar to the PRAM is the shared

memory parallel architecture. It supports a common data space that is accessible

to each of the p processors. Memory access time may be uniform (same for each

processor) or non-uniform [GGKK03]. An alternative communication model is

the distributed memory or message-passing model, where each of the p processors

has its own exclusive memory space. The exchange of messages between proces-

sors is used to transfer data, instructions and to synchronize actions among the

processors.

The way in which the processors are connected to each other, and in the case

of the shared memory model, to the memory itself, is called the interconnection

topology. For a large number of processors, it is not practical to directly con-

nect each processor to every other (requiring O(p2) connections), so a number

of topologies have been proposed that trade off cost and scalability with perfor-

mance [GGKK03].

Currently, the most prevalent parallel architecture is the distributed memory

(message-passing) architecture, due to the relatively low cost and easy availability

2.5. Background on Parallel Algorithms 28

of processing units. Examples of this architecture include clustered workstations

and non-shared-address-space multicomputers [GGKK03].

When attempting a parallel formulation of a particular serial algorithm, the par-

allel algorithm designer decomposes the serial algorithm into sub-tasks and iden-

tifies opportunities for concurrency in the serial algorithm (sub-tasks that may

be carried out in parallel). A decomposition into a large number of small tasks

is called fine-grained. On the other hand, when the decomposition consists of a

small number of larger tasks, it is called coarse-grained.

2.5.2 Performance Metrics for Parallel Algorithms

The performance of a serial algorithm is usually evaluated in terms of its execu-

tion time, or runtime, expressed as a function of the size of the input. The runtime

of a parallel algorithm is, in addition, a function of the parallel architecture (the

number of processing units used, the topology and the message-transfer perfor-

mance of the interconnect, and potentially, the relative computational speed of

the processors, if this differs between processors). It is therefore more pertinent to

talk about performance of the parallel system; this necessarily takes into account

both the parallel algorithm and the parallel architecture [GGKK03].

Let Ts denote the runtime of a serial algorithm, defined as the time elapsed

between the beginning and the end of its execution on a single processing unit.

Let Tp denote the runtime of a parallel algorithm on p processors, defined as

the time elapsed between the beginning and the moment that the last of the

processors finishes execution [GGKK03].

When comparisons are made between serial and parallel algorithms for the solu-

tion of a given problem, Ts refers to the runtime of the fastest serial algorithm.

We seek parallelism because it may be possible to solve the given problem sig-

nificantly faster if many processors are used. The natural metric to evaluate a

parallel algorithm then becomes the speedup it achieves over the fastest serial

algorithm, as a function of the number of processors used, p.

2.5. Background on Parallel Algorithms 29

Definition 2.15 (Speedup). Speedup, here denoted by Sp, is defined as the ratio

of the time taken to solve a problem on a single processor to the time required to

solve the problem on a given parallel computer with p processors:

Sp =
Ts

Tp

(2.10)

Note that p represents a theoretical limit to the speedup that can be achieved

using p processors (i.e. Sp ≤ p). This is because achieving a speedup value that

exceeds p when using p processors would contradict the fact that Ts is the runtime

of the fastest serial algorithm (a faster serial algorithm may be constructed by

combining the p sets of instructions executed across the p processors into a single

set of instructions to be performed on one processor).

However, speedup values greater than p (using p processors) are sometimes ob-

served in practice. So-called superlinear speedup is usually explained by hard-

ware characteristics that disadvantage the serial algorithm, such as hierarchical

memory that may enable the input data to fit inside the cache of each of the p

processors but not the single processor that the serial algorithm runs on. It may

also be caused by algorithmic differences between the serial and parallel algo-

rithms; for example, the differences in node search order when comparing serial

and parallel depth-first search in a graph [GGKK03].

Definition 2.16 (Cost). The cost of a parallel algorithm on a parallel system

with p processors, here denoted by Cp, is defined as the product of the parallel

runtime and the number of processors used. Intuitively, this is the amount of

processor-time “tied-up” in solving the problem in parallel.

Cp = pTp (2.11)

Definition 2.17 (Efficiency). Efficiency, here denoted by E, is the fraction of

the parallel runtime that the parallel system is doing “useful” work. It is given

2.5. Background on Parallel Algorithms 30

by:

E =
Ts

Cp

(2.12)

=
Ts

pTp

(2.13)

=
Sp

p
(2.14)

Unless the cost of a parallel algorithm is equal to the best serial runtime, as in

an idealised scenario involving a trivially parallel problem, the parallel algorithm

will consume processor-time that could have been spent doing other work. This

defines the parallel overhead.

Definition 2.18 (Parallel Overhead). The parallel overhead, To, is given by:

To = pTp − Ts (2.15)

= Cp − Ts (2.16)

We expect that To > 0 will be observed in practice. This is because the processors

will also be involved in communication and synchronisation with other processors

while executing the parallel algorithm, none of which are done by the serial

algorithm. During the parallel computation, the processors may also be doing

additional computation that is not done by the serial algorithm. These sources

of overhead can be summarised as follows [GGKK03]:

• Interprocessor communication – required when communicating data be-

tween processors and also required when processors synchronize.

• Idling – usually occurs at a synchronization point when one or more pro-

cessors are idle, waiting for one or more processors to complete a step of

the algorithm. This may also occur because part of the algorithm can only

be done sequentially (i.e. only a single processor may work on that part).

• Excess computation – the fastest serial algorithm for a given problem may

be difficult to parallelise, but a slower serial algorithm may offer better

concurrency and so the parallel algorithm is based on it instead.

2.5. Background on Parallel Algorithms 31

2.5.3 Scalability of Parallel Algorithms

We would like to design parallel algorithms whose runtimes decrease as the num-

ber of processors increases. It is possible to formalise this intuition.

Let W denote the problem size, expressed as the number of instructions required

by the fastest serial algorithm. We (trivially) have that Ts = Θ(W).

Definition 2.19 (Cost-Optimality). A parallel system can be said to be cost-

optimal if the cost of solving the problem using the proposed parallel algorithm

and parallel architecture has the same asymptotic growth when expressed as the

function of the input size as the fastest known serial algorithm (running on a

single processing element).

Thus, a parallel system is cost-optimal if

pTp = Θ(W) (2.17)

Note that it is not possible to maintain the increase in speedup by continuously

increasing p, even for a cost-optimal parallel system. To see this, consider a serial

component (defined as the set of instructions that must be computed sequentially)

of size Ws within the problem of size W (Ws may perversely even be a single

instruction). Then W/Ws is the upper bound on the speedup that can be achieved

for that problem on any parallel system. This result is known as Amdahl’s Law

[Amd67].

Instead, the aim of parallel algorithm design is to maximise the efficiency of the

parallel system. From Equation 2.14 and Equation 2.16, we have:

E =
Ts

pTp

(2.18)

=
Ts

To + Ts

(2.19)

=
1

1 + To

Ts

(2.20)

The aim of “maximising” efficiency can be interpreted as maintaining the term

To/Ts as low as possible. However, for a fixed problem size W (and thus a fixed

2.5. Background on Parallel Algorithms 32

value of Ts), as p increases, the efficiency of the parallel system is expected to

decrease (because Sp is bounded by Amdahl’s law, To →∞ as p →∞).

On the other hand, it may be possible to maintain a constant level of efficiency

with increasing p by modifying the problem size W (and thus Ts). Parallel

systems for which this is possible are called scalable parallel systems.

Consider the total parallel overhead To as a function of the problem size W and

the number of processors p. From Equation 2.20, we then have:

E =
1

1 + To(W,p)
W

(2.21)

Rearranging gives the following expression for W , in terms of efficiency and over-

head:

W =
E

1− E
To(W, p) (2.22)

Treating the term E/(1 − E) as a constant K (with E representing the desired

efficiency), Equation 2.22 yields

W = KTo(W, p) (2.23)

The relationship in Equation 2.23, rearranged to give W in terms of p, is used to

determine the required modification in the problem size W that is sufficient for

maintaining the efficiency at a constant level for a scalable parallel system, as p

is increased. The function W = W (p), describing the required modification to

the problem size, is called the isoefficiency function.

In fact, Ω(p) is an asymptotic lower bound on the isoefficiency function [GGKK03].

To see this, consider an isoefficiency function of lower order. Then, because the

number of processing units increases at rate Θ(p), the number of processing units

will eventually exceed W (which increases at rate Ω(p) by the isoefficiency func-

tion) and the remaining processors would be idle.

Naturally, it is desirable for scalable parallel algorithms to have isoefficiency

functions of the lowest order possible. Poorly-scalable parallel systems have high-

order isoefficiency functions, meaning that a very large increase in problem size is

required to maintain constant efficiency as the number of processors is increased.

Chapter 3

Related Work

3.1 Introduction

This chapter presents an overview of existing approaches to the graph and hy-

pergraph partitioning problems. As noted in Section 2.4, graph and hypergraph

partitioning are NP-complete problems; as a result, research effort has focused

on developing polynomial-time heuristic algorithms that yield good suboptimal

solutions.

Where graph partitioning is discussed, a graph G(V, E), as opposed to the hy-

pergraph H(V, E), is the subject of the partitioning problem. Although it is a

particular instance of the hypergraph partitioning problem, the graph partition-

ing problem has been the subject of considerable research and successful heuristics

that are specific to graph partitioning have been developed.

Section 3.2 discusses empirical evaluation and benchmarking of heuristic parti-

tioning algorithms in literature. Section 3.3 presents an overview of hypergraph

partitioning approaches that first approximate the hypergraph by a graph, and

then apply graph partitioning algorithms to compute a partition.

We then proceed to discuss move-based and multilevel approaches to the hyper-

graph and graph partitioning problems. The classification of algorithms used

in [AHK95] is followed. It was noted in Section 2.3 that the k-way partition

33

3.2. Experimental Evaluation of Partitioning Algorithms in Literature 34

may be computed directly or by recursive bisection. For both approaches, we

make a distinction between flat algorithms (those that operate directly on the

given hypergraph) and multilevel algorithms (those that construct a set of ap-

proximations to the given hypergraph). Section 3.4 presents an overview of flat

move-based partitioning algorithms and Section 3.5 presents algorithms based on

the multilevel paradigm.

Finally, we move on to describe existing parallel approaches to the graph parti-

tioning problem in Section 3.6.

3.2 Experimental Evaluation of Partitioning Al-

gorithms in Literature

In general, heuristic partitioning algorithms yield suboptimal partitions and usu-

ally no sufficiently tight bounds on the quality of partition with respect to the

optimum are available. This means that an analytical comparison of heuris-

tic partitioning algorithms is difficult. In order to compare the performance of

heuristic algorithms, researchers have instead benchmarked their performance on

suites of partitioning problem instances taken from applications. Because the

algorithms tend to be randomized (rather than deterministic), it is common to

report the average of objective function values attained and the average runtime

over a number of runs of the algorithm.

Within the VLSI CAD research community, the performance of heuristic par-

titioning algorithms is usually reported on suites of real circuits. A number of

benchmark circuits were released by the Microelectronics Centre of North Car-

olina (MCNC) and sponsored by ACM SIGDA [Brg93]. In literature, MCNC and

ACM SIGDA are used interchangeably to denote this set of benchmark circuits.

However, as the complexity of new circuits grows, benchmarks have a tendency

to become obsolete over time. In addition, [Alp96] notes that the performance

of partitioning algorithms on older benchmark circuits has tended to converge.

3.2. Experimental Evaluation of Partitioning Algorithms in Literature 35

As a result, circuit benchmarks have been periodically updated in VLSI CAD

literature, with the most recent partitioning benchmark being the ISPD98 suite

[Alp98]. The largest circuit within the ISPD98 benchmark suite has 184 752 cells,

189 581 nets and 860 036 pins (so that the equivalent hypergraph representation

has 184 752 vertices, 189 581 hyperedges and 860 036 non-zeros in its incidence

matrix).

Because most industrial circuits are proprietary, they are not included within

the standard circuit benchmarks and are thus not usually made available to re-

searchers. To overcome this drawback, attempts have been made to synthetically

generate circuits whose structural properties are similar to those of industrial

circuits. In [VCS00], a survey of different synthetic generation methods is pre-

sented. Nevertheless, it remains hard to prove that such synthetically generated

circuits are truly representative of actual physical circuits [VCS00, Alp98].

The scientific computing research community maintains an extensive set of pub-

licly available sparse matrices from a variety of application domains, which are

used for empirical evaluation of sparse matrix algorithms. Examples of sources

include the University of Florida Sparse Matrix Collection [Dav05] and the Ma-

trix Market repository [BPR+97].

Sparse matrices from these sources can be used to derive hypergraph test cases

(for example, by considering the sparse matrix as the incidence matrix of a hy-

pergraph). In general, the sparse matrix instances yield larger hypergraphs than

the VLSI benchmark circuits – the largest matrix currently in the University of

Florida Sparse Matrix Collection yields a hypergraph with 5.1 million vertices,

5.1 million hyperedges and 99.2 million non-zeros in its incidence matrix.

In [CKM99a], Caldwell et al. describe a detailed methodology for experimen-

tal evaluation and reporting of heuristic algorithms for hypergraph partitioning.

They are motivated by the inability to reproduce some of the experimental results

from previously published work and the hitherto underspecification of heuristic

algorithms and experiments in partitioning literature. The authors propose a

standardised approach to the reporting of algorithms and experimental results,

3.3. Graph Partitioning-Based Approaches To Hypergraph Partitioning 36

observing that:

1. There is a need for a robust experimental testbed when comparing heuris-

tic algorithms. Best-available implementations are not necessarily com-

petent and where possible, comparisons with proposed heuristic improve-

ments should be made using fast and robust implementations of existing

algorithms.

2. Implementation details should be reported, as underspecified features and

ambiguities in the algorithm may allow a number of distinct implemen-

tations, resulting in a significant variance in runtime and solution quality

across the possible implementations.

3. Experimental design should be relevant to the proposed heuristic and leading-

edge alternatives. There should be a wide range of problem test instances

that accurately reflect the application domain.

In this thesis, we aim to adopt the above suggestions within our design and re-

porting of experiments to evaluate the proposed parallel hypergraph partitioning

algorithms.

3.3 Graph Partitioning-Based Approaches To Hy-

pergraph Partitioning

The graph partitioning problem is discussed here as an alternative approach

to computing a partition of a hypergraph. It first involves the transformation

of the hypergraph into a graph and then the application of an existing graph

partitioning algorithm to yield a partition of the hypergraph. This approach has

been popular in VLSI CAD literature (applied directly to circuit netlists) and is

discussed in detail in [Alp96].

3.3. Graph Partitioning-Based Approaches To Hypergraph Partitioning 37

3.3.1 Hypergraph-to-Graph Transformations

When approximating a hypergraph by a graph, the set of vertices in the graph is

just the set of vertices in the hypergraph. Each hyperedge is typically modelled

by a vertex clique. That is, for each hyperedge e ∈ E , an edge is inserted into the

graph for every pair of vertices in e, so that the clique connects all the vertices

in e.

In [IWW93], the authors show that it is not possible, in general, to represent

a hypergraph by a graph clique model whose cut properties correctly model

the cut properties of the hypergraph (such as the number of hyperedges cut

by a partition). Nevertheless, a number of schemes have been proposed for the

weighting of the edges in the approximation graph; a detailed discussion of these is

presented in [Alp96]. The standard scheme assigns a weight of 1
|e|−1

to each clique

edge, which ensures that the total vertex degrees remain unchanged [Len90].

As an alternative to a clique-based model, in [HK00], Hendrickson and Kolda

propose a bipartitite graph model and modify a number of standard graph par-

titioning heuristics to run on bipartite graphs. They actually use the bipartite

graph to model the non-zero structure within a sparse matrix, but since there

is an equivalence between the non-zero structure in sparse matrices and hyper-

graphs, their approach can equally be applied to hypergraphs.

Having computed the hypergraph-to-graph transformation, we are interested in

partitioning a graph G(V, E) so that the edge-cut objective is minimised. Recall

that the weights on the edges in E have been chosen so that the edge-cut provides

an approximation to the hypergraph partitioning objective.

3.3.2 Related Graph Partitioning Algorithms

We note that move-based and multilevel approaches to graph partitioning are

directly applicable to hypergraph partitioning and are thus reviewed in the con-

text of hypergraph partitioning in Sections 3.4 and 3.5. The main alternatives to

3.3. Graph Partitioning-Based Approaches To Hypergraph Partitioning 38

these in the context of graph partitioning are the spectral partitioning approaches,

which are based on the spectra of the graph’s Laplacian matrix.

Spectral partitioning is related to the more general geometric partitioning ap-

proach. Geometric partitioning is so called because given a d-dimensional space

(e.g. Rd, for some d > 0), it tries to partition a set of n geometric objects (such

as points), that are embedded in the given space, into k clusters such that some

relation (e.g. the Euclidean distance between points in a cluster) is minimised

[AHK95].

In the context of graph partitioning, geometric partitioning is usually applied as

follows. First, a suitable transfomation of the vertex set V into the n points of

a d-dimensional space is sought, such that minimising the intra-cluster relation

by the geometric partitioning algorithm corresponds to minimising edge-cut in a

partition of the graph. The geometric partitioning algorithm then partitions the

set of n points and this partition is used to construct a partition of the graph by

allocating vertices to parts according to the cluster that the corresponding point

was allocated to.

Before providing an overview of the spectral approach, we note that the surveys

[AHK95, DBH+05] provide a more thorough discussion of geometric techniques

applied in graph partitioning.

Definition 3.1 (Degree Matrix). The degree matrix of a graph G(V, E) is the

(diagonal) n× n matrix D = (dij) with entries

dij =

deg(vi) if i = j

0 otherwise
(3.1)

Definition 3.2 (Laplacian Matrix). The Laplacian matrix Q of the graph

G(V, E) is defined as Q = D−A, where A is the adjacency matrix of G(V, E).

It is easily shown that Q is positive semidefinite [PSL90]. It thus has n non-

negative eigenvalues (not necessarily distinct) and at least one zero eigenvalue.

The multiplicity of the zero eigenvalue of Q is given by the number of connected

3.3. Graph Partitioning-Based Approaches To Hypergraph Partitioning 39

components in the graph and if G is connected, the second smallest eigenvalue is

positive [PSL90].

In order to motivate the spectral approach to graph partitioning, let A be the

adjacency matrix of a graph G(V, E) and consider the following one-dimensional

placement problem: given n points such that points i and j are connected if

aij = 1 and not connected otherwise (aij = 0), find locations for the n points on

a real line such that the sum of the squared distances between connected points

is minimised. Stated formally, we would like to construct a vector x, such that

d(x) =
1

2

n∑
i=1

n∑
j=1

(xi − xj)
2aij (3.2)

is minimised, subject to xTx = 1. The latter constraint is imposed to avoid the

trivial solution xi = 0 for all i.

If the graph defined by A is connected, then Hall showed that the second eigen-

vector x2 of the Laplacian matrix Q minimises Equation 3.2 and the “cost” of the

optimal solution to the one-dimensional placement problem is given by the second

smallest eigenvalue [Hal70]. The spectral properties of x2 have been extensively

studied by Fiedler [Fie73, Fie75a, Fie75b] and consequently this eigenvector is

also known as the Fiedler vector in literature.

For a connected graph G(V, E), the vertices can be ordered along the real line by

assigning vi ∈ V to a position on the real line given by the corresponding entry

in the Fiedler vector x2. Let xi denote the position on the real line allocated to

vi (the ith entry of x2). Hall’s result implies that if vi and vj are connected by an

edge in E , it is likely that the distance |xi−xj| is small. Thus, strongly connected

vertices in the graph G are likely to also be close to each other in the ordering.

In the language of geometric partitioning, the spectral approach effectively con-

structs an embedding of the vertices of the graph onto a one-dimensional space

(the real line)1.

1Hall’s result generalises to an embedding of the n vertices of the graph G(V, E) onto a

d-dimensional space using d eigenvectors of Q [Hal70]. Multiple eigenvector approaches are

discussed in more detail in [AHK95].

3.3. Graph Partitioning-Based Approaches To Hypergraph Partitioning 40

It is possible to induce a bipartition Π = {P0, P1} of the graph G(V, E) by choos-

ing a real-value ρ, so that P0 = {vi ∈ V : xi < ρ} and P1 = {vi ∈ V : xi ≥ ρ}.
With appropriate choice of ρ, Π can potentially be a good suboptimal partition

of G(V, E) (with respect to the minimum edge-cut) because the vertices that are

close to each other in the ordering (and thus strongly connected in the graph) are

likely to be assigned to the same part. This intuition forms the basis of spectral

partitioning. In [AHK95], Alpert et al. note that spectral bipartitioning may,

however, find solutions arbitrarily worse than the optimum.

In [PSL90], Pothen et al. present an algorithm for computing a vertex separa-

tor of a graph, that first uses spectral bipartitioning to compute an edge sep-

arator. Since computing the edge separator is equivalent to our stated graph

partitioning problem, we only report details of this part of the algorithm. The

authors compute the Fiedler vector x2 of the graph’s Laplacian matrix using the

Lanczos algorithm and determine the median value of its entries xm. A bipar-

tition Π = {P0, P1} is constructed, such that P0 = {vi ∈ V : xi ≤ xm} and

P1 = {vi ∈ V : xi > xm}.

Simon [Sim91] applies the spectral bipartitioning algorithm for computing the

edge separator from [PSL90] within a recursive bisection framework and shows

that recursive spectral bisection outperforms the recursive coordinate bisection

algorithm. However, in [BS94], it is noted that recursive spectral bisection can

be computationally expensive. When the graph has non-unit weights on the

edges, in order to apply spectral bisection, the non-zero entries in the adjacency

matrix A representing edges are equal to the corresponding edge-weights [HL95].

Hendrickson and Leland [HL95] study spectral graph partitioning using multi-

ple eigenvectors of Q. They derive a non-standard objective function from a

communication-cost model of a parallel computation. A survey of spectral tech-

niques applied within VLSI CAD is presented in [AHK95].

3.4. Move-Based Algorithms 41

3.4 Move-Based Algorithms

A partitioning approach is defined to be move-based if it constructs a new candi-

date solution based on two considerations:

1. A neighbourhood structure that is defined over the set of feasible solutions

2. The previous history of the optimisation

The neighbourhood structure defines a topology over the feasible solution space

and incorporates the means of moving from the current feasible solution to an-

other (neighbouring) feasible solution by “perturbing” the current feasible solu-

tion. This perturbation may involve the movement of a single vertex or a number

of vertices between parts. For example, given a neighbourhood structure defined

by a single vertex move (necessarily across a partition boundary), the neighbours

of a feasible solution are those feasible solutions that can be reached by making a

single vertex move from one part of the partition to another. The solution space

is explored by repeatedly moving from the current solution to a neighbouring

solution, until some prescribed termination condition is satisfied.

The history of the optimisation may be used to guide the exploration of the

solution space, or the approach can be memoryless. For example, greedy methods

generate the next solution based only on the best possible move from the current

solution.

An advantage of move-based approaches is that the optimisation framework is

independent of the objective function being optimised. A number of the move-

based algorithms described in this section have been successfully applied to other

combinatorial optimisation problems.

3.4.1 Iterative Improvement Algorithms

An iterative improvement algorithm begins with a feasible solution and itera-

tively moves to the best improving neighbourhood feasible solution. The algo-

rithm terminates when it reaches a solution for which all neighbours are worse

3.4. Move-Based Algorithms 42

feasible solutions. Thus, iterative improvement algorithms converge to local min-

ima with respect to the initial feasible solution and a neighbourhood structure of

the algorithm.

Because the space of all feasible solutions to the hypergraph partitioning problem

may be very large, the initial feasible solution is constructed using methods with

a randomized component. In practice, multiple starts (or runs) of the algorithm

are usually computed, and the partition that best optimises the objective function

(out of all the runs of the algorithm) is chosen. This has the effect of randomly

sampling the space of local minima with respect to the heuristic.

Iterative improvement algorithms typically use extended neighbourhood struc-

tures, since the neighbourhood structure defined by individual vertex moves is

seen to be too restrictive.

A typical example of an extended neighbourhood structure is a pass. At the

beginning of a pass, all vertices are free to move. Vertices are then moved in a

greedy manner, so that at each step, the feasible vertex move that best improves

the objective function is selected. The possible moves within a pass are defined

by a simple neighbourhood structure, with the restriction that each vertex may

be moved at most once during a pass. Note that a vertex may also not be moved

at all during the pass, for example if all of its possible moves do not result in

feasible partitions. An iterative improvement algorithm will proceed in passes

from a given initial feasible solution. It will terminate when the most recent pass

does not yield an improvement in the objective function.

The Kernighan-Lin (KL) Algorithm

In [KL70], Kernighan and Lin introduced an iterative improvement algorithm for

the graph bipartitioning problem with the edge-cut objective (cf. Definition 2.12)

that uses a pair-swap neighbourhood structure to generate vertex moves during

a pass. A pair-swap neighbourhood structure implies that any pair of vertices

u, v ∈ V , such that Π(u) 6= Π(v), may be involved in a swap across a partition

boundary, provided that the resulting partition is also feasible.

3.4. Move-Based Algorithms 43

Each pass of the KL algorithm proceeds as follows. The vertices of the graph are

swapped in iterative fashion, such that a swap leading to the feasible partition

with the largest gain in the objective function is performed at each step of the

pass. For each swap made, the gain in the objective function is recorded and the

vertices moved are locked with respect to their new parts (so that they may not

be moved again during the pass). The pass continues until no further swaps that

lead to a feasible partition can be made. At this point, the sequence of swaps is

traversed and the largest partial sum of the swaps’ respective gains is noted. This

corresponds to the best partition reached during the pass. If the largest partial

sum of the gains is positive, the subsequent swaps made during the pass are taken

back and this partition is the starting partition for the next pass. Otherwise,

the pass has not yielded a gain in the objective function and the KL algorithm

terminates. Note that the pass allows the algorithm to climb out of local minima

with respect to the pair-swap neighbourhood structure. This is because during a

pass, a pair of vertices that result in the highest gain are swapped, regardless of

whether this gain is positive or not. A high-level description of the KL algorithm

is given in Algorithm 1.

A näıve implementation of the KL algorithm needs O(n3) time per pass, since

computing the highest gain swap involves O(n2) comparisons. This can be re-

duced to O(n2 log n) per pass by maintaining a sorted list of gains. The number

of passes is bounded by m for an unweighted graph, although in practice the

number of passes before convergence has been observed to be a small constant.

The graph bisection algorithm was extended to hypergraph bisection in [SK72].

In [Dut93], the complexity per pass of the KL algorithm for graph partitioning

was improved to O(max{m log n, dmaxm}). Alpert notes in [Alp96] that a similar

extension appears possible for the KL algorithm, when applied to hypergraph

bisection.

3.4. Move-Based Algorithms 44

Algorithm 1 High-level description of the Kernighan-Lin algorithm

Require: an initial feasible bipartition Π of G(V, E)

1: repeat

2: i := 0

3: Si := 0

4: unlock all vertices v ∈ V

5: while there exist feasible vertex swaps involving unlocked vertices do

6: make best feasible vertex swap

7: lock vertices moved

8: record gain gi of vertex swap made

9: Si+1 := Si + gi

10: i := i + 1

11: end while

12: compute best partial sum Sx of gains

13: if Sx < 0 then

14: undo all vertex swaps

15: else

16: undo all vertex swaps from xth to ith iteration

17: end if

18: until Sx < 0

The Fidduccia-Mattheyses (FM) Algorithm

In [FM82], Fidducia and Mattheyses presented an iterative improvement algo-

rithm that reduced the run time for a pass to O(NH) for hypergraph biparti-

tioning. Unlike the KL algorithm, the FM algorithm uses a single vertex move

neighbourhood structure to generate vertex moves during a pass, but otherwise

proceeds in the same manner as KL.

As is the case with the KL algorithm, the number of passes to convergence has

been observed to be a small constant. The reason for the relatively low complexity

of the FM algorithm is the gain bucket data structure, shown in Figure 3.1. For

computing a hypergraph bisection, there are two such structures; one for each

direction of possible moves. This data structure enables constant-time selection

of the vertex whose move results in the highest gain and it also enables fast gain

updates after each move.

3.4. Move-Based Algorithms 45

...

MAX GAIN

−gain limit

+gain limit

VERTEX

10 ... n−1

vertex id. vertex id.

Figure 3.1. The gain bucket data structure used in the Fidduccia Mattheyses algorithm.

The gain buckets can be efficiently maintained because all possible vertex gains

are integer-valued and bounded. For unit-weighted hyperedges, possible vertex

gain is bounded above by dmax, and below by −dmax. The sparsity of H(V, E)

ensures that there is a relatively tight bound on the range of gain values, even

when hyperedges are not unit-weighted.

A pass of the FM algorithm for hypergraph bipartitioning proceeds as follows.

At the beginning of the pass, the gains of the (at most) n possible vertex moves

are computed in O(NH) time and the gain bucket data structures are initialised

by inserting the buckets for each vertex into a slot corresponding to the gain of

the resulting vertex move. The vertices with the highest gain are stored in the

slot with gain value MAXGAIN. This MAXGAIN pointer is used to extract the vertex

move that results in the highest gain (given that there are unmoved vertices

in both parts, moves in at least one direction will be feasible). The algorithm

for computing the vertex gains is shown in Algorithm 2 (here P̄ denotes the

complement part to P in the bipartition Π). Once the move leading to MAXGAIN

is made, the sparsity of H(V, E) ensures that all subsequent gain updates for the

adjacent vertices can be done in O(1) time, with gain nodes adjusted using the

pointers from the VERTEX array. This vertex gain update computation is shown

in Algorithm 3. The MAXGAIN pointer is updated accordingly.

3.4. Move-Based Algorithms 46

Algorithm 2 Computing vertex move gain in FM algorithm

Require: a feasible partition Π of H(V, E)

Require: each vertex v ∈ V is free to move (unlocked)

1: for all v ∈ V do

2: gain(v) := 0

3: P := Π(v)

4: for all e . v do

5: if P (e) = 1 then

6: gain(v) := gain(v) + w(e)

7: end if

8: if P̄ (e) = 0 then

9: gain(v) := gain(v)− w(e)

10: end if

11: end for

12: end for

13: compute(MAXGAIN)

Enhancements to the KL and FM Algorithms

The seminal version of the FM algorithm leaves a number of implementation

details underspecified. Given two or more vertices whose moves result in the same

gain in the objective function, ties are broken in favour of the move resulting in the

most balanced partition; failing this, no further tie-breaking strategy is specified.

In [Kri84], Krishnamurthy noted that, when breaking ties during a pass of the FM

algorithm, one of the choices may often lead to a significantly better solution than

the others. This is, however, not captured by the gain in the objective function

as a result of the moves. The importance of a good tie-breaking strategy was also

highlighted in [HHK97]. The authors note that 15 to 30 vertices will on average

share the MAXGAIN value at any time during a pass of the FM algorithm on the

Primary1 MCNC Benchmark circuit with 833 vertices.

In an attempt to rectify the deficiencies associated with underspecified tie-breaking,

a look-ahead strategy was introduced by Krishnamurthy in [Kri84]. The strategy

relies on computing different levels (or classes) of gain associated with each ver-

tex move. The first level of gain of moving vertex v ∈ V from part P to part P̄

3.4. Move-Based Algorithms 47

Algorithm 3 Updating vertex gain in the Fidduccia-Mattheyses algorithm

Require: v ∈ V and isfree(v)

Require: P = Π(v)

1: Π(v) := P̄

2: lock(v)

3: for all e . v do

4: if P̄ (e) = 0 then

5: for all v′ ∈ e do

6: if isfree(v ′) /* Π(v′) = P */ then

7: gain(v′) := gain(v′) + w(e)

8: end if

9: end for

10: else if P̄ (e) = 1 then

11: for all v′ ∈ e do

12: if isfree(v ′) and Π(v′) = P̄ then

13: gain(v′) := gain(v′)− w(e)

14: end if

15: end for

16: end if

17: P (e) := P (e)− 1

18: P̄ (e) := P̄ (e) + 1

19: if P (e) = 0 then

20: for all v′ ∈ e do

21: if isfree(v ′) /* Π(v′) = P̄ */ then

22: gain(v′) := gain(v′)− w(e)

23: end if

24: end for

25: else if P (e) = 1 then

26: for all v′ ∈ e do

27: if Π(v) = P and isfree(v ′) then

28: gain(v′) := gain(v′) + w(e)

29: end if

30: end for

31: end if

32: end for

33: recompute(MAXGAIN)

3.4. Move-Based Algorithms 48

corresponds to the actual gain in the objective function, if that vertex move is

made.

The ith (i > 1) level gain is defined in terms of the binding number of the hy-

peredges incident on v. The binding number βP (e) with respect to part P , of a

hyperedge e ∈ E , is defined as the number of unlocked vertices in P ∩ e, if e does

not contain any locked vertices in P and ∞ otherwise. It may be interpreted as

the number of vertices that need to be moved from part P in order to move all

the vertices of e out of P . As this cannot be done if e has a locked vertex in P ,

βP (e) in that case has value ∞.

For the hyperedge cut objective, the ith level gain of v, γi(v), is formally defined

in Equation 3.3.

γi(v) = |{e.v : βP (e) = i, βP̄ (e) > 0}|−|{e.v : βP (e) > 0, βP̄ (e) = i−1}| (3.3)

Note that the gain calculation in Equation 3.3 uses the cardinality of the cutset

for the value of the hyperedge cut objective (cf. Definition 2.12). This can easily

be modified to incorporate weights on hyperedges.

Instead of maintaining a single integer gain quantity for each vertex move, as in

the original FM algorithm, Krishnamurthy’s algorithm maintains a gain vector,

whose length is some constant l, determined at the beginning of the algorithm.

When computing the MAXGAIN pointer in the gain bucket structures, the gain

vectors are compared lexicographically. Nevertheless, ties may still occur in the

1st to lth level gains, in which case they may be broken on balance considerations.

Failing that, the implementation of the gain bucket structure will determine

the vertex to be moved (since one of the buckets in the linked-list pointed to

by the MAXGAIN pointer will need to be taken out from the linked-list). The

Krishnamurthy heuristic increases the per-pass complexity of the FM algorithm

to O(lNH). Note that l is bounded above by emax − 1, since Equation 3.3 would

not be valid for larger values of l.

As noted above, the way in which a bucket from the MAXGAIN slot is chosen within

the gain bucket data structure implicitly determines how ties are broken. The

3.4. Move-Based Algorithms 49

exact implementation of this operation is underspecified in most descriptions of

FM-type algorithms. In [Alp96], Alpert infers that a Last-In-First-Out (LIFO)

scheme was used in the original FM implementation ([FM82]).

In [HHK97], the authors also investigated the use of First-In-First-Out (FIFO)

and random bucket selection schemes. In experiments on benchmark circuits

using both the original FM and Krishnamurthy’s algorithms, the authors found

that the LIFO selection scheme consistently outperformed the FIFO and random

gain bucket selection schemes. Furthermore, they proposed an alternative for-

mula for the computation of higher-level gains. For each cut hyperedge that has

at least one locked vertex (in a part P ∈ Π, say) and does not have locked vertices

in P̄ , the contribution of the hyperedge to the gain computation is increased for

vertex moves from P to P̄ . This is done to encourage the movement of vertices

of a cut hyperedge into a single part.

In [San89, San93], Sanchis extends Krishnamurthy’s algorithm to directly com-

pute a k-way partition (for any k > 1). Here, the algorithm maintains k(k − 1)

gain bucket structures (one for each possible direction of vertex move). We

henceforth refer to this algorithm as the k-way FM algorithm. Prior to this, the

FM bipartitioning algorithm was used within a recursive bisection framework

to compute k-way partitions. Differences between direct and recursive bisection

approaches were described in Section 2.3.

Sanchis presents the extended k-way FM algorithm for the hyperedge cut, k − 1

and k(k − 1)/2 objective functions. The respective time complexities per pass,

using l levels of gain, are O(NH lk(log dmax +dmaxl)), O(NH(emax + lk)(log dmax +

dmaxl)) and O(m(emax + lk + k2)(log dmax + dmaxl)).

We now consider a number of other iterative improvement algorithms in literature

that are based on the framework of the KL/FM algorithms.

In [DA97], Dasdan and Aykanat present two algorithms which relax the restric-

tion that a vertex is moved at most once during a pass. Like Sanchis’ algorithm,

their algorithms compute the k-way partition directly.

The first algorithm, Partitioning by Locked Moves (PLM), proceeds in passes and

3.4. Move-Based Algorithms 50

each vertex is allowed to move to any of the k − 1 neighbouring parts during a

pass, subject to the partition balance constraint. Each pass consists of a number

of phases. A phase attempts to find a better part for each vertex by making

tentative vertex moves; the actual vertex destination is not finalised until after

the last phase. Because it can be moved in more than one phase, a vertex may

be moved more than once during a pass.

The second algorithm, Partitioning by Free Moves (PFM), does not employ a

locking mechanism. Instead, the algorithm uses the vertices’ mobility to decide

whether a particular vertex should be moved. The mobility may be interpreted

as a measure of the probability that the vertex ought to be moved. The authors

conjecture that this probability should be proportional to the gain and inversely

proportional to the number of moves that a vertex has made.

The computational time-complexity analysis yields a runtime of O(NNHk(k+G))

per pass for the PLM algorithm, where N is the (predetermined) number of

moves in a pass and G the maximum possible gain of a vertex move. For the

PFM algorithm, the runtime per pass is shown to be O(NHk + k2S + N(k2 +

kdmaxemaxS)), where S the size of the bucket array. In their experiments, the

authors observed an improvement in solution quality over their implementation

of Sanchis’ k-way FM algorithm, while the improvement in runtime over Sanchis’

algorithm increased with partition size.

Dutt and Deng proposed two types of iterative improvement algorithms for hy-

pergraph bipartitioning. They are based on vertex move probabilities and cluster

detection, respectively.

In [DD96a, DD99, DD00], the iterative improvement algorithms based on vertex

move probabilities are described. The vertex move probability corresponds to the

probability that a particular vertex will be actually moved during a pass. Note

that in a pass of KL/FM-type algorithms, vertex moves that were made after

the best partial sum of the gains are taken back. These vertices are not actually

moved during the pass.

The algorithm PROP bases the computation of vertex move gain on the vertex

3.4. Move-Based Algorithms 51

move probability. In [DD99], it is shown that the sample space of events given

by the vertex moves recorded at the end of the pass is actually a probability

space. The so-called probabilistic gain, derived from approximating the vertex

move probability, is then used to guide the optimisation algorithm together with

the deterministic (actual) gain.

Dutt and Deng describe an added enhancement to the probability-based algo-

rithm, called SHRINK PROP, in [DD99, DD00]. During gain updates after a

vertex move, this algorithm increases the contribution to the objective function

of those hyperedges that have already had vertices moved during the pass. This

is done to encourage the movement of vertices belonging to a cut hyperedge into

a single part. The time-complexity of PROP and SHRINK PROP is O(NH log n)

(where n is the number of vertices in the hypergraph), when an AVL tree data

structure is used, or O(NH), when a gain bucket data structure is used.

The iterative improvement algorithms based on cluster detection are motivated

by a well-known weakness of FM-style algorithms. Namely, they only find solu-

tions corresponding to local minima and can only evolve from an initial partition

through relatively short-sighted moves. Dutt and Deng note in [DD96b, DD02]

that hypergraphs from the domain of VLSI CAD are typically an aggregation of

a number of highly connected clusters of vertices. They also show that when a

random starting partition is constructed, there is a high probability that many

of the strongly connected clusters will have vertices in both parts of the starting

partition. Because the FM algorithm tends to make short-sighted moves (that

may initially result in objective function gains), it is not able to move the ver-

tices of the strongly connected clusters into a single part and achieve the global

minimum.

The proposed algorithms use a modified vertex gain-update calculation. The

gain of a vertex move can be expressed as the sum of the initial gain (gain of the

move computed at the beginning of the pass) and updated gain (the cumulative

total of gain updates after each vertex move).

In the algorithm CLIP (CLuster-oriented Iterative-improvement Partitioner), the

3.4. Move-Based Algorithms 52

initial gain of each vertex move is only used to provide an ordering of the vertices

for the first vertex move; subsequent moves are then made based on the updated

gain only. The algorithm is designed to move strongly-connected clusters of

vertices into one part because the updated gain values for vertices not adjacent

to those already moved is zero, while the updated gain values for vertices adjacent

to those already moved may be positive.

The algorithm CDIP (Cluster-Detecting Iterative-improvement Partitioner) fur-

ther incorporates a cluster-detection mechanism. After the vertex move process

reaches a positive maximum improvement point and there is no further improve-

ment in the objective function during the following δ vertex moves, a cluster is

said to have been “pulled” into a part at the maximum improvement point. The

algorithm then takes back the δ vertex moves and unlocks the vertices involved.

All of the unlocked vertices are then ordered by their total gains (as at the be-

ginning of the pass) and the updated gains are used to select subsequent vertex

moves.

The CLIP algorithm has a runtime of O(NH) per pass, while the runtime of CDIP

is O(max{cn,NH}) per pass, where c is the number of clusters detected in a pass

of the algorithm.

Experimental evidence presented in [DD02] suggests that CDIP outperforms

CLIP in terms of partition quality, while having slightly longer runtimes. Both

algorithms result in a significant improvement in partition quality over the orig-

inal FM algorithm. Best results were obtained when CLIP was overlaid onto the

PROP algorithm. In experiments comparing the algorithms with the state-of-the-

art multilevel tool hMeTiS [KK98a], algorithms based on CLIP/CDIP produced

partitions of similar quality to those produced by hMeTiS, while exhibiting faster

runtimes.

In [EC99], Eem and Chong propose the use of multiple gain bucket data structures

for a single direction of vertex move. This is motivated by the CLIP algorithm

(described above) that distinguishes between updated gain and actual gain values

[DD96b, DD02]. Multiple gain bucket data structures are required because the

3.4. Move-Based Algorithms 53

updated gain values are always given a higher priority than the actual gain values

when computing vertex moves. Actual gain values are used when updated gain

values cannot determine the best move or when tie-breaking is required.

Dutt and Theny [DT97] consider relaxing the balance constraint in the hyper-

graph partitioning problem at intermediate stages of the iterative improvement

algorithm in order to improve its hill-climbing capability. Two methods are pro-

posed. In the first, for every vertex move that results in constraint violation, the

benefit and cost of such a move is estimated (using look-ahead formulations of the

PROP algorithm [DD96a, DD00]). In the second method, a “benefit factor” and

an “acceptance threshold” are computed for a constraint-violating vertex move.

A move that violates the partition constraint is accepted if the benefit factor is

greater than the acceptance threshold. The benefit factor and the acceptance

threshold depend on the stage of the partitioning process, the location of the

vertex and those of its neighbours.

The algorithm introduced in [CLL+97] also attempts to move highly-connected

clusters of vertices into a single part. The approach is motivated by considering

the different states of a particular hyperedge during a pass. During a pass, a

given hyperedge is free, when it contains only free vertices. It may be loose,

when it has locked vertices in exactly one part. Finally, it may also be locked,

when it has locked vertices in two (or more, in a case of a multi-way partition)

parts. The anchor part of a loose hyperedge is defined as the part that contains

its locked vertices and the remaining part(s) that have one or more of its free

cells are called tail part(s).

The LR (Loose hyperedge Removal) algorithm increases the gains associated

with moving the vertices from the tail part of a loose hyperedge to its anchor

part, subject to a maximum gain threshold. If a hyperedge remains cut during

an entire run of the iterative improvement algorithm, the authors refer to it as

stable. They note from experiments performed in [SNK95] that more than 80%

of the hyperedges in the final cutset are stable, trapping the FM algorithm into

a local minimum and limiting the solution quality.

3.4. Move-Based Algorithms 54

However, stable hyperedges may be removed following a run of the LR algorithm.

A stable hyperedge is randomly picked and all of its vertices are moved into the

part with the least weight. Vertices moved during this process cannot be moved

to other parts during the handling of another stable hyperedge. This process is

repeated until a pre-determined percentage of stable hyperedges are processed or

no more moves are possible. Then, another run of the FM algorithm is performed

using the outcome of the stable hyperedge removal as its initial partition. The

integration of the two approaches is termed LSR (Loose and Stable hyperedge

Removal).

Cong and Lim note in [CL98] that Sanchis’ extension of the FM algorithm to

multi-way partitioning is outperformed by the recursively-formulated FM bisec-

tion algorithm in terms of both the solution quality and run time on the MCNC

and ISPD98 benchmarks. They note two main drawbacks to Sanchis’ algorithm.

Firstly, due to many candidate moves at any one time (as there are k(k − 1)

possible directions of vertex move), the algorithm is prone to making the wrong

choice. Secondly, the algorithm requires O(k2n) memory to store the gain buck-

ets, which in the case of large k may be prohibitive. The authors’ experiments

empirically confirmed the informally accepted notion that Sanchis’ algorithm was

not suitable for partitioning large hypergraphs from the domain of VLSI CAD.

Cong and Lim instead propose a different formulation for the k-way extension

of the FM algorithm. Their algorithm applies the FM bipartitioning algorithm

in pair-wise fashion across the k parts. Note that there are O(k2) possible part

pairs. During the algorithm the pairs may either be chosen at random, across

all possible pair-wise configurations, be based on the cutset of hyperedges across

pairs of parts or, finally, be based on the previously achieved gain across pairs of

parts. In their experiments, the authors note a small improvement in terms of

solution quality over the recursively-formulated FM on the MCNC and ISPD98

benchmarks, with comparable run times.

[CKM99b] considers the implication of fixed vertices in the context of hypergraph

partitioning. Fixed vertices effectively provide additional constraints to the par-

3.4. Move-Based Algorithms 55

titioning problem. A vertex is said to be fixed to a part because it must be

allocated to that part in the final partition. This partitioning problem formu-

lation arises in VLSI CAD applications. For example, during the circuit design

process, cells in the sub-circuit currently being partitioned may be fixed because

they are connected to chip I/O.

The authors note that in the presence of fixed vertices, the hypergraph parti-

tioning problem becomes easier because the feasible solution space is reduced

when compared to the problem formulation where no vertices are fixed prior to

partitioning. As expected, the partitioning runtimes are observed to decrease

substantially when a large percentage of vertices in the hypergraph are fixed.

However, in some of the experiments where the fixing of vertices to parts is taken

from a previously computed partition (a “good” partition), the solution quality

did not improve over the unconstrained case (where no vertices were fixed). The

authors conjecture that it is possible for a partitioning problem to be “overcon-

strained”, so that the reduction of the solution space due to the presence of fixed

vertices does not compensate for the loss in ability to explore more of the actual

solution space.

The FM bipartitioning algorithm was more recently considered in [CKM00a],

mainly in the context of multilevel partitioning (cf. Section 3.5). However, the

following proposed modifications also apply to the flat FM bipartitioning algo-

rithm:

1. The use of an “illegal” initial solution that puts all moveable vertices into

a single part.

2. The relaxation of the acceptance criterion for legal moves – motivated by

[DT97].

3. Randomisation of the gain computation at the beginning of the pass to

compensate for deterministic inital solution generation. This is done by

computing gains of legal moves in a random order.

3.4. Move-Based Algorithms 56

4. The use of a LIFO gain bucket structure implementation [HHK97] and

giving preference at the head of the gain buckets to vertices adjacent to

fixed vertices (when fixed vertices are present).

The above proposed enhancements are combined into an FM implementation

called VRW which was empirically compared to the simple FM [FM82] and CLIP

algorithms [DD96b]. The authors recommend it for the hypergraph partitioning

problem without fixed vertices in applications where only a small number of runs

of the partitioning algorithm can be carried out; for example, due to restrictions

on the runtime. This is because the VRW approach lacks the randomisation

inherent in multiple runs of the original FM, since it generates the same initial

solution for each run.

3.4.2 Simulated Annealing

Simulated Annealing was introduced in [KJV83, Cer85] as a general approach to

optimisation and is based on the Metropolis procedure from statistical mechan-

ics. Kirkpatrick et al. compare computing solutions in optimisation problems by

iterative improvement with the microscopic rearrangement processes modelled by

statistical mechanics [KJV83].

The Metropolis procedure is applied to move-based optimisation as follows. Given

a starting solution and a prescribed neighbourhood structure, a random neigh-

bouring feasible solution is selected (analogous to a collection of atoms in equi-

librium at a given temperature being given a small random displacement). The

resulting change in the objective function δfo (or in the physical analogy, the

energy δE) is computed. If δfo ≤ 0, then the resulting partition is taken to be

the starting point of the next iteration. Otherwise (δfo > 0), the acceptance of

the resulting partition is treated probabilistically.

The probability of the resulting partition being accepted is given by exp(−δfo/T),

where T is the so-called temperature parameter (in the physical process, T is the

temperature of the system and the probability of the displacement occurring is

3.4. Move-Based Algorithms 57

given by exp(−δfo/kBT), where kB is the Boltzmann constant). The temperature

is taken to be a control parameter in the annealing process and a deterministic

annealing schedule by which T varies is specified. Typically, at each temperature,

the above iterative procedure is allowed to proceed long enough for the system

to reach a steady state. Note that, as T approaches zero, the annealing process

tends towards being entirely deterministic, allowing only greedy moves.

In [Haj88], it was shown that the simulated annealing algorithm will converge

in probability to the globally optimum solution if, and only if, the annealing

schedule allows T to tend to zero sufficiently slowly. More specifically, given an

annealing schedule {Ti : i ≥ 0} such that

T1 ≥ T2 ≥ . . . ≥ Ti > 0 (3.4)

lim
i→∞

Ti = 0 (3.5)

the necessary and sufficient condition for convergence in probability to some

global optimum solution is

∞∑
i=1

exp(−δ∗/Ti) = ∞ (3.6)

where δ∗ is a constant, defined in terms of local minima of the optimisation

problem.

Although it has been successfully applied across many other optimisation prob-

lems, it is noted in [AHK95] that Simulated Annealing is not yet viewed as

“practical” for hypergraph partitioning in the domain of VLSI CAD, due to its

long runtimes. Simulated Annealing is, however, widely used in other optimisa-

tion problems within the VLSI CAD domain, such as cell placement [CKR+97,

AYM+04].

3.4.3 Genetic Algorithms

The motivation behind genetic algorithms is Darwin’s theory of natural selection

[Hol75]. A genetic algorithm (GA) starts with an initial population of feasible

3.4. Move-Based Algorithms 58

solutions that evolves over generations, so that solutions in the current genera-

tion are replaced with a set of offspring feasible solutions in the next generation.

A GA usually determines the candidate offspring using a crossover operator on

solutions in the current generation, while a mutation operator allows small ran-

dom pertubations to the current solution. The crossover operator is analogous

to mating, whereby two solutions are selected from the current population and

their descriptors are partially mixed to produce offspring. Finally, a GA requires

a replacement operator that determines the offspring that will replace members

of the current population.

In [BM96], Bui and Moon describe a genetic algorithm for the graph biparti-

tioning problem. They achieve results comparable with the KL algorithm on

different types of randomly generated graphs (rather than benchmark graphs

or graphs taken directly from applications), so a comparison with alternative

approaches is difficult. Alpert et al. propose a hybrid approach in [AHK96],

whereby they use an existing state-of-the-art graph partitioner MeTiS [KK99] as

a solution generator. The generated solutions are then combined within a genetic

algorithm framework. Note that this approach involves a hypergraph-to-graph

transformation (described in Section 3.3), and so the partitioner cannot directly

optimise a desired objective function on the hypergraph. In experiments on the

ACM/SIGDA (MCNC) benchmark suite, results comparable with the FM algo-

rithm are reported.

In [Are00, AY04, SO99], genetic algorithms are applied directly to the hyper-

graph partitioning problem. The experimental study of the algorithm proposed

in [SO99] lacks comparisons with state-of-the-art approaches and uses an older

partitioning benchmark suite. The experimental evidence in [Are00, AY04] sug-

gests that the genetic algorithm approach is slower than iterative improvement

approaches. Kim et al. propose a combination of a genetic algorithm with an

FM-based heuristic for hypergraph bipartitioning in [KKM04]. The algorithm

is experimentally compared to a simple FM implementation and the hMeTiS

multilevel tool [KK98a] on the (older) ACM/SIGDA benchmark circuits. The

3.4. Move-Based Algorithms 59

authors observe that their FM-based heuristic without the genetic algorithm is

an improvement over the simple FM algorithm. In combination with the ge-

netic algorithm, the resulting partitioning algorithm computes partitions that

are competitive with those produced by hMeTiS. The reported runtimes are also

very competitive with hMeTiS. We note, however, that the test hypergraphs used

are considerably smaller than those in the most recent circuit benchmark [Alp98].

3.4.4 Tabu Search

Tabu search is another well-known heuristic approach that has been applied to a

number of optimisation problems. It was introduced by Glover in [Glo89].

The Tabu heuristic combines the recent history of the optimisation with iterative

improvement to seek feasible solutions. A list of the r most recent moves is kept

(with r a constant that is determined at the start of the optimisation), where a

move is defined in terms of the neighbourhood operator. The list is called the

Tabu list (from “taboo”) and indicates the moves that cannot be made (these

moves have been prohibited). An aspiration criterion can be used to temporarily

release a move from its Tabu status [AV03]. Stopping criteria for the algorithm

are also required and this may be a (fixed) maximum number of moves after

which the search routine will terminate [AV00]. The Tabu heuristic requires

careful implementation as cycling behaviour (where the algorithm repeats the

same set of vertex moves over and over) must be avoided [Saa04].

In [BB99], Battiti and Bertossi apply Tabu search to the graph partitioning

problem. They draw an analogy with the KL and FM algorithms; once the KL

and FM algorithms move a vertex during a pass, they fix it so that it does not

move again during that pass. A similar restriction is imposed by the Tabu list.

Battiti and Bertossi observe that the value of r, when fixed at the beginning of

the algorithm, strongly influences its performance. Moreover, the best choice of

r also depends on the graph being partitioned so that a value of r performing

well on one graph does not necessarily lead to good performance on another.

3.4. Move-Based Algorithms 60

Instead of keeping the value of r fixed, they propose reactive and randomised

prohibition. In randomised prohibition, the value of r is varied according to a

randomised function. Reactive prohibition implies a self-tuning of r based on

the history of the optimisation. A previously successful value of r is chosen with

higher probability and retained for a greater number of iterations.

The solution quality produced by the proposed algorithms is promising when

compared to other state-of-the-art graph partitioning tools such as MeTiS [KK99]

and Chaco [HL94]. However, the current implementation suffers from very long

runtimes.

More recently, in [AV03], Areibi and Vanelli consider Tabu search in the context

of hypergraph partitioning for VLSI CAD. Their Tabu implementation produces

partitions of better quality than Sanchis’ k-way FM algorithm, Simulated Anneal-

ing and a Genetic algorithm and also exhibits faster runtimes than the alternative

approaches tested. However, given lack of experimental comparison with current

state-of-the-art, it is difficult to draw meaningful conclusions about the relative

quality of the proposed algorithm.

In [Saa04], Tabu search was combined within a multilevel framework for hy-

pergraph partitioning. The reported experimental results, like those for graph

partitioning in [BB99], suggest that the approach yields very competitive parti-

tions. However, as was the case for the implementation in [BB99], the observed

runtimes appear prohibitively long.

We note that unlike the KL/FM-based iterative improvement algorithms, which

have matured and possess relatively simple and clearly-defined implementations,

the Tabu heuristic presents the algorithm designer with a number of difficult and

non-obvious implementation choices. These include the value of Tabu parameter

r, aspiration and termination criteria. To that end, more research is necessary to

establish whether Tabu-based algorithms can be competitive with current state-

of-the-art hypergraph partitioning algorithms.

3.5. Multilevel Algorithms 61

3.4.5 Other Move-Based Partitioning Approaches

In [RM03], Ramani and Markov develop a bipartitioning heuristic based on a

combination of two different flat partitioning algorithms. These are a stochastic

local search heuristic for the Boolean Satisfiability problem, WalkSAT [SKC94],

and the FM algorithm, respectively.

WalkSAT is used to develop a partitioning algorithm called WalkPart. It per-

forms a sequence of feasible vertex moves, until a prescribed number of moves

have been made. Moves are chosen according to criteria motivated by WalkSAT;

with probability x, a vertex is moved at random, and with probability 1 − x, a

move is chosen so that it minimises a cost function. In the authors’ implementa-

tion, x has a fixed value of 0.1.

The hybrid approach alternates runs of the FM algorithm, via the FMPart imple-

mentation [CKM00b], with WalkPart. The authors observe better results with

the hybrid algorithm than with either of the two approaches and conjecture that

the algorithm would perform well within a multilevel context.

3.5 Multilevel Algorithms

3.5.1 Introduction

In literature, the multilevel approach is also known as the hierarchical or clustering-

based approach [AHK95].

In [AHK95], Alpert et al. observe that most local minima attained by flat heuris-

tic algorithms are of only “average” quality. That is, when a number of runs of

a partitioning algorithm are performed, objective function values for most of the

local minima attained will be clustered around the value of the sample mean.

Kauffman and Levin [KL87] call this phenomenon the “Central Limit Catastro-

phe”.

In general, the number of local minima (with respect to a heuristic) increases

3.5. Multilevel Algorithms 62

as the size of the partitioning problem increases. Thus, the probability of a

flat heuristic algorithm converging to a local minimum that is very close to the

global minimum decreases, as the size of the partitioning problem increases. Con-

sequently, there is a need to ensure that flat partitioning algorithms scale better

with problem size, in terms of the partition quality produced.

In order to attain local minima values that are relatively close to the global

minimum, the number of runs of the flat partitioning algorithm may be increased.

However, the runtimes of such an approach are likely to become prohibitive for

increasingly larger partitioning problem sizes.

In the multilevel approach, however, the original hypergraph is approximated by

successively smaller hypergraphs. The space of feasible solutions, and hence the

number of local minima corresponding to the partitioning heuristic used, should

be significantly smaller for the approximate hypergraphs than for the original

hypergraph.

Provided that a good approximation algorithm exists, a partition that is close

to the optimum partition of the approximate hypergraph should correspond to a

partition that is close to the optimum partition of the original hypergraph. The

motivation for the multilevel approach is that it should be significantly easier to

compute a good partition of the approximate hypergraph than to compute the

corresponding partition of the original hypergraph.

An approximation to the original hypergraph can be constructed by clustering the

vertices of the original hypergraph. In literature, the process of clustering vertices

is also called vertex matching or coarsening. The resulting clusters form the

vertices of the approximate (coarse) hypergraph. This method of approximation

also maintains the cut properties of the hyperedges. This means that when a

partition is projected from a coarse hypergraph onto the original hypergraph,

hyperedges in the original hypergraph that are cut by the projected partition

correspond to those that were cut in the coarse hypergraph. Thus, it should

be possible to preserve the value of the partitioning objective function when

projecting partitions from the coarse hypergraphs.

3.5. Multilevel Algorithms 63

The multilevel approach naturally falls into three phases. The coarsening phase

computes approximation(s) of the original hypergraph. Typically, many levels of

approximation are used (hence multilevel). Next, the initial partitioning phase

applies a flat heuristic partitioning algorithm to the coarsest approximation. Fi-

nally, the uncoarsening phase projects the partition of the coarsest hypergraph

approximation through successive levels of approximation back onto the original

hypergraph.

The idea of approximating the problem in order to make it “easier” for heuristic

partitioning algorithms was first investigated in the context of graph partitioning.

In [BCLS87], Bui et al. conjecture that constructing an approximation to the

graph by contracting edges may improve the quality of partitions produced by

the KL graph partitioning algorithm. The approximation scheme, using a single

approximation graph, was formally investigated in [BHJL89] and applied to KL

and Simulated Annealing bipartitioning algorithms.

Multilevel partitioning was (independently) investigated by researchers from the

scientific computing and VLSI CAD communities. Multiple levels of approxima-

tion for graph partitioning were proposed in [BS94, HL93]. Both use a spectral

partitioning algorithm to partition the coarsest graph. In [BS94], Barnard and

Simon project the eigenvectors between the graphs at consecutive levels of ap-

proximation during the uncoarsening phase. It appears more natural to project

partitions and this is what Hendrickson and Leland do in [HL93]. Moreover,

they also note that further heuristic refinement to the projected partition is pos-

sible because the uncoarsened graph has more degrees of freedom than the coarse

graph. Cong and Smith model the circuit hypergraph by a graph in [CS93].

They construct a single approximation G′ to the original graph G, but perform

refinement at multiple levels by unclustering only selected vertices of the approx-

imation G′ at each level. This continues until all the vertices in G′ have been

unclustered and the refinement is then performed on G. Hauck and Borriello con-

sider a number of algorithms for constructing hypergraph approximations during

the coarsening phase in [HB97].

3.5. Multilevel Algorithms 64

3.5.2 The Coarsening Phase

In the first approximation-based algorithms, the coarsening phase involved the

computation of a single approximation to the original hypergraph. In general, a

sequence of successive approximations is preferred.

Formally, the original hypergraph H(V, E) is approximated by a sequence of suc-

cessively smaller hypergraphs Hi(Vi, Ei), 1 ≤ i ≤ c. Whenever i > j, it is the case

that |Vi| < |Vj| and the number of vertices in the coarsest approximation Hc has

some fixed upper bound that depends on the number of parts in the partition

sought, k. In [Kar02], the requirements of a coarsening algorithm are formalised

as follows:

1. Any partition of a coarse hypergraph should be projected easily to a parti-

tion of the successive finer hypergraph.

2. The value of the objective function for a projected partition should be less

than or equal to the value of the objective function for the partition of the

successive coarser hypergraph.

For hypergraph partitioning objective functions that are of practical interest

(such as the k − 1 objective), the above requirements are satisfied by group-

ing the vertices of a given hypergraph into clusters and allowing the resulting

clusters to be the vertices of the coarse hypergraph. The clustering of the ver-

tices of the hypergraph Hi, to form vertices of the coarse hypergraph Hi+1, is

denoted by the map gi : Vi → Vi+1, where

|Vi|
|Vi+1| = r, r > 1 (3.7)

and r is the prescribed reduction ratio between two successive levels of approxi-

mation.

The sum of the vertex weights in Vi is preserved by setting the weight of a coarse

vertex formed by a cluster C ⊂ Vi to be the sum of the weights of the vertices

in C. The map gi is used to construct Ei+1 from Ei by applying it to every

3.5. Multilevel Algorithms 65

vertex in each hyperedge e ∈ Ei. Single vertex hyperedges in Ei+1 are discarded

because they will span at most one part (and thus cannot contribute to the

objective function). Duplicate hyperedges are replaced by a single instance of

that hyperedge, and the weight of this hyperedge is set to the sum of the weights

of the duplicate hyperedges.

In [Kar02], Karypis outlines some desirable characteristics that a coarsening al-

gorithm should possess:

1. A near-optimal partition of the coarsest hypergraph Hc should project to

a near-optimal partition of H.

2. The successive coarser hypergraphs should have significantly fewer large

hyperedges than the original hypergraph.

3. The sum of the hyperedge weights in the successive coarser hypergraphs

should decrease as quickly as possible.

Reducing the number of large hyperedges improves the performance of iterative

improvement algorithms (such as FM and KL) because it is difficult for such

algorithms to “pull” vertex clusters connected by large hyperedges into a single

part when considering only the vertex move gain.

Coarsening Approaches

Coarsening algorithms attempt to cluster strongly connected vertices together.

In a graph, relative connectivity between any two connected vertices is captured

by the weight of the edge that connects them. In a hypergraph, it is necessary

to consider the vertex connectivity graph. A connectivity graph Gi(Vi, E ′i) of

a hypergraph Hi(Vi, Ei) is such that an edge e ∈ E ′i exists between vertices

v, v′ ∈ Vi if, and only if, there exists a hyperedge h ∈ Ei such that v ∈ h and

v′ ∈ h. The edge weights in Gi(Vi, E ′i) need to be chosen so that they reflect the

relative connectivity of the vertices they connect. A function that quantifies this

connectivity is called a vertex connectivity metric.

3.5. Multilevel Algorithms 66

Unlike the graph-to-hypergraph transformations mentioned in Section 3.3, it is

not necessary that the weights of the edges in Gi(Vi, E ′i) accurately model the

cut properties of the objective function. We note that most coarsening algorithm

implementations proceed in a greedy manner; the set of vertices is traversed and

for each unmatched vertex v ∈ Vi, a neighbouring vertex v′ ∈ Vi that maximises

some prescribed vertex connectivity metric is selected for matching with v. The

graph Gi(Vi, E ′i) is implicitly traversed, rather than explicitly constructed.

The early algorithms for coarsening graphs [BHJL89, HL93] use a purely random

edge matching scheme. Unmatched vertices are only allowed to match with other

unmatched vertices, resulting in vertex clusters of size two. In [BS94], Simon and

Barnard coarsen the graph by first computing a maximal independent set of

vertices V ′ ⊆ Vi and then constructing the coarse vertices by matching vertices

in the maximal independent set with their neighbours2.

In [Kar02], Karypis calls the random edge matching scheme Edge Coarsening

(EC), when it is applied to hypergraphs. A weighting of the edges in the connec-

tivity graph Gi(Vi, E ′i) is not computed. The vertices of Hi(Vi, Ei) are visited in

a random order. For each vertex v ∈ Vi, all unmatched vertices that belong to

hyperedges incident on v are considered and one is selected at random (with a

uniform probability) to match with v. The ratio |Vi|/|Vi+1| is controlled by ter-

minating the algorithm early and copying the remaining unmatched vertices into

Vi+1. Note that the EC coarsening algorithm can reduce the number of vertices

in successive hypergraphs by a factor of at most two.

One may incorporate the length of the hyperedges, the weighting on the vertices

and the weighting on the hyperedges of the hypergraph into the vertex connectiv-

ity metric. Roy and Sechen propose in [RS93] that each hyperedge e ∈ Ei should

contribute 1/(|e| − 1) to the weight of each edge in the connectivity graph Gi.

This is the heavy-edge variation of the edge coarsening algorithm in [Kar02].

2An independent set of vertices of a graph G(V, E) is a subset V ′ ⊆ V , such that for any

two vertices u, v ∈ V ′, there is no edge in E that connects u and v. A maximal independent

set of vertices is an independent set V ′ ⊆ V such that for all v ∈ V \ V ′, the set V ′ ∪ {v} is no

longer an independent set.

3.5. Multilevel Algorithms 67

Alpert et al. propose the following more sophisticated vertex connectivity metric

in [AHK97] for their Match coarsening algorithm:

conn(vi, vj) =
1

w(vi)w(vj)

∑

{e∈E:e.vi,e.vj}

1

|e| (3.8)

The connectivity value between any two vertices is inversely proportional to the

product of their weights in order to discourage formation of large clusters in

successive coarser hypergraphs.

Many authors have noted that it may be beneficial to allow unmatched vertices

to match with vertices that have been already matched, if this is suggested by the

vertex connectivity metric [KK98b, HB97]. Hauck and Borriello propose a vertex

connectivity metric that uses hyperedge bandwidth in [HB97]. They define the

bandwidth b(e), of a hyperedge e ∈ E , to be 1/(|e| − 1). Their metric is shown

in Equation 3.9 below:

conn(vi, vj) =
1

w(vi)w(vj)

∑

{e∈E:e.vi,e.vj}

b(e)

(deg(vi)− b(e))(deg(vj)− b(e))
(3.9)

Karypis and Kumar propose the First Choice (FC) coarsening algorithm [KK98b].

In the FC algorithm, each hyperedge contributes 1/(|e| − 1) to an edge in the

vertex connectivity graph Gi. The vertex set Vi is traversed in random order.

For each vertex v ∈ Vi, all vertices (both matched and unmatched) adjacent to

v are considered. The vertex connected via the edge (in the vertex connectivity

graph) with the largest weight is matched with v, subject to a maximum cluster

weight threshold. Ties are broken in favour of unmatched vertices.

In [CKM00a], an enhancement to the heavy-edge coarsening algorithm was pro-

posed. The algorithm, called PinEC, computes the following vertex connectivity

metric:

conn(vi, vj) =
1

w(vi) + w(vj)

∑

{e∈E:e.vi,e.vj}

1

b(e)
(3.10)

where the bandwidth b(e) is two for hyperedges of size two and one for larger

hyperedges (i.e. different from the bandwidth definition in Equation 3.9).

Çatalyürek and Aykanat propose the Heavy Connectivity Clustering (HCC) algo-

rithm in [cA99]. Here the connectivity measure between a vertex v and a cluster

3.5. Multilevel Algorithms 68

of vertices C (possibly consisting of a single vertex) is given by:

conn(v, C) =
Ev+C

Wv+C

(3.11)

where Ev+C is the cardinality of the set of hyperedges that contain the vertex

v and at least one vertex from C, and Wv+C is the total weight of the cluster

consisting of v and the vertices from C.

A number of algorithms try to identify more intuitive cluster properties through

global considerations. As this requires traversal of the entire vertex connectiv-

ity graph Gi, such algorithms have larger runtime complexities than the greedy

schemes described above.

Hagen and Kahng [HK92] suggest cycles in random walks of the connectivity

graph as a clustering measure. They begin by asking the question: “how hard is

it to separate two vertices x and y in a graph?”. If there are more distinct paths

from x to y, then x and y likely belong to the same natural cluster. On the other

hand, if there are fewer distinct paths from x to y, x and y do not belong to the

same natural cluster.

The proposed coarsening algorithm computes a random walk that covers the

entire graph and extracts cycles from it. The cycles are then used to compute a

connectivity value between x and y called sameness. This considers how often

y occurs in cycles originating at x and vice versa. This random walk-based

coarsening algorithm is prohibited by the O(n3) runtime (where n = |Vi|).

Cong and Lim [CL00] use the edge separability between two vertices connected

by an edge in the vertex connectivity graph as a clustering measure. Recall from

Section 2.2.2 that an edge separator of a graph G(V, E) is a subset of edges E ⊆ E
that are cut by a bipartition of G. Edge separability of vertices x and y connected

by the edge e = (x, y) is the cardinality of the smallest edge separator (i.e. the

edge-cut of the minimal bipartition), such that e is cut by the bipartition. If x

and y have a high edge separability, then it is likely that x and y belong to the

same cluster (they are hard to separate). If, on the other hand, x and y have low

edge separability, then they probably do not belong to the same natural cluster.

3.5. Multilevel Algorithms 69

When constructing Gi(Vi, E ′i), Cong and Lim let each hyperedge e ∈ Ei contribute

1/(|e| − 1) to the edge weights in E ′i . They use the algorithm proposed in [NI92]

to compute a tight lower bound on edge separability of two vertices. A set

of contractable edges Z(Gi) (with edge-separabilities greater than a specified

threshold) is then computed. The contractable edges in Z(Gi) are first sorted

then contracted in decreasing order of rank, subject to a maximum allowed cluster

weight. The rank of an edge e = (x, y) is given by Equation 3.12 below:

rank(e) =
q(e)

min{deg(x), deg(y)} (3.12)

where q(e) is the computed lower-bound on edge separability. The rank values

are chosen in such a way that they give higher priority to edges with larger edge

separability values and edges whose contraction results in a smaller increase of de-

gree. The overall complexity of the edge separability-based coarsening algorithm

is O(n log n) (where n = |Vi|).

Absorption has also been proposed for identifying clusters in a hypergraph [SS93].

The following definition from [CL00] (in terms of the vertex connectivity graph)

is equivalent to the definition given in [SS93] for absorption in hypergraphs.

Each hyperedge e ∈ Ei contributes 1/(|e| − 1) to the edge weight in the vertex

connectivity graph Gi. The absorption of a cluster of vertices C is given by:

absorption(C) =
∑

{e′=(x,y):x∈C,y∈C}
w(e′) (3.13)

A coarsening algorithm may also extract clusters from a pre-computed vertex

ordering, as proposed in [AK94a]. A vertex ordering S is initialised with a ran-

domly chosen vertex and unordered vertices are then iteratively added in a greedy

manner, so that the chosen vertex maximises a general attractor function with re-

spect to S. This provides a vertex ordering which can be computed in O(n log n)

time using a Fibonacci heap, if the attractor function is monotonic (decreasing

or non-decreasing) in the size of the ordered set S.

When computing the attraction between an unordered vertex v and S, a window

of size W is defined, so that at most the last W of the ordered vertices exert

3.5. Multilevel Algorithms 70

full attraction on v. The coarsening map gi is then computed by forming vertex

clusters from consecutive vertices in the ordering [AK94a, AK94b].

A clique is an intuitive cluster property that has been proposed as a coarsening

metric. In [CS93], Cong and Smith suggest forming clusters by contracting cliques

of the vertex connectivity graph. A clique is contracted if it does not exceed

prescribed size (percentage of total number of vertices contracting into a single

coarse vertex), area (percentage of the total weight of the graph) and density

thresholds. Here, the density of a vertex cluster C is given by WC |C|(|C| − 1)/2,

where WC is the total weight of the edges in the cluster.

Similar in spirit to the clique clustering approach described above is hyperedge

coarsening [KAKS97, KK98b, Kar02]. Here, all the vertices in a hyperedge will

form a cluster. Hyperedge coarsening potentially removes a large number of

hyperedges in the successively coarser hypergraphs.

Toyonaga et al. [TYAS94] sort the hyperedges in non-decreasing order by cardi-

nality and then traverse the sorted list of hyperedges, with vertices of a hyperedge

forming a cluster if they have not been matched previously as part of another

hyperedge. Karypis et al. [KAKS97] first sort the hyperedges in a non-increasing

order of weight and then hyperedges of the same weight are sorted in a non-

decreasing order of cardinality. The sorted set of hyperedges is then traversed

and vertices of a hyperedge form a cluster if they have not been matched previ-

ously as part of another hyperedge.

Karypis et al. [KAKS97] also note that hyperedge coarsening leads to a large

variance in vertex weight and does not sufficiently reduce the size of large hyper-

edges at coarser levels. They instead propose a modified hyperedge coarsening

algorithm, which initially proceeds like the hyperedge coarsening algorithm. How-

ever, having contracted a maximal set of disjoint hyperedges, modified hyperedge

coarsening traverses the list of hyperedges again. Then, for each hyperedge that

has not been contracted, the vertices that do not belong to any other contracted

hyperedge are contracted to form a vertex in the coarse hypergraph.

An interesting approach to coarsening is presented in [Saa04]. Here the coarsening

3.5. Multilevel Algorithms 71

is a by-product of a pass of an iterative improvement bipartitioning algorithm.

As vertices are moved and locked during the pass, they are deemed contractable

and available for matching with other vertices.

The vertex matching procedure proceeds as follows. After a vertex v ∈ Vi is

moved, it is made contractable and a set X, consisting of v and all other con-

tractable vertices that are connected to v via critical hyperedges, is computed

(a hyperedge e ∈ Ei is defined as critical with respect to a vertex v ∈ Vi if it is

removed from the cutset after v is moved). If X has more than one vertex in

it, then all vertices in X are clustered together to make a new coarse vertex and

they are no longer deemed contractable. Otherwise, v remains contractable.

Remarks on Coarsening Algorithm Implementation

The performance of a coarsening algorithm (that is, its ability to identify natural

vertex clusters) across different hypergraph problem instances strongly depends

on a number of implementation choices. A detailed discussion of these is pre-

sented in [Kar02], based on experiences gained through the development of the

hMeTiS hypergraph partitioning tool [KK98a].

In a “natural” implementation of a coarsening algorithm, an increase in the vari-

ance of vertex weight at coarser levels is expected. This is because hypergraphs

occurring in applications such as VLSI CAD usually have a number of strongly

connected vertex clusters, which will form increasingly large vertices at successive

coarser levels. Potentially, this behaviour reduces the number of feasible parti-

tions of the coarsest hypergraph. The choice of the maximum allowed coarse

vertex weight (i.e. imposing an upper bound on vertex weight in the coarser

hypergraphs) is thus a parameter that strongly influences coarsening algorithm

performance.

The rate at which successive coarser hypergraphs are reduced (r in Equation 3.7)

will also affect the performance of the multilevel partitioning algorithm. A greater

number of levels (given by a lower reduction ratio) potentially improves the par-

tition quality produced by the multilevel algorithm because refinement is per-

3.5. Multilevel Algorithms 72

formed at more levels. However, this comes at the cost of longer runtimes and

larger memory utilisation. Thus, there is a trade-off, for which the optimal config-

uration should be dependent on the nature of the hypergraph problem instance.

Karypis and Kumar report that they achieve an acceptable balance between run-

time and partition quality with 1.5 ≤ r ≤ 1.8 [Kar02].

The remaining significant implementation issue is determining when to stop the

coarsening process. We note that there are two potentially conflicting factors to

consider. If the coarsening process terminates too early and the coarsest hyper-

graph is relatively large, it may not be possible to find a sufficiently good partition

of the coarsest hypergraph. On the other hand, if the coarsest hypergraph is too

small, the space of feasible solutions may be too small and the optimal partition

of the coarsest hypergraph may be unacceptably worse than the optimal partition

of the original hypergraph.

This presents another trade-off for which the optimal configuration depends on

the given partitioning problem. In [Kar02], Karypis terminates the coarsening

algorithm when the coarse hypergraph has around 30k vertices, where k is the

number of parts in the partition sought. The coarsening process may also be

terminated if the coarsening algorithm can only reduce the current hypergraph

Hi by an insufficient amount, thus making further coarsening unproductive.

Finally, the runtime of the coarsening phase may be reduced, without greatly

affecting coarsening quality in many cases, by not considering large hyperedges.

In [cA99], Çatalyürek and Aykanat use a threshold of 4eavg, where eavg denotes

the average hyperedge length in the hypergraph Hi.

3.5.3 The Initial Partitioning Phase

The aim of the initial partitioning phase is to construct a partition of the coarsest

hypergraph Hc(Vc, Ec) that satisfies the partition balance constraint and optimises

the objective function. Since Hc should be significantly smaller than H, the

time taken by the initial partitioning phase will usually be considerably less

3.5. Multilevel Algorithms 73

than the time taken by the coarsening and uncoarsening phases of the multilevel

framework.

Effectively, any heuristic optimisation algorithm that can be applied to hyper-

graph partitioning may be used to compute the initial partition. For example,

in the context of graph partitioning, [HL93, BS94] use a spectral partitioning

algorithm, while for hypergraph partitioning, [AY04] use a genetic algorithm.

For hypergraph partitioning, however, iterative improvement algorithms (cf. Sec-

tion 3.4.1) have typically been used to generate the initial partition. A number

of partitions are computed from multiple runs of a flat partitioning algorithm.

Hauck and Borriello [HB97] evaluate a number of simple methods for generating a

starting feasible partition, prior to using a heuristic partitioning algorithm. Ran-

dom partition creation (by bisecting a random ordering of the vertices), seeded

partition creation (by “growing” a partition around randomly chosen vertices

using a greedy algorithm), breadth-first and depth-first partition creation (by

breadth-first or depth-first partition initialisation around randomly chosen ver-

tices) are compared on a number of benchmark circuits. The random partition

creation (which bisects a random ordering of the vertices) is found to perform

best, both in terms of partition quality and runtime. We note that the authors

report the minimum objective function value attained over ten runs of the par-

titioning algorithm, rather than reporting the average. Similar initial partition

generation methods are also used in [KAKS97, KK98b, Kar02].

In [CKM00a], the authors suggest that the starting feasible partition may be

generated by applying the FM algorithm to a partition with all the vertices in

a single part. Since this would necessarily be deterministic, the computation of

gains at the beginning of the pass is randomised (as described in Section 3.4.1)

and a relaxation of the balance constraint is introduced.

The authors also generate the starting feasible partition using a biased random

selection method. The assignment probabilities (of vertices to parts) are propor-

tional to the “slack” in the part weights after the given vertex is hypothetically

allocated to each part (where the slack is defined to be the difference between

3.5. Multilevel Algorithms 74

the maximum part weight and the current part weight plus the vertex weight).

An important implementation decision is the number of partitions of the coarse

hypergraph that are projected to successive finer hypergraphs. We note that it

is not necessarily the best partition of the coarsest hypergraph Hc which yields

the best partition of a finer hypergraph Hi (i < c) after heuristic refinement in

the uncoarsening phase. As a result, Karypis et al. [KAKS97] suggest projecting

some or all the partitions computed at the initial partitioning stage. In their

experiments, they compute ten partitions of the coarsest hypergraph and project

them onto the next-level finer hypergraph.

3.5.4 The Uncoarsening and Refinement Phase

During this phase, a partition of the coarsest hypergraph is projected through

each successive finer hypergraph (Hc
Πc−→ Hc−1, . . . , Hi+1

Πi+1−−−→ Hi, . . . , H1
Π1−→ H).

A simple algorithm for projecting a partition which runs in O(n) time proceeds

as follows. The vertices of a hypergraph Hi(Vi, Ei) are traversed, and for each

vertex v ∈ Vi, the part corresponding to the coarse vertex gi(v) ∈ Vi+1 is noted

from Πi+1 and v is assigned to the same part in Πi.

At each successive level (after a projection of partition Πi+1 to the finer hyper-

graph Hi), the partition Πi can be further refined (the value of the objective

function may be further optimised) because the finer hypergraph Hi has more

degrees of freedom than Hi+1. As is the case with the initial partitioning phase,

in principle any flat hypergraph partitioning algorithm may be used to refine Πi.

Typically, iterative improvement algorithms based on the KL/FM framework are

used, although [Saa04] uses a Tabu search-based algorithm.

As previously noted in Section 3.5.1, the commonly noted weakness of the original

FM algorithm within a flat setting is that it tends to find solutions corresponding

to local minima of only “average” quality. This is because it greedily explores

the space of feasible solutions, using only a local view. A number of sophisticated

enhancements that incorporate a look-ahead capability have been proposed (cf.

3.5. Multilevel Algorithms 75

Section 3.4.1). In general, they aim to identify and move strongly connected

vertex clusters into a single part.

In contrast to this, the multilevel approach implicitly offers a cluster-detection

capability through the coarsening process because vertices in coarser hypergraphs

will usually correspond to strongly connected clusters of vertices in the original

hypergraph. Multilevel approaches also have the ability to consider clusters of

(strongly connected) vertices in the original hypergraph at different levels of

granularity (through the different levels of approximation).

As a result, even though sophisticated refinement algorithms can be integrated

into the multilevel scheme, we note that current multilevel implementations seem

to favour simpler refinement algorithms that possess significantly shorter run-

times [Kar02]. Because the quality of partitions produced by multilevel algo-

rithms strongly depends on the coarsening algorithm, simpler refinement algo-

rithms tend to offer a better trade-off between runtime and partition quality than

more sophisticated refinement algorithms [Kar02].

A k-way partition may also be computed directly via the multilevel framework.

In this case, a k-way refinement algorithm is required. In the following discussion,

we make a distinction between algorithms that are used to refine a bisection and

algorithms that directly refine k-way partitions, with k > 2.

Bisection Refinement Algorithms

The partition Πi, obtained by projecting Πi+1 onto Hi, is used as the starting

partition for the refinement algorithm. This should be a significantly better

partition of Hi when compared to a randomly generated feasible partition. In

[KAKS97], Karypis et al. propose a number of optimisations to the FM algorithm

that reduce the runtime with little observed impact on solution quality.

In particular, the authors propose to limit the number of passes of the FM al-

gorithm to only two, since they observe that the most significant improvement

in the objective function is achieved during the first couple of passes. Because

3.5. Multilevel Algorithms 76

Πi is considered to be a good partition, it is observed that hill-climbing after a

long sequence of moves with negative gain is unlikely. Consequently, the authors

also abort each pass after a prescribed number of consecutive moves have been

made that do not improve the value of the objective function. This prescribed

threshold x is expressed as a percentage of the total number of vertices and

is set prior to the optimisation; in [KAKS97, Kar02], the recommended values

were 1 ≤ x ≤ 5. The resulting algorithm is called the Early Exit FM (FM-EE)

bisection refinement algorithm.

The second refinement algorithm proposed in [KAKS97] is Hyperedge Refine-

ment (HER). It is motivated by the observation that FM-type algorithms do not

perform as well when the hypergraph has many large hyperedges. The HER al-

gorithm is similar to the LSR algorithm for removing stable hyperedges [CLL+97]

(cf. Section 3.4.1).

A pass of the HER algorithm proceeds as follows. The set of hyperedges is

traversed in a random order. For each hyperedge e ∈ Ei that has vertices in

both parts of the bipartition, the gains of moving all the vertices into one of

the two parts are computed. Subject to the balance constraint, the vertices are

moved into the part that yields the largest positive gain in the objective function.

It is also noted that, in principle, it would be possible to develop an FM-style

refinement algorithm whose “moves” involve the movement of all the vertices

of a hyperedge that straddles the partition boundary into one part. However,

the gain update computation of such an algorithm would be considerably more

expensive than the gain update computation for a single vertex move. As in

[CLL+97], a run of the FM algorithm is performed after an iterative run of the

HER algorithm.

In [cA99], Çatalyürek and Aykanat propose the Boundary FM (BFM) algorithm.

In this version of the FM algorithm, only boundary vertices are moved during a

pass. A vertex is said to be a boundary vertex if it is connected to at least

one cut hyperedge. Note that a vertex that is not a boundary vertex at the

beginning of a pass may subsequently become a boundary vertex during the

3.5. Multilevel Algorithms 77

pass. Such vertices, when they become boundary vertices, are inserted into the

gain bucket structure based on their updated gain value (rather than the actual

gain value of the vertex move), in the spirit of the CLIP and CDIP algorithms

[DD96b, DD02] (cf. Section 3.4.1). The BFM algorithm also incorporates an

early-exit criterion to terminate a pass if no more feasible moves are possible

or if a sequence of the most recent moves does not yield an improvement in the

objective function. In the PaToH multilevel hypergraph partitioning tool [cA01b],

the BFM algorithm is implemented so that it performs at most two passes at each

level of approximation.

Finally, Karypis notes that only a small number of feasible vertex moves may be

possible at the coarser levels [Kar02]. He recommends that partitions are allowed

to violate the balance constraint during a pass of the refinement algorithm, pro-

vided that a feasible solution can be ensured by the end of the refinement process

at that level of approximation. The alternative is to relax the balance constraint

at coarser levels and then incrementally tighten it as the partition is projected

onto successive finer hypergraphs [Kar02]. These observations are also valid in

the context of multi-way refinement.

Multi-way Refinement Algorithms

We noted in Section 3.4.1 that flat multi-way partitioning algorithms have not,

in general, been competitive with the recursive bisection approach. Moreover,

multi-way partitioning that applies the FM algorithm across pairs of parts [CL98]

may lead to prohibitive runtimes for larger values of k, since there are O(k2) such

pairs. Nevertheless, in [UA04], Sanchis’ k-way algorithm was preferred to other

direct multi-way refinement algorithms within the multilevel framework.

Karypis notes in [Kar02] that the hill-climbing capability of FM-type algorithms

becomes less important in a multilevel setting, citing the fact that movement

of vertices at coarser levels actually represents movement of strongly-connected

clusters of vertices in the original hypergraph. He also observes that vertex

moves yielding a large positive gain would be made during a pass whether or

3.5. Multilevel Algorithms 78

not a priority order of move gain is maintained. Based on these observations,

a (relatively simple) greedy multi-way refinement algorithm (henceforth denoted

greedy k-way) was proposed in [KK98b].

As in [cA99], it is noted that only moves involving boundary vertices will yield

a positive gain in the objective function (recall that a vertex is said to be a

boundary vertex if it is incident on at least one cut hyperedge). A vertex is said

to be internal to a part if it is not incident on any cut hyperedges.

A pass of the greedy k-way algorithm proceeds as follows. The vertices of the

hypergraph Hi(Vi, Ei) are visited in random order. For each vertex v ∈ Vi, if v is

internal to its current part, it is not moved. If it is a boundary vertex, then it may

be moved to any of the N(v) parts that vertices adjacent to v belong to; the set

N(v) is called the neighbourhood of v. Let N ′(v) denote the subset of N(v) that

contains the parts such that the move of v to one of those parts does not violate

the balance constraint and results in a positive gain in the objective function. If

N ′(v) is nonempty, v is moved to the part in N ′(v) that maximises the gain. In

[KK98b], the authors note that this greedy algorithm converges within a small

number of passes and leads to reasonably good partitions within the multilevel

setting.

Refinement Algorithms Based on the Multilevel Framework

Suppose that a partition Πi for the hypergraph Hi(Vi, Ei) has been computed

within the multilevel sequence (following projection from Hi+1 and subsequent

refinement). When compared to the prior coarsening of Hi(Vi, Ei) at the ith

multilevel step, we note that now the partition Πi also provides additional vertex

connectivity information within Vi; namely, vertices within strongly connected

clusters will tend to lie within the same part of the partition. This information

can be used to improve the quality of the coarsening algorithm and thus also

potentially improve the quality of partition computed for Hi.

Karypis et al. introduce a multi-phase refinement algorithm in [KAKS97]. It

uses restricted coarsening to compute the map gi by clustering together vertices

3.5. Multilevel Algorithms 79

u, v ∈ Vi if, and only if, Πi(u) = Πi(v). This scheme does not otherwise restrict

the type of coarsening algorithm used. The restricted coarsening procedure will

construct a new multilevel sequence {Hi, Hi+1, . . . , Hc′}. The partition Πi is

easily translated to coarser levels by projecting it onto Hi+1 to yield Πi+1. The

restricted coarsening algorithm uses Πi+1 to compute gi+1, and so on, until the

coarsest hypergraph Hc′ has been constructed. This coarsest hypergraph in the

new sequence, Hc′ , is partitioned and its partition is projected and further refined

at each level i′ ≥ i, until a new partition Π′
i of the hypergraph Hi is constructed.

A single iteration of this multi-phase approach is called a V-cycle. Successive

calls to V-cycles (multi-phase refinement iterations) may be terminated when

the most recently completed V-cycle has not yielded an improvement in the

objective function of the partition or if the number of V-cycles performed at the

current multilevel step thus far has reached a prescribed threshold. We note that

V-cycles can be recursively applied at each stage of a multilevel algorithm.

Coarsening in the multi-phase refinement setting was considered in [WA98]. Here,

the authors augment the vertex connectivity metric to include information about

how frequently a hyperedge has been cut in computing partitions of Hi. This is

quantified by the function exp(−γf(e)), where f(e) is the frequency of hyperedge

e in the cutset of the computed bipartitions of Hi with objective function values

below a prescribed threshold and γ is a damping factor. The exponential term

encourages vertices to match together if they are connected by low-frequency

hyperedges. Hyperedges with high frequency would most likely appear in the cut

of high-quality solutions and vertices in these ought not be clustered together.

A similar scheme could be adapted to the hyperedge coarsening algorithm (cf.

Section 3.5.2). The authors of [WA98] also adjust the reduction ratio r (cf. Equa-

tion 3.7) during the restricted coarsening phase, based on the number of passes

performed by their FM-based refinement algorithm during the last x levels of

the multilevel algorithm, with x some prescribed constant. Intuitively, a greater

number of passes performed would indicate a greater difference in the degrees of

freedom between successive levels of approximation and would thus imply that

3.5. Multilevel Algorithms 80

smaller values of r should be chosen to achieve a better quality of coarsening.

3.5.5 Remarks on the Multilevel Paradigm

Algorithms based on the multilevel approach are currently the heuristic meth-

ods of choice for generating solutions to the graph and hypergraph partitioning

problems. Intuitive explanations for the robustness of the multilevel approach are

described by Karypis in [Kar02]. We outline the main advantages over alternative

approaches below:

No restriction on partitioning algorithm used: The multilevel approach

imposes no restrictions on the type of partitioning algorithm used to compute

the partition during the initial partitioning phase.

Makes partitioning easier: The coarsening phase reduces the total hyperedge

weight from the original hypergraph and also reduces the space of feasible solu-

tions. Worst-case partitions and randomly-generated partitions of the coarsest

hypergraph will be better than those of the original hypergraph.

Allows refinement at multiple levels of granularity: Sophisticated par-

titioning algorithms are motivated by the need to identify and move strongly

connected clusters of vertices into the same part or achieve the same effect by

“looking ahead” before making vertex moves. The multilevel paradigm implicitly

achieves this during the uncoarsening phase with refinement at different levels

of granularity. Refining a coarse hypergraph is equivalent to the movement of

strongly connected vertices in the original hypergraph.

Makes refinement easier for FM/KL algorithms: The FM/KL-based itera-

tive improvement algorithms are limited in their ability to escape local minima in

the presence of large hyperedges. Multilevel approaches improve the performance

of the FM/KL-based algorithms by reducing the number of large hyperedges at

coarser levels.

Scales well with increasing problem size: Partition quality of multilevel al-

gorithms scales better with problem size than partition quality of flat algorithms.

3.5. Multilevel Algorithms 81

Runtimes of multilevel algorithms also scale better with problem size than run-

times of flat algorithms because fewer partitioning runs are necessary to achieve

acceptable partition quality.

Offers runtime/partition quality trade-off: Multilevel algorithms offer bet-

ter opportunities for controlling the runtime/partition quality tradeoff than flat

partitioning algorithms, through the coarsening parameters such as the reduc-

tion ratio between successive coarser hypergraphs and the maximum size of the

coarsest hypergraph. Also, during the uncoarsening phase, application of multi-

phase refinement should result in better quality partitions, albeit at the expense

of longer runtimes.

Computational Time Complexity of Multilevel Algorithms

In the following runtime complexity analysis, we consider a sparse hypergraph

H(V, E), with n = |V | and m = |E|, such that n and m are of the same order of

magnitude. We assume that dmax ¿ n and emax ¿ m. The computational time

complexity analysis that follows should be viewed as an informal justification for

the apparent linear time complexity of multilevel algorithms in practice rather

than a rigorous derivation.

We let ni be the number of vertices in hypergraph Hi at multilevel stage i;

ei
max and di

max denote the maximum hyperedge cardinality and maximum vertex

degree, respectively, of Hi.

It is assumed that the coarsening algorithm is implemented in a greedy manner

(cf. Section 3.5.2) and that it reduces the numbers of vertices and hyperedges at

each coarsening step by constant factors 1 + ν and 1 + ω (ν, ω > 0), respectively.

The runtime complexity of the initial partitioning phase is assumed to be dom-

inated by the runtime complexities of the coarsening and uncoarsening phases,

as the coarsest hypergraph is an order of magnitude smaller than the original

hypergraph. Because the number of vertices is reduced by a factor greater than

one at each coarsening step, there are O(log n) multilevel steps. We note that

ei
max is bounded above by emax for all multilevel steps, while di

max is typically

3.5. Multilevel Algorithms 82

observed to increase during the coarsening phase (as the number of hyperedges

is usually reduced at a slower rate than the number of vertices by the coarsening

algorithm). We assume here that this increase is modest and, in any case, di
max

is bounded above by the number of hyperedges in hypergraph Hi, which in the

latter stages of the coarsening phase will be an order of magnitude less than the

number of hyperedges in the original hypergraph.

During a single coarsening step i, a coarsening algorithm performs O(nie
i
maxd

i
max)

operations in computing the map gi, because for each vertex it is required to

compute connectivity values with each adjacent vertex. Having computed the

map gi, the construction of the coarse hypergraph Hi+1 has complexity O(nie
i
max).

During a single uncoarsening step, the projection of partition Πi+1 from hy-

pergraph Hi+1 onto Hi has complexity O(ni). Iterative improvement algorithms

adapted for multilevel refinement (e.g. early-exit FM) have complexity O(nie
i
max)

per pass (cf. Section 3.4.1).

Because ei
max and di

max are small relative to the number of vertices (and hyper-

edges) in hypergraph Hi and the number of passes of the refinement algorithm

at each uncoarsening step is also assumed small, each multilevel step has run-

time complexity O(ni). Then, the runtime of the serial multilevel partitioning

algorithm is given by:

Ts =

O(log n)∑
i=0

O(ni) (3.14)

=

O(log n)∑
i=0

O(n(1 + ν)−i) (3.15)

≤
∞∑
i=0

O(n)(1 + ν)−i (3.16)

= O(n) (3.17)

Outstanding Issues

Aside from the development of parallel multilevel partitioning algorithms, there

are a number of other possible directions for further research.

3.5. Multilevel Algorithms 83

In [CRX03], Cong et al. perform a study of leading-edge hypergraph partitioning

algorithms using existing state-of-the-art tools on a number of purpose-engineered

hypergraphs. These hypergraphs were constructed in such a way that an upper

bound on the optimal value of the partitioning objective was known upon the

construction of the hypergraph. This bound was also sufficiently close to the

optimum, so that it corresponded to solutions which were generally better than

those obtained by state-of-the-art algorithms.

They observe that the multilevel bipartitioning algorithms consistently matched

the authors’ upper bound for the bipartitioning problem. On the other hand,

when computing multi-way partitions (using multi-way partitioning or recursive

bisection algorithms), state-of-the-art tools performed less well (up to 18% from

the upper bound on the optimal solution). This suggests that while biparti-

tioning algorithms appear to be fairly mature, there is still scope for potentially

significant improvement in the case of the multi-way partitioning problem.

In [Kar02], Karypis identifies the coarsening phase as offering the best scope for

further research, since there is still no coarsening method that outperforms others

across a wide range of hypergraphs.

We also note a number of alternative directions for further research. Relatively

little research has been done into the feasibility of hybrid approaches that combine

different optimisation techiques into the multilevel framework. For example, a

very sophisticated refinement algorithm may be used during the coarser levels,

while a refinement algorithm optimised for fast runtimes may be used at the finer

levels of the multilevel algorithm.

Research may also be application driven. In certain applications, such as load

balancing in scientific computing, the runtime/solution quality trade-off is usu-

ally skewed towards faster runtimes. Runtime optimisations of the multilevel

framework that do not significantly degrade solution quality are sought. Dif-

ferent application domains also give rise to partitioning problems that exhibit

particular common structures. Thus, coarsening and refinement schemes may

be developed that exploit characteristics of the hypergraphs within a particular

3.6. Parallel Graph Partitioning Algorithms 84

application domain.

3.6 Parallel Graph Partitioning Algorithms

3.6.1 Data Distribution Strategies

Before presenting an overview of parallel graph partitioning literature, we de-

scribe the two most common ways in which a graph G(V, E) may be allocated

to p processors on a distributed-memory parallel machine. This involves the dis-

tribution of the set of vertices and the set of edges of the graph, as well as the

associated vertex and edge weights. The graph decomposition is particularly im-

portant for message-passing architectures, because interprocessor communication

is necessary when a processor needs to access a part of the graph that is stored

on another processor. We assume here that each processor is assigned a roughly

equal portion of the graph.

The natural way to store a graph across p processors is for each processor to

store |V |/p vertices and the adjacency list associated with those vertices (i.e.

all the edges incident on the |V |/p vertices). We call this the one-dimensional

decomposition of the graph to the p processors. The name is intuitive; if we

imagine the set of vertices to be stored in a one-dimensional array, the p processors

are organised into a line so that each processor is allocated a contiguous portion

of the vertex array.

Alternatively, the vertex set V can be partitioned into
√

p roughly equal subsets

(i.e. V = {V0, . . . , V√p−1}) with the p processors organized into a
√

p×√p grid.

Then, processor pi,j is assigned the edges from E that connect vertices from Vi

with vertices from Vj. Vertices in Vi are assigned to the diagonal processor pi,i.

We call this the two-dimensional decomposition of the graph, since the processors

are organized into a two-dimensional grid. It is analogous to a two-dimensional

checkerboarding decomposition of the graph’s adjacency matrix onto p processors

[GGKK03].

3.6. Parallel Graph Partitioning Algorithms 85

Henceforth, when necessary, we will classify the parallel graph partitioning ac-

cording the graph-to-processor allocation. We note that most parallel graph

partitioning algorithms in literature use the one-dimensional graph-to-processor

allocation.

3.6.2 Early Work

In [GZ87], Gilbert and Zmijewski develop a parallel graph partitioning algo-

rithm (based on the KL algorithm) for a message-passing parallel architecture.

They investigate parallel computation of a p-way partition using p processors

and attempt a fine-grained parallel formulation of KL. The algorithm is said to

be fine-grained because communication is induced after individual vertex moves.

The scalability of this algorithm appears to be limited by the potentially large

amount of communication required.

Parallelism in graph partitioning was formally investigated by Savage and Wloka,

in [SW91]. The authors show that local search under the KL (and thus also

the FM) neighbourhood structure with unit-weighted edges is P-complete. This

suggests that highly-parallel formulations of the KL/FM algorithms are unlikely3.

The authors also present a parallel algorithm in the spirit of the KL heuristic that

swaps multiple vertices across the partition boundary at a time. The algorithm

was implemented on the Connection Machine 2 massively parallel computer that

can use up to 64K one-bit processors. Results that are competitive with serial

KL in terms of partition quality are reported on randomly generated graphs.

In [DPHL95], Diniz et al. parallelise the Inertial geometric partitioning algorithm

[NORL87] and the FM algorithm. The Inertial algorithm is used to construct

a starting partition for the FM algorithm. In the first parallel algorithm, a bi-

3It is thought that decision problems in the class NC (decidable in poly-logarithmic time on

a PRAM with a polynomial number of processors) offer the best potential for parallelism. On

the other hand, P-complete problems have been traditionally difficult to parallelise. A long-

standing conjecture is that P 6= NC, which, if true, makes P-completeness a useful measure of

whether a problem is inherently sequential [GHR95].

3.6. Parallel Graph Partitioning Algorithms 86

partition produced by the parallel Inertial algorithm is improved using a parallel

FM algorithm. In the second, a p-way partition is produced by recursive ap-

plication of the parallel Inertial algorithm. Then, the p-way partition is further

improved by a pairwise application of the parallel FM algorithm (similar to the

serial pairwise FM from [CL98]).

We focus here on the parallel FM algorithm. When applied to a bipartition using

p processors following the parallel Inertial algorithm, the parallel FM algorithm

stores vertices belonging to part P0 on p/2 processors and vertices belonging to

part P1 on the remaining p/2 processors. The processors then pair up, such that

in each processor pair, one processor stores vertices from P0 and the other from

P1. The paired processors interact in performing passes of the FM algorithm.

In the p-way parallel FM algorithm, parallelism associated with the pairwise

application of FM is exploited. Vertices from part i are stored on processor

pi. Processors pair up with other processors to perform parallel FM, as in the

parallel bipartitioning algorithm. Note that processors only pair-up with other

processors with whom they share common edges. Pairs of processors that do not

share common edges may perform parallel FM concurrently.

In order to identify such processor-pairs, the authors define a quotient graph of

the p-way partition, G. Each vertex in G is a part and an edge in G is induced

between parts if the two parts have vertices that are connected by an edge in

G(V, E). The quotient graph G is edge-coloured using a heuristic algorithm4, so

that the pairwise FM algorithm may be applied concurrently to pairs of parts

connected by edges of the same colour.

Parallel algorithms were run on nCUBE 2 and Paragon multiprocessors. The

partition quality produced by the parallel algorithms is dominated by the serial

multilevel algorithm used in the Chaco tool [HL94]. Speedups in the range of

9-18 are observed using 64 processors and 19-50 using 1024 processors on graphs

4An edge colouring of a graph is the assignment of colours to edges, such that any two edges

that share a vertex must be assigned a different colour. Computing the minimum number of

colours required for a general graph is NP-complete [GJ79].

3.6. Parallel Graph Partitioning Algorithms 87

with around 150 thousand vertices and 1 to 1.9 million edges. We note that these

parallel algorithms do not explicitly enforce the partitioning balance constraint.

In [HR95], Heath and Raghavan present a parallel formulation of a geomet-

ric graph partitioning algorithm that uses a one-dimensional allocation of the

graph to p processors. The parallel asymptotic time complexity is derived to be

O((m/p) log n), meaning that the parallel algorithm is not cost optimal (since

the time complexity of the serial multilevel algorithm is O(n)).

As noted in Section 3.5, multilevel algorithms are currently the heuristic method

of choice for graph and hypergraph partitioning. Recent work on parallel graph

partitioning has yielded a number of parallel formulations of the serial multilevel

approach. Some of these algorithms have also been implemented within the

parallel graph partitioning tools ParMeTiS [KSK02] and pJOSTLE [Wal02].

3.6.3 Parallel Multilevel Recursive Spectral Bisection

In [Bar95], Barnard presents a parallel formulation of the multilevel recursive

spectral bipartitioning algorithm. It first computes a bipartition of the graph

using p processors, following which successively smaller teams of processors are

used for each recursive application of the bipartitioning algorithm.

The multilevel spectral bipartitioning algorithm from [BS94] is parallelised, so

that the Fiedler vector is transferred between the levels in the uncoarsening

phase (rather than the partition of the coarser hypergraph). Barnard identi-

fies the coarsening phase as the hardest operation to parallelise, noting two main

difficulties. The first is computing a maximal independent set of vertices in paral-

lel (which is required by the serial coarsening algorithm from [BS94], as described

in Section 3.5.2); the second is that the computation of the Fiedler vector (dur-

ing the initial partitioning phase) requires a connected graph (cf. Section 3.3.2).

Recall that in the serial multilevel algorithm from [BS94], heuristic refinement is

not used during the uncoarsening phase.

Barnard uses Luby’s CRCW (Concurrent-read, Concurrent-write) PRAM algo-

3.6. Parallel Graph Partitioning Algorithms 88

rithm for computing a maximal independent set of vertices in a graph [Lub86]. In

the initial partitioning phase, if the coarsest graph is not connected, the Fiedler

routine is separately applied to each of the connected components. The discon-

nected components are identified using a PRAM-based parallel non-deterministic

random-mating algorithm [Gaz93].

Barnard implemented the parallel algorithm on a Cray T3D parallel computer

with 256 processors. Each processor is a 150Mhz DEC Alpha chip with 64MB

of memory. The parallel implementation used Cray’s SHMEM (SHared MEMory)

library. In this communication model, the T3D has a segmented global shared

memory, with each processor having direct access to its local memory and ac-

cess to the memories of other processors through calls to the shmem get and

shmem put routines. Although these are similar to send and receive operations

on distributed-memory message-passing architectures, the main difference is that

the SHMEM routines do not require cooperation from the remote processor. Thus,

the T3D is a good approximation to the (theoretical) shared memory model.

In the experiments, a p-way partition is computed using p processors. Parti-

tion quality is comparable with serial multilevel spectral bipartitioning. On a

graph with 50 000 edges, a speedup of almost 20 over the single-processor imple-

mentation [BS94] is observed using 256 processors. On a larger problem (with

765 000 edges), the observed speedup is 140 using 256 processors. These results

suggest good empirical scalability, albeit observed on an approximation to the

shared-memory platform. To that end, Barnard notes that the algorithm would

be inefficient on a general distributed memory message-passing architecture be-

cause of the high interprocessor communication requirements of the PRAM-based

parallel algorithms.

3.6. Parallel Graph Partitioning Algorithms 89

3.6.4 Karypis and Kumar’s Two-Dimensional Parallel Al-

gorithm

In [KK98c], Karypis and Kumar present a parallel multilevel graph partitioning

algorithm that is based on the serial algorithm proposed in [KK99]. With a

distributed-memory message passing architecture in mind, the authors try to

limit interprocessor communication (as compared to other parallel approaches).

The algorithm uses a two-dimensional distribution of the graph G(V, E) across

the processors, with the adjacency matrix of the graph stored in Cartesian fash-

ion (cf. Section 3.6.1). A p-way partition of the graph using p processors in

parallel is sought, and is computed by recursive bisection. Karypis and Kumar

note that only the coarsening and uncoarsening phases need to be parallelised;

the coarsest graph should be sufficiently small to be partitioned serially without

significantly affecting the parallel runtime. We describe the three phases of the

parallel multilevel algorithm in more detail below.

Parallel Coarsening Phase

Karypis and Kumar note that Luby’s PRAM-based algorithm [Lub86] (used by

Barnard [Bar95] to find a maximal independent set of vertices) may be modified

to compute a set of independent edges that could be contracted to form vertices

of the successive coarser graph; however, this approach is rejected because of

its high communication requirement on a distributed-memory parallel computer.

They instead seek an algorithm that computes the coarsening in parallel without

interprocessor communication. This is achieved if vertices on each processor are

only allowed to form clusters with other vertices on that processor.

It is noted that if a one-dimensional decomposition of the graph to processors

is used, the quality of the coarsening is expected to deteriorate as p increases

(because each processor will have fewer vertices to cluster together). However,

when the two-dimensional graph decomposition is used, only the
√

p diagonal

processors are involved in the computation of the vertex matches; this should

3.6. Parallel Graph Partitioning Algorithms 90

ensure that there are sufficient local candidate vertices on each processor.

Having computed the vertex matching, the construction of the coarse graph Gi+1

proceeds in parallel, as follows. The diagonal processors broadcast the required

vertex matches to processors along the rows and columns of the processor grid.

Once each processor has the required vertex matches, it can proceed to contract

the locally stored edges without further communication.

The parallel coarsening algorithm uses p processors, until the reduction in the

number of vertices between successive coarser graphs is smaller than a prescribed

threshold. Then, the graph is transferred onto a (smaller) (
√

p − 1) × (
√

p − 1)

processor subgrid and the parallel coarsening algorithm continues using (
√

p−1)2

processors. The use of fewer processors as the graph shrinks is done to maintain

the quality of coarsening. The parallel coarsening algorithm terminates when the

entire coarse graph has been “folded” onto a single processor.

Initial Partitioning Phase

This is computed serially, using a number of independent runs of the Greedy

Graph Growing Algorithm from [KK99]. The authors note that it is possible to

utilise each or a subset of the p processors in computing the initial partitions,

although this would require a broadcast of the coarsest graph. Because the time

taken by the initial partitioning phase is small, the authors did not implement

this extension.

Parallel Uncoarsening Phase

The partition of the coarsest graph Gc is projected back onto the original graph

G0 via the sequence of intermediate graphs Gc−1, . . . , G1. The processor sub-grid

used for each intermediate graph Gi is the same as that used for Gi during the

coarsening phase.

For refinement, the boundary KL algorithm [KK99] is parallelised. The serial

version of this algorithm has a hill-climbing capability; the authors note that

3.6. Parallel Graph Partitioning Algorithms 91

this is less significant within a multilevel context. Thus, in order to achieve

better concurrency, they remove the hill-climbing capability from the parallel

formulation.

The parallel formulation of the KL bipartitioning algorithm proceeds in a number

of steps, during each of which vertex moves are only made in one direction.

Since the vertex moves are being made concurrently across the processors, this

restriction guarantees that each vertex move yields a reduction in edge-cut. The

algorithm starts the vertex moves from the heaviest part; in each subsequent

step, the part from which vertices are moved alternates. This continues until no

improvement in edge-cut is made by the most-recently completed step or until

the maximum number of steps have been made. There is an explicit rebalancing

step at the end if the final partition violates the partitioning constraint.

At the beginning of each step, the gain of moving each vertex is computed across

processor columns using only locally stored edges; each processor pi,j computes

the local gain in edge-cut lgv obtained from moving a vertex v ∈ Vj. The total

gain of moving vertex v ∈ Vj, denoted by gv, is computed by a reduction across

the processor column j and is stored on the diagonal processor pj,j. The diagonal

processor pj,j is responsible for actually making the moves of the set of vertices

Uj ⊂ Vj that yield a positive gain.

The set Uj is then broadcast by pj,j along column j and row j of the processor

grid. The updated local gain values for vertex moves are computed by each

processor pi,j and the actual updated gain values are obtained at each diagonal

processor via a reduction across the processor column.

Analytical and Empirical Evaluation

The analytical performance model of the algorithm presented in [KK98c] yields

an asymptotic runtime complexity of O(n√
p
log p), where n = |V |. Since the com-

plexity of the serial algorithm is O(n), this runtime complexity implies that the

parallel graph partitioning algorithm is not cost-optimal. However, the authors

note that experimental evidence suggests a larger constant is associated with the

3.6. Parallel Graph Partitioning Algorithms 92

term O(|E|/p) for graphs with a high average degree (this term is hidden, as it

is asymptotically dominated by the term yielding the parallel runtime).

The experiments were carried out on a 128-processor Cray T3D parallel computer

and implemented using the SHMEM library (cf. Section 3.6.3). Results are reported

for p-way partitions using p processors, on a suite of matrices with up to 181 200

vertices and 2 313 765 edges. The quality of partitions produced by the parallel

algorithm is within 10% of the serial algorithm and the authors note that this

difference decreases as p increases. A sub-linear decrease in runtime as p increases

is reported, as expected from the asymptotic scalability results. However, for

graphs with high average degree, speedup in the range of 14 to 24 was achieved

on 32 processors and in the range 22 to 56 on 128 processors.

We note that the algorithm is not restricted to square values of p; p can be any

non-prime number with factors i and j such that the processors are arranged

into an i × j grid. However, for a reasonably regular graph, better performance

is expected when the difference between i and j is small. This is because in

this case, more efficient collective communication operations along the rows and

columns of the processor grid are performed and a better computational load

balance across the processors is achieved.

3.6.5 Karypis and Kumar’s One-Dimensional Parallel Al-

gorithm

In [KK96, KK97], Karypis and Kumar present a parallel formulation of their mul-

tilevel k-way graph partitioning algorithm from [KK95], using a one-dimensional

graph-to-processor distribution. The authors summarise the difficulties encoun-

tered in developing a parallel formulation of the multilevel approach, specifically

focusing on the coarsening and uncoarsening phases.

In particular, they note that the two-dimensional algorithm [KK98c] can only

form clusters of local vertices during the coarsening phase and that the quality

of its coarsening degrades when the average vertex degree in the graph is small.

3.6. Parallel Graph Partitioning Algorithms 93

Likewise, they note that the parallel coarsening algorithm from [Rag95] uses a

one-dimensional distribution of the graph across processors and forms processor

pairs, so that a vertex may match with any other vertex stored within its processor

pair, but not with vertices on other processors.

The above algorithms sacrifice the quality of the coarsening in order to reduce the

interprocessor communication during the coarsening phase; Karypis and Kumar

observe that allowing vertices to match with any other vertex in the graph may

result in an excessive communication requirement within the parallel setting.

During the uncoarsening phase, a parallel refinement algorithm needs to move

vertices concurrently on all or some of the processors. As processors make inde-

pendent choices about vertex moves, it is possible that the concurrent movement

of adjacent vertices by different processors yields an overall increase in edge-cut,

even though the individual vertex moves yield a decrease in edge-cut. Karypis

and Kumar also note that the partition quality produced by the parallel FM-

formulation from [DPHL95] is potentially much worse than that produced by the

serial algorithm.

The above two obstacles to successful parallelism are tackled by first colouring the

vertices of the graph at each multilevel step5. The potential conflicts during the

coarsening and refinement computations are avoided by only allowing concurrent

operations involving vertices of a single colour.

The colouring computation proceeds iteratively; during each iteration, a maximal

independent set of vertices is computed and assigned a colour. The vertices of this

colour are removed from the vertex set prior to the next iteration. The authors

use a variant of Luby’s parallel algorithm [Lub86], which computes a maximal

set of vertices that is not necessarily independent, but significantly reduces the

parallel runtime of Luby’s original algorithm. In experiments, the number of

5A vertex colouring of a graph G(V, E) is the assignment of colours to vertices, such that

any two vertices that are connected by an edge must be assigned a different colour. Computing

the minimum number of colours required for a general graph (i.e. the graph’s chromatic number

χ(G)) is NP-complete [Pap94].

3.6. Parallel Graph Partitioning Algorithms 94

colours produced by the algorithm is small compared to the number of vertices

in the graph, ranging from five to twenty.

Parallel Coarsening Phase

Karypis and Kumar present a parallel formulation of the serial heavy-edge coars-

ening algorithm [KK99].

The parallel coarsening algorithm proceeds in iterations, one for each colour.

During the cth iteration, vertices of colour c that have not been matched already

choose one of their unmatched neighbours using the heavy-edge heuristic. For-

mally, let u be a vertex of colour c and suppose that the edge (u, v) is chosen for

contraction. As the colour of v is not c during the current iteration, v will not be

seeking a match. However, it is possible that another vertex stored on a different

processor, call it w, also selects v for matching during the same iteration.

Such conflicts are dealt with as follows. When all vertices of colour c have se-

lected an unmatched neighbour, a synchronisation step is performed across all

the processors. The processors storing u and w send a message to the processor

storing v, requesting a match with v. Since only one vertex is allowed to match

with v, the one connected via the heaviest edge is chosen by the processor stor-

ing v and the processors storing u and w are informed as to whether or not their

request for a match was successful.

Suppose that, without loss of generality, u is chosen for matching with v. The

processor storing v also determines whether or not it will store the coarse vertex

resulting from contracting (u, v) (making a random choice between itself and

processor storing u) and informs the processor storing u of the outcome. Note

that if u’s request for a match is not successful in the current iteration, it may still

match with another vertex during subsequent iterations, if selected for matching

by a vertex of another colour.

When constructing Gi+1, coarse vertices resulting from local matches are retained

on the same processor, otherwise they are retained on one of the two processors

3.6. Parallel Graph Partitioning Algorithms 95

that store the matched vertices, as described above. Unlike the algorithm in

[KK98c], all p processors are involved during every multilevel step. The coarsen-

ing process terminates when the coarse graph has Θ(p) vertices.

Initial Partitioning Phase

Because the coarsest graph is small, the p-way partition is computed serially,

using a recursive bisection algorithm. Parallelism during the recursive step is

exploited; when a graph bipartition is computed on a processor, the subsequent

bipartitioning of the two “halves” of the bipartition is done on different processors

concurrently [KK97].

Parallel Uncoarsening Phase

The k-way greedy refinement algorithm from [KK95] is parallelised. A pass of

the serial algorithm proceeds as follows. The vertices of the graph Gi are visited

in random order. For each vertex v, if v is internal to its current part (i.e. all the

vertices adjacent to v are also in that part), then it is not moved. Otherwise, if

possible, it is moved to the part yielding the largest improvement in the edge-cut

such that the balance constraint is not violated.

Each pass of the parallel refinement algorithm proceeds in c steps, where c is the

number of colours computed for the given graph. During the ith step, all vertices

of colour i may be moved and a subset that leads to the greatest reduction in the

edge-cut is actually moved. Having performed the movement of these vertices,

processors storing adjacent vertices are informed of the moves. When vertex

moves are made, vertices are not explicitly moved between the processors; only

their part index variable is updated.

At the beginning of a refinement step, each processor knows the weight of each

of the p parts. The local moves are all made subject to these weights. At the end

of each step, the part weights are recomputed and each processor again knows

the exact weights. We note that the graph partitioning problem considered in

3.6. Parallel Graph Partitioning Algorithms 96

[KK96, KK97] does not impose explicit partition balance constraints. Should the

recomputed part weights violate a prescribed balance constraint, the algorithm

described in [KK96, KK97] does not take back moves in order to return a balanced

partition.

Analytical and Empirical Evaluation

In their analytical performance model, the authors assume that every vertex in

each of the coarse graphs has a small, bounded degree. Consequently, the chro-

matic number of the graphs at all coarsening levels is small6 (when compared to

the number of vertices in the original graph) and it is assumed that graphs are

reduced by a constant factor at each successive coarsening step. These assump-

tions yield an asymptotic parallel runtime complexity of O(n/p) + O(p log n).

The algorithm is asymptotically cost-optimal if p2 = O(n/ log n) and has an

isoefficiency function of O(p2 log p).

The algorithm was implemented on the Cray T3D parallel computer with 128

processors, using the SHMEM library (cf. Section 3.6.3) The reported partition

quality is comparable with that produced by the serial algorithm on a number of

finite element mesh graphs. The parallel algorithm also exhibits good empirical

scalability.

The performance of the algorithm can be improved by using an intelligent initial

distribution of vertices to processors to reduce the number of edges with vertices

on two processors. However, this is equivalent to solving the given graph parti-

tioning problem (with k = p). When multiple runs of the partitioning algorithm

are required, adaptive repartitioning of the vertices across the processors can be

performed after each partitioning run.

6Given a graph G(V, E), an upper bound on its chromatic number χ(G) is given by dmax +1

[Bro41].

3.6. Parallel Graph Partitioning Algorithms 97

A Coarse-Grain Formulation

In [KK96], Karypis and Kumar modify the one-dimensional algorithm for a

distributed-memory message-passing architecture. The resulting parallel algo-

rithm no longer performs colouring of the graphs prior to each multilevel step.

During the parallel coarsening phase, the computation of the vertex matching

proceeds in a number of steps. During each step i, every processor visits its

unmatched vertices. For each such vertex u, an unmatched adjacent vertex v is

chosen for matching, based on the heavy-edge heuristic. If v is locally stored,

then the match proceeds; otherwise a request may be made to the processor that

owns v. If i is odd, then a request is made only if v < u (based on the vertices’

respective indices) and if i is even then a request is made only if v > u. Remote

requests to the processor storing v are granted in the same way as in [KK97].

During the uncoarsening phase, a pass of the parallel refinement algorithm now

consists of only two steps. During the first step, vertices from part i are only

allowed to move to part j if i < j. During the second step, this condition is

reversed (i.e. vertices only move from part i to j if i > j), so that the pass may

consider all possible vertex moves.

As in [KK98c], the coarse-grain parallel algorithm folds successive coarser graphs

onto fewer processors, in order to reduce communication overheads that begin to

dominate the parallel runtime as the size of the graph is reduced.

The parallel algorithm was implemented using the Cray MPI message passing

library and run on the Cray T3D parallel computer. The algorithm produces par-

titions of comparable quality to the finer-grained parallel algorithm from [KK97].

However, the coarse-grained algorithm achieved slower runtimes and the differ-

ence in runtime between the two parallel algorithms increases with the number

of processors.

3.6. Parallel Graph Partitioning Algorithms 98

3.6.6 Walshaw’s Parallel Multilevel Graph Partitioning

Algorithm

In [WCE97, WC99], Walshaw et al. describe a parallel multilevel graph par-

titioning algorithm that uses a one-dimensional graph distribution across the

processors.

Parallel Coarsening Phase

The algorithm uses the heavy-edge heuristic [KK99] for computing vertex matches.

For each locally stored vertex, the processors distinguish between adjacent local

vertices and adjacent remote vertices. The coarsening algorithm first computes

matches for vertices adjacent to local vertices. This may be sufficient to con-

tract the graph by the prescribed amount; if not, it is necessary to seek remote

matches for local vertices. A parallel iterative matching procedure is used, which

terminates when no vertex is left unmatched.

During every iteration, each processor first informs neighbouring processors (pro-

cessors that store vertices adjacent to locally held vertices) of local vertices that

are unmatched. The list of locally unmatched vertices is then visited and vertices

with no unmatched adjacent vertices are copied over to the coarse graph; oth-

erwise they are tentatively matched to an unmatched adjacent vertex according

to a heavy-edge heuristic. Neighbouring processors are again updated with the

recent matches and matches spanning two processors are accepted whenever the

vertices involved are mutually requested.

The algorithm avoids selection cycles (i.e. where vertex u selects vertex v, which

in turn selects vertex w, which in turn selects u) as follows. For each edge (u, v)

in the cycle, a pseudorandom number generator is seeded with the sum of the

indices of u and v and a pseudorandom number is generated. The edge with the

highest number is chosen.

3.6. Parallel Graph Partitioning Algorithms 99

Initial Partitioning Phase

The coarsening procedure continues until a coarse graph with p vertices has been

constructed. This initial partition is then used as input to the uncoarsening

phase.

Parallel Uncoarsening Phase

Walshaw’s algorithm differs from other parallel graph partitioning algorithms

in that it accepts unbalanced partitions at the coarse levels and rebalances the

projected partition through successive finer graphs. The rate at which the rebal-

ancing is done is called the Multilevel Balancing Schedule. The algorithm always

seeks a p-way partition, with each processor storing all the vertices in a part. It

explicitly moves vertices between the processors (rather than modifying the ver-

tices’ part index as in [KK96, KK97]), although the corresponding vertices in the

finer graphs are not moved. Three distinct refinement algorithms are described.

Common to each of the algorithms, the authors identify the subdomain graph

Gπ(S,L) (the so-called quotient graph in [DPHL95]). The vertices of Gπ are the

parts of the partition and there exists an edge in L between parts Pi and Pj if,

and only if, there exists an edge e = (x, y) ∈ E such that x ∈ Pi and y ∈ Pj. The

edges in the subdomain graph identify the partition boundaries that contribute

to the edge cut and these boundaries are refined (the sum of the edge weights

on the boundary reduced). The subdomain graph is also used to compute the

required balancing flow (expressed in terms of the weight of vertices in V) along

its edges in order to rebalance the partition.

In interface optimisation (which appears very similar in nature to the pairwise

application of FM in [DPHL95]), the processors pair-up to apply the KL algo-

rithm on the partition boundary common to them. The boundaries are identified

using Gπ(S,L). Vertex moves are accepted if a condition on the vertex weight

and the appropriate flow (in favour of a more balanced partition) is satisfied. The

flow-based mechanism is used to balance the partitions (rather than an explicit

3.6. Parallel Graph Partitioning Algorithms 100

balancing scheme).

In alternating optimisation, the vertices are only allowed to move in one direction

during a particular pass, but otherwise the algorithm proceeds like the interface

optimisation algorithm. The direction of allowed vertex moves alternates from

pass to pass. Finally, the gain optimisation algorithm uses relative gain. The

relative gain of a vertex move is defined to be its actual gain minus the average

gain of vertex moves in the opposite direction.

Empirical Evaluation

The algorithms were implemented within the tool pJOSTLE on a Cray T3E par-

allel computer, using the Cray MPI message-passing library for interprocessor

communication. Interface optimisation was observed to produce the partitions

of highest quality, although running slower than alternating optimisation and

relative gain optimisation. A hybrid of relative gain and interface optimisation

computed partitions that were better balanced, but of slightly lesser quality, than

those produced by interface optimisation. The hybrid and interface optimisation

algorithms yielded comparable runtimes.

The parallel algorithms were also compared to the parallel graph partitioning

tool ParMeTiS [KSK02], which implements the one-dimensional parallel algorithm

described in Section 3.6.5.

Interface optimisation produced better quality partitions than ParMeTiS on aver-

age, albeit with considerably slower runtimes. However, reasonably good speedups

relative to the JOSTLE [WCE95] serial graph partitioner were reported. The au-

thors observe that the partitioning time (for all the parallel algorithms) is strongly

dependent on the initial vertex distribution, since a good initial distribution of

vertices to processors decreases the number of edges that span multiple proces-

sors, reducing interprocessor communication.

Chapter 4

Parallel Multilevel Hypergraph

Partitioning

4.1 Introduction

As discussed in Section 1.1.4, many large-scale hypergraph partitioning appli-

cations demand parallel partitioners, because existing serial partitioners do not

have sufficient solution capacity. Since parallel hypergraph partitioners are not

currently available, but parallel graph partitioners (e.g. ParMeTiS [KSK02]) are,

the best that can be done for large problem instances is to use an approximate

graph model in combination with a parallel graph partitioner.

This chapter describes our work on parallel multilevel hypergraph partitioning.

We first present our preliminary work, in the form of an application-specific disk-

based parallel multilevel hypergraph partitioning algorithm. It was designed to

exploit the structure inherent in hypergraphs derived from Markov and semi-

Markov transition matrices that are constructed by a breadth-first traversal of

the state-transition graphs.

We then present the main contribution of this thesis: a general parallel multi-

level k-way hypergraph partitioning algorithm, developed upon experience from

our initial work. We show conditions under which our parallel algorithm is cost-

101

4.2. Parallel Hypergraph Partitioning Considerations 102

optimal and derive its isoefficiency function. Finally, we describe a very recent

approach to parallel hypergraph partitioning developed at Sandia National Lab-

oratories.

The remainder of this chapter is organised as follows. Section 4.2 outlines a gen-

eral framework for parallel multilevel hypergraph partitioning algorithms. Sec-

tion 4.3 describes our disk-based parallel multilevel hypergraph partitioning al-

gorithm. Section 4.4 summarises the insights gained from our preliminary work

on the disk-based algorithm and discusses concurrency within serial multilevel

hypergraph partitioning algorithms. Section 4.5 describes our general parallel

multilevel k-way hypergraph partitioning algorithm. The algorithm’s analytical

performance model is described in Section 4.6. Finally, Section 4.7 describes

another very recent approach to parallel hypergraph partitioning, proposed in

[DBH+06].

4.2 Parallel Hypergraph Partitioning Consider-

ations

There are two main objectives behind the development of a successful paral-

lel hypergraph partitioning algorithm. Firstly, we seek a parallel hypergraph

partitioning algorithm that produces partitions of comparable quality to those

produced by the serial algorithm. Note that no parallel partitioning algorithm

can guarantee better partition quality than a serial algorithm. This is because

the performance of the parallel algorithm on p processors can be replicated seri-

ally by lumping together the p sets of computations (that are performed across

p processors) into a single set S and performing the computations of S in a suit-

able order. Secondly, we would also like our parallel partitioning algorithm to be

technically scalable, as described in Section 2.5.2. This means that we would like

to be able to maintain a constant level of processor efficiency with an increasing

number of processors, by appropriately increasing the input problem size.

Experience from parallel graph partitioning suggests that finding true concur-

4.2. Parallel Hypergraph Partitioning Considerations 103

rency in serial multilevel hypergraph partitioning algorithms is difficult1. How-

ever, the similarity in their respective serial partitioning algorithms suggests that

the ideas behind parallel graph partitioning algorithms could be a useful starting

point for development of parallel hypergraph partitioning algorithms. We seek a

parallel formulation of the multilevel approach, since it is at the core of leading-

edge heuristics for both serial hypergraph partitioning and serial and parallel

graph partitioning.

4.2.1 Graphs vs. Hypergraphs

It is instructive to consider the primary difference between graphs and hyper-

graphs and the impact this has on a näıve adaptation of parallel graph parti-

tioning algorithms to hypergraphs. Recall that, whereas the cardinality of every

edge in a graph is two, the cardinalities of hyperedges in a hypergraph may vary

from a lower bound of one to an upper bound given by the number of vertices in

the hypergraph.

This is significant because the main obstacle to parallelism in graph and hyper-

graph partitioning is the presence of adjacent vertices on different processors.

Firstly, consider a move-based partitioning algorithm. Concurrent movement of

adjacent vertices on different processors potentially causes a conflict because the

gain of each vertex move, as computed by the respective processor, is conditional

upon its adjacent vertices remaining fixed in their respective parts.

Secondly, consider the edge coarsening algorithm; serially, it matches an un-

matched vertex with the most strongly connected neighbouring unmatched ver-

tex. In parallel, processors compute vertex matches concurrently. A processor

may match an unmatched local vertex with (what it thinks) is another unmatched

vertex on another processor; however, this remote vertex may have already been

matched by its owner processor.

1Recall from Section 3.6.2 that [SW91] showed that KL and FM-based partitioning is P-

complete, which suggests that finding true concurrency within these algorithms is difficult

[GHR95].

4.2. Parallel Hypergraph Partitioning Considerations 104

In [KK97], in the context of parallel graph partitioning, Karypis and Kumar

coloured the vertices of the graph to identify vertices that did not share any

common edges. In any given step, the algorithm would operate concurrently

only on vertices corresponding to the same colour, avoiding the conflicts outlined

above. Identifying groups of vertices that do not share any common hyperedges in

the hypergraph may be achieved by constructing a graph clique model and then

colouring this vertex connectivity graph. However, because large hyperedges will

induce large cliques in the vertex connectivity graph, its chromatic number is

also likely to be large2.

4.2.2 A Parallel Framework for the Multilevel Approach

We outline a framework for the development of parallel multilevel hypergraph

partitioning algorithms. We note that only the coarsening and uncoarsening

phases need to be parallelised. During the initial partitioning phase, the coarsest

hypergraph should be small enough to be partitioned serially on a single processor

and the time-complexity of this serial component should be dominated by the

time-complexities of the parallel coarsening and parallel uncoarsening phases.

The proposed parallel multilevel pipeline is illustrated in Figure 4.1.

The design of a parallel hypergraph partitioning algorithm may be application-

specific. That is to say, the parallel algorithm may be designed to exploit an

inherent structure within hypergraphs from a particular application domain. We

also note, drawing from experiences in parallel graph partitioning literature, that

formulating a parallel algorithm that exactly replicates the behaviour of the serial

partitioning algorithm is not necessary. By approximating the serial algorithms,

parallel algorithms may be able to achieve better concurrency.

2The number of colours used is the chromatic number of the graph. Suppose that in a

graph G(V, E) the largest vertex clique has d vertices. Then, d is (trivially) a lower bound on

its chromatic number χ(G).

4.3. An Application-Specific Disk-Based Parallel Algorithm 105

Figure 4.1. The parallel multilevel hypergraph partitioning pipeline.

4.3 An Application-Specific Disk-Based Paral-

lel Algorithm

This section describes the application-specific disk-based parallel multilevel par-

titioning algorithm. The disk-based parallel hypergraph partitioning algorithm

is the first contribution of this thesis and it was first presented in [TK04c]. We

sought a high-capacity application-specific solver, motivated by the successful use

of out-of-core techniques to solve large systems of linear equations [KH99].

The algorithm was designed to exploit an inherent characteristic of transition

matrices of Markov and semi-Markov chains, when generated by a breadth-first

search of the state-transition graph. An example of such a transition matrix,

with the distinctive, almost lower-triangular structure, is shown in Figure 4.2

4.3. An Application-Specific Disk-Based Parallel Algorithm 106

[Kno00].

Our target application is parallel sparse matrix–vector multiplication within an

iterative Laplace Transform inversion algorithm used to compute probability dis-

tributions of response times in queueing systems [BDKW03, BDKW04]. The

Laplace transform inverter solves a large number of sparse systems of complex

linear equations; each sparse system of linear equations is solved using a parallel

iterative method, for which the kernel operation is parallel sparse matrix–vector

multiplication. In [BDKW03, BDKW04], serial hypergraph partitioning was used

to accelerate the parallel sparse matrix–vector multiplication within the Laplace

Transform inverter. However, in order to analyse systems of realistic size, high-

capacity hypergraph partitioning is required.

We describe in more detail the hypergraph models used for sparse matrix decom-

position in parallel sparse matrix–vector multiplication in Section 6.3.1. Here,

the hypergraph is derived from the transition matrix by considering it as the

incidence matrix of a hypergraph. The matrix rows define the vertices and the

matrix columns the hyperedges of the hypergraph, so that a partition of the

hypergraph corresponds to a row-wise decomposition of the matrix to proces-

sors; the partitioning objective exactly quantifies the communication volume of

parallel sparse matrix–vector multiplication and is minimised. This is consistent

with the one-dimensional hypergraph row-wise decomposition model for parallel

sparse matrix–vector multiplication [cA99].

Following the remarks in Section 4.2.2, only the coarsening and the uncoarsening

phases of the multilevel approach are parallelised. The target architecture for

the algorithm is a cluster of commodity workstations connected by switched 100

Mbps Ethernet. We restrict our parallel algorithm formulation so that both the

desired number of parts in the partition, k, and the number of processors, p, must

be a power of two and k ≥ p.

4.3. An Application-Specific Disk-Based Parallel Algorithm 107

0

10000

20000

30000

40000

50000

60000

70000

0 10000 20000 30000 40000 50000 60000 70000

P0

Figure 4.2. An example of a semi-Markov transition matrix generated by breadth-first state

traversal.

4.3.1 Data Distribution

A natural way to store a hypergraph Hi(Vi, Ei) at stage i in a multilevel algo-

rithm across p processors is to store |Vi|/p vertices and |Ei|/p hyperedges on each

processor. The processors are assigned non-overlapping sets of vertices; V
pj

i on

processor pj, such that
⋃

j V
pj

i = Vi.

In order to eliminate the communication overhead that would arise when locating

remote vertices that are adjacent to a local vertex v ∈ V
pj

i on processor pj,

all hyperedges incident on vertices in V
pj

i are assigned to Epj

i (i.e. allocated to

processor pj).

Note that this hyperedge-to-processor allocation may result in some hyperedges

being replicated across several processors, since vertices incident on such hy-

peredges will be assigned to different processors. We refer to these as frontier

hyperedges. To increase capacity, the algorithm only stores in memory the hyper-

graph corresponding to the current stage in the multilevel pipeline; the remaining

hypergraphs are stored on disk and are loaded into memory as required.

4.3. An Application-Specific Disk-Based Parallel Algorithm 108

4.3.2 Parallel Coarsening Phase

The serial coarsening algorithm chosen for parallelisation is the First Choice

(FC) coarsening algorithm from [KAKS97]. In a näıve parallel formulation, if

the processors were to apply the serial FC algorithm to their local vertex sets

concurrently during coarsening stage i, potentially excessive interprocessor com-

munication may result (since adjacent vertices may be located across several

processors).

In the belief that the approximate lower-triangular structure of the transition

matrix can ensure a sufficient number of strongly connected local vertex clusters,

our parallel coarsening algorithm only matches together vertices local to the

processor. This avoids interprocessor communication during the vertex matching

computation.

We first perform an experiment to indicate whether restricting the parallel coars-

ening algorithm in this manner would still yield a sufficient number of good ver-

tex matches, when compared to the unrestricted coarsening algorithm. A simple

serial vertex matching algorithm (edge coarsening [KAKS97]) was applied to hy-

pergraphs derived from transition matrices of a semi-Markov model of a voting

system [BDHK03]. The main characteristics of these voting hypergraphs can be

found in Appendix A. It was conjectured that two vertices close in terms of their

index (corresponding to two rows that are close in the transition matrix) would

form good matches. This is because the upper triangular part of the matrix is

mostly zero, while the diagonal region is the densest part of the matrix.

The serial edge coarsening algorithm traverses the vertex set Vi of the hypergraph

in random order (cf. Section 3.5.2). Given an unmatched vertex v ∈ Vi, it looks for

a maximal vertex match with another unmatched vertex, subject to the maximum

prescribed cluster weight. If no suitable matches are found, v is copied over to

Vi+1. The algorithm terminates when the coarse hypergraph has been reduced

by a prescribed amount. We compute the connectivity metric between two given

vertices as the sum of the weights of the hyperedges that connect the two vertices.

4.3. An Application-Specific Disk-Based Parallel Algorithm 109

Hypergraph partition size % local % remote % singleton

voting100 2 90.1 0.9 9.0

voting100 4 88.1 2.9 9.0

voting100 8 84.4 6.7 8.9

voting100 16 77.2 13.9 8.9

voting100 32 62.8 28.2 9.0

voting125 2 90.4 0.7 8.9

voting125 4 88.8 2.3 8.9

voting125 8 85.9 5.2 8.9

voting125 16 79.9 11.2 8.9

voting125 32 68.6 22.5 8.9

voting150 2 91.5 0.7 7.8

voting150 4 90.2 2.0 7.8

voting150 8 87.5 4.7 7.8

voting150 16 82.4 9.8 7.8

voting150 32 72.4 19.8 7.8

voting175 2 91.6 0.6 7.8

voting175 4 90.5 1.7 7.8

voting175 8 88.2 4.0 7.8

voting175 16 83.8 8.4 7.8

voting175 32 75.1 17.1 7.8

Table 4.1. Percentages of match types in the edge coarsening algorithm during the vertex

connectivity analysis.

We performed the experiment as follows. The vertex set Vi was partitioned into a

number of subsets, each of which contained vertices with contiguous index. Dur-

ing the edge coarsening procedure, whenever unmatched vertices matched with

unmatched vertices within the same subset, the match was called a local match.

When vertices matched with others from a different subset, it was called a remote

match. Finally, vertices that were simply copied over to the coarser hypergraph

were denoted singleton matches. Table 4.1 shows the average percentages of the

above match types over ten runs of the algorithm on the voting hypergraphs. The

results of our experiment suggest that vertices seek matches with their immediate

neighbours (which are defined in terms of their indices) in hypergraphs represent-

ing Markov and semi-Markov transition matrices. This follows from observing a

high percentage of local matches and a low percentage of remote matches.

4.3. An Application-Specific Disk-Based Parallel Algorithm 110

Our parallel coarsening algorithm exploits this property by allocating vertices of

contiguous index to the set V
pj

i on processor pj (this corresponds to allocating

contiguous rows of the transition matrix to pj).

Once the map gi has been computed across the processors, we construct the hy-

pergraph Hi+1(Vi+1, Ei+1) using Hi(Vi, Ei) and gi. A b–bit hash key is associated

with each hyperedge e ∈ Ei and used to assign “ownership” of hyperedges to pro-

cessors. This hash key is computed using a hash-function h : Na → N (described

in more detail in Section 4.5.1), where a is the maximum hyperedge cardinality

in Ei. It posesses the desirable property that for an arbitrary set of hyperedges

E, h(e) mod p, e ∈ E, is near-uniformly distributed.

Each processor only contracts those hyperedges that have been assigned to it

by the hash function. This ensures that only one copy of a given hyperedge

is contracted (as potentially multiple copies of the given hyperedge exist across

processors). Each processor first contracts the local hyperedges using its portion

of the map gi, then communicates this portion of the vector representation of

gi to the other p − 1 processors in a round-robin fashion. This enables every

processor to fully contract its hyperedges. There is no need for explicit removal

of duplicate hyperedges following the hyperedge contraction, because this is done

when the hyperedges are read in from disk by the processors at the beginning of

the subsequent coarsening step.

Motivated by [KK98c], we use a smaller number of processors as the hypergraph

is reduced in successive coarsening steps. In our implementation, we only use

processor numbers that are powers of two. When the hypergraph is considered

to be small enough to fit on a single processor, a serial multilevel algorithm is

used; in our implementation, we require that the hypergraph has been reduced

by a factor of p before using a serial algorithm.

4.3. An Application-Specific Disk-Based Parallel Algorithm 111

4.3.3 Initial Partitioning Phase

During this phase, a partition of the coarse hypergraph is computed serially on

a single processor. In principle, any serial algorithm may be used, as this is the

least time-critical phase in the parallel multilevel algorithm. For our experiments,

we used the HMETIS PartKway() routine from the hMeTiS library [KK98a].

4.3.4 Parallel Uncoarsening Phase

During the ith level in the uncoarsening phase, each processor is responsible for

vertices from k/p parts and the hyperedges incident on these vertices. As in

the coarsening phase, some hyperedges are replicated across multiple processors

(frontier hyperedges). The parallel refinement algorithm proceeds in a number of

steps. During each step, every processor performs local refinement on the parts

it currently owns (using serial FM when k = 2p, and using the serial greedy

k-way refinement [KK98b] if k > 2p). If p = k, the processors pair-up and only

one processor performs serial FM refinement on the two parts (rather than the

processors interacting to perform FM refinement, as in [DPHL95]).

A round-robin communication of vertices and incident hyperedges is then per-

formed, in order for subsequent steps to consider different directions of vertex

move. The partition balance constraint is enforced locally, since each processor

refines an independent set of parts. As in the parallel coarsening phase, fewer

processors are used at the coarser levels.

4.3.5 Implementation and Experimental Evaluation

The parallel algorithm was implemented in the C++ language using the Message

Passing Interface (MPI) standard [SOHL+98] for interprocessor communication,

forming the Parkway1.0 tool. This experimental implementation consisted of

three phases:

4.3. An Application-Specific Disk-Based Parallel Algorithm 112

1. Parallel coarsening using the parallel formulation of the First Choice coars-

ening algorithm from Section 4.3.2. A reduction ratio of 2.0 (cf. Equa-

tion 3.7) was enforced on each processor.

2. Serial initial partitioning performed by the HMETIS PartKway() routine of

the hMeTiS library. This is called on a single processor when the coarse

hypergraph has Θ(n/p) vertices.

3. Parallel refinement on the partition output by HMETIS PartKway() using

the parallel refinement algorithm described in Section 4.3.4.

The architecture used in the experiments consisted of a cluster of commodity PC

workstations, connected by a switched 100 Mbps ethernet network. Each PC was

equipped with a 2.8GHz Pentium(4) CPU and 1GB RAM.

The experimental evaluation was carried out on hypergraph representations of

transition matrices from the voting model with 250 and 300 voters [BDHK03],

yielding the voting250 and voting300 hypergraphs respectively. The hypergraphs

were constructed from the sparse matrices according to the one-dimensional row-

wise hypergraph model for sparse matrix decomposition [cA99]; their main char-

acteristics can be found in Appendix A. In order to quantify the communication

volume of parallel sparse matrix–vector multiplication exactly, the partitioning

objective used in the experiments was the k − 1 metric (cf. Definition 2.14). A

partitioning balance constraint of 5% was imposed, equivalent to setting ε = 0.05

in Equation 2.3.

Both problem instances were too large to be partitioned on a single worksta-

tion, so a suitable comparison was provided by the parallel graph partitioning

tool ParMeTiS [KSK02], which implements the coarse-grained parallel algorithm

described in Section 3.6.5. The transition matrices were converted into appro-

priate input for ParMeTiS according to the transformations described in [cA99].

We used default parameter values when running ParMeTiS. Note that it is not

possible to explicitly enforce the balance constraint on partitions produced by

4.3. An Application-Specific Disk-Based Parallel Algorithm 113

voting250 results using 4 processors

Parkway1.0 ParMeTiS

Partition size k − 1 objective time(s) k − 1 objective time(s)

8 91 511 1 309 117 354 25

16 182 206 1 393 249 415 27

32 354 561 1 495 402 681 32

64 525 856 1 777 610 597 33

total: 1 154 134 5 974 1 380 047 117

Table 4.2. Parkway1.0 and ParMeTiS: variation in partition quality and runtime for the

voting250 hypergraph.

voting300 results using 8 processors

Parkway1.0 ParMeTiS

Partition size k − 1 objective time(s) k − 1 objective time(s)

16 322 737 4 827 442 387 85

32 529 763 4 762 687 659 61

64 874 652 5 007 1 033 312 80

total: 1 727 152 14 596 2 163 358 246

Table 4.3. Parkway1.0 and ParMeTiS: variation in partition quality and runtime for the

voting300 hypergraph.

ParMeTiS; however, the vast majority of partitions produced satisfied the 5%

balance constraint.

Table 4.2 presents the experimental results for the voting250 hypergraph and Ta-

ble 4.3 results for the voting300 hypergraph. For completeness, these two tables

also appear in Appendix B. The results indicate that the proposed parallel hy-

pergraph partitioning algorithm significantly dominates the approximation given

by parallel graph partitioning in terms of partition quality. On average, the al-

gorithm produces partitions with k − 1 objective values 20% lower than those

produced by ParMeTiS on the voting300 hypergraph and 16% lower on the smaller

voting250 hypergraph. In turn, ParMeTiS significantly dominates our disk-based

algorithm in terms of runtime.

4.4. Developing a General Parallel Hypergraph Partitioning Algorithm 114

There are a number of reasons for the large difference in the respective run-

times. Firstly, hypergraph partitioning is inherently more “difficult” than graph

partitioning and should thus take more time to compute. Secondly, our imple-

mentation experienced slow disk access time due to high disk contention; this

may partly be due to the use of disk storage on a shared departmental file server.

Thirdly, the parallel refinement algorithm required explicit communication of

vertices and corresponding incident hyperedges in order to consider the differ-

ent directions of vertex move. The volume of this communication was observed

to be very large and increased with the number of processors used. Finally, as

the hypergraph was “folded” onto fewer processors relatively early in the multi-

level process, the parallel partitioning algorithm delivered relatively poor overall

processor utilisation.

Nevertheless, we note that the very long runtimes of the disk-based parallel

partitioning algorithm are not prohibitive in the context of our target applica-

tion (parallel Laplace Transform-based response time computations) [BDKW03,

BDKW04]. Here, parallel sparse matrix–vector multiplication is typically per-

formed several hundred thousand times (there are thousands of systems of com-

plex linear equations to solve, each requiring hundreds of iterations) using the

same sparse matrix decomposition; the reduction in communication volume as-

sociated with better quality of decomposition when using a hypergraph model is

thus also magnified by a factor of several hundred thousand.

4.4 Developing a General Parallel Hypergraph

Partitioning Algorithm

4.4.1 Insights Gained From Preliminary Work

In Section 4.3, we described an application-specific disk-based parallel formula-

tion of the multilevel hypergraph partitioning approach. Although the disk-based

parallel algorithm exhibited poor scalability and long runtimes, it was able to pro-

4.4. Developing a General Parallel Hypergraph Partitioning Algorithm 115

duce suboptimal partitions of good quality. We will briefly summarise the most

important conclusions drawn from our preliminary experiments.

The parallel coarsening and parallel refinement algorithms implemented within

the disk-based parallel partitioning algorithm were motivated by the desire to

avoid interprocessor conflicts occuring during coarsening and uncoarsening. We

consider these schemes to be too restrictive. In particular, during the coarsening

phase, disallowing inter-processor vertex matches in order to reduce the com-

munication cost of the algorithm may significantly degrade the quality of the

coarsening, as the number of processors is increased. In order to maintain the

quality of the parallel coarsening algorithm during coarser levels, fewer proces-

sors were used by the disk-based parallel algorithm; however, this resulted in

poor processor utilisation. Also, although conflicts were avoided in the parallel

refinement algorithm, it was necessary to explicitly move vertices and the corre-

sponding adjacency lists between processors. In addition, the parallel refinement

algorithm did not provide a global view because it limited vertex moves to parts

associated with each processor.

4.4.2 Discussion of Parallelism in Multilevel Hypergraph

Partitioning

In this section, we consider in more detail the obstacles to, and opportunities for,

concurrency in multilevel hypergraph partitioning algorithms.

Consider a one-dimensional distribution of a hypergraph Hi(Vi, Ei) across p pro-

cessors during the ith multilevel step, as described in Section 4.3.1. We assume

that the number of vertices and the number of hyperedges in the hypergraph

are of the same order of magnitude. Without loss of generality, we also assume

that each processor stores n/p of the vertices. For the moment, we make no

assumptions about the hyperedge-to-processor allocation.

4.4. Developing a General Parallel Hypergraph Partitioning Algorithm 116

p 1 p 2 p 3

= locally held vertices

= remotely held vertices

= sought for remote match

same colour indicates that
vertices have been chosen
to match together by the
processor

V1

V2

3V

V4

V5

V6

1

1

1

2

3

4
V1

V2

3V

V4

V5

V6

1

1

1

2

3

4
V1

V2

3V

V4

V5

V6

1

1

1

2

3

4

V1

V2

3V

V4

V5

V6

1

1

1

2

3

4
V1

V2

3V

V4

V5

V6

1

1

1

2

3

4
V1

V2

3V

V4

V5

V6

1

1

1

2

3

4

V1

V2

3V

V4

V5

V6

1

1

1

2

3

4

Figure 4.3. An example of conflict occurrence during parallel coarsening.

Parallelism during coarsening

Recall that step i in the coarsening phase first constructs the coarsening map

gi (cf. Section 3.5.2) by mapping strongly connected vertex clusters to a single

coarse vertex. In parallel, the processors are required to make vertex matching

decisions concurrently. We consider a näıve parallel formulation of the First

Choice serial coarsening algorithm, in the scenario shown in Figure 4.3. Here,

the numbers adjacent to the hyperedges denote their weight.

4.4. Developing a General Parallel Hypergraph Partitioning Algorithm 117

Processors p1, p2 and p3 all proceed concurrently, with p1 responsible for v2 and

v3, p2 responsible for v1 and v6, and p3 responsible for v4 and v5. Processor p1

considers v2 to be most strongly connected to v1 (which is held by p2) and will

send a message to p2 requesting this match. Processor p1 also considers v3 to

be most strongly connected to v4 (held by p3) and will also send a message to

p3 proposing to match v3 with v4. Processor p2 has (locally) matched v1 and v6

together, and would like to match both with v5 (held on processor p3) because v5

is most strongly connected to v6. Processor p2 will send a message to processor

p3 to request this match. Finally, processor p3 locally matches v4 and v5.

Indiscriminately allowing all the requested interprocessor matches to proceed

forms a cluster (consisting of vertices v1 to v6, inclusive) that will collapse to a

single coarse vertex. Such an algorithm may produce coarse vertices that exceed

the prescribed vertex weight threshold. It is possible to allow only a subset

of the requested matches; however, this requires additional communication and

processor synchronisation.

Having computed the map gi, the serial coarsening algorithm uses it to construct

Hi+1(Vi+1, Ei+1) from Hi(Vi, Ei). In parallel, each processor pj stores a subset of

hyperedges Epj

i ⊂ Ei and a subset of vertices V
pj

i ⊂ Vi. To contract hyperedges in

Epj

i , pj may need values of gi that are stored on other processors; this will induce

interprocessor communication. Moreover, we note that a round-robin communi-

cation of gi to all the processors (as in the disk-based parallel algorithm from

Section 4.3) is not cost-optimal on most distributed-memory message-passing

architectures.

Another important issue during the coarsening phase is maintaining the computa-

tional load balance during the coarser levels. Even though the initial distribution

of the hypergraph H(V, E) to processors ensures a computational load balance at

the beginning of the coarsening process, a computational load imbalance may still

occur at coarser levels because a hypergraph may coarsen at a faster rate on one

or more processors than on the remaining processors. Finally, in order to ensure

that the hypergraph shrinks by a sufficient amount during the coarsening phase,

4.4. Developing a General Parallel Hypergraph Partitioning Algorithm 118

the parallel coarsening algorithm may need to ensure that duplicate hyperedges

in Hi+1(Vi+1, Ei+1) are eliminated. Again, we note that a round-robin commu-

nication of hyperedges in Ei+1 followed by a local comparison of hyperedges on

each processor is not cost-optimal on most distributed-memory message-passing

architectures.

Parallelism during uncoarsening and refinement

At the beginning of step i in the uncoarsening phase, the serial multilevel algo-

rithm projects the partition of the coarser hypergraph Πi+1 onto the hypergraph

Hi. We note that in parallel this is similar to computing the hyperedge set Ei+1

using the map gi and Ei, because processors may not store locally part values of

vertices in Hi+1 needed by local vertices in Hi.

After projecting Πi+1 onto Hi during step i in the uncoarsening phase, the serial

multilevel algorithm performs heuristic refinement. KL and FM-based refine-

ment algorithms require an update of the gain bucket data structures (or priority

queues in KL) after every vertex move (cf. Section 3.4.1). Because vertices ad-

jacent to the most recently moved vertex may be stored across many processors,

maintaining and updating the correct part weights and the correct gain values

after each vertex move requires repeated processor synchronisation, potentially

involving all p processors.

In the context of graph partitioning, parallel refinement algorithms do not explic-

itly maintain priority queues or gain bucket data structures in order to reduce

processor synchronisation and interprocessor communication (cf. Section 3.6).

These parallel approximations to the serial refinement algorithm instead greedily

move only those vertices whose moves lead to a gain in the objective function.

In the context of serial multilevel hypergraph partitioning, Karypis and Kumar

note that the serial greedy k-way refinement algorithm has good opportunities

for concurrency [KK98b]. Recall from Section 3.5.4 that each pass of the serial

greedy k-way refinement algorithm visits the vertices of the hypergraph Hi(Vi, Ei)

in a random order. Each vertex v ∈ Vi is moved to the part such that its move

4.4. Developing a General Parallel Hypergraph Partitioning Algorithm 119

does not violate the balance constraint and maximises the positive gain in the

objective function. If no feasible move yielding a positive gain can be made, the

vertex is not moved.

Now, consider the scenario in Figure 4.4, where again the numbers adjacent to

the hyperedges denote their weight. Here, a näıve parallel formulation of the

serial greedy k-way refinement algorithm from [KK98b] is running concurrently

on processors p1 and p2. Processor p1 computes a gain of two for moving vertex v2

from part P1 to part P2 (a hyperedge of weight three is removed from the cutset,

while a hyperedge of weight one is introduced into the cutset by the move).

Meanwhile, processor p2 computes a gain of two for moving vertex v4 from part

P2 to part P1 (a hyperedge of weight two is removed from the cutset by the

move). However, when the two moves are executed concurrently, the overall gain

is actually minus one, i.e. the moves have increased the cutsize of the partition

from five to six. This phenomenon was called vertex thrashing in the context of

parallel graph partitioning [KK97].

Finally, enforcing the balance constraint from Equation 2.3 while permitting

concurrent vertex moves during refinement is non-trivial. Unless processors syn-

chronise after every vertex move, it appears difficult to guarantee that concurrent

vertex moves do not violate the balance constraint. It is possible to set tighter

local balance constraints (on individual processors), such that the overall balance

can be guaranteed if the local balance constraints are satisfied on each processor.

However, this scheme may be too restrictive as it may not allow vertex moves

with large gain that are not feasible in the context of the local balance constraint,

but are nevertheless feasible within the (actual) global balance constraint (cf.

Equation 2.3).

A remark on data distribution

There are also a number of data distribution issues that may potentially affect

the scalability of the algorithm. Consider the case where the hyperedge sets

stored across the processors are disjoint (i.e. there are no replicated frontier hy-

4.4. Developing a General Parallel Hypergraph Partitioning Algorithm 120

p 2p 1

= part P 1 = part P 2

Processors p 1 and p 2 compute
vertex gains concurrently

Processor p 1 is responsible for
vertices V 1 and V 2, while
processor p 2 is responsible for
vertices V 3, V4 and V 5

Processors p 1 and p 2 make the
vertex moves concurrently

V1

V3

V2

V5

V4

1

3

2

V1

V3

V2

V5

V4

1

3

2

V1

V3

V2

V5

V4

1

3

2

V1

V3

V2

V5

V4

1

3

2

V1

V3

V2

V5

V4

1

3

2

Figure 4.4. An example of conflict occurrence during parallel refinement.

peredges). It is difficult to guarantee that the locally-held hyperedge set Epj

i on

processor pj will contain all the hyperedges incident on the locally-held vertices

(in V
pj

i). In general, a large number of hyperedges incident on the locally-held

vertices in V
pj

i may be stored on remote processors and in order for processor

pj to make meaningful coarsening and refinement decisions, they will need to be

communicated to pj.

4.5. Parallel Multilevel Partitioning Algorithms 121

The performance of a parallel algorithm is also affected by the computational

load balance across the processors. At the beginning of the parallel multilevel

algorithm, the locally-held hyperedge sets Epj may approximately be of the same

size, but as the coarsening phase progresses, this may no longer hold (for example,

hyperedges incident on strongly-connected groups of vertices are more likely to

be removed in the coarser hypergraphs).

4.5 Parallel Multilevel Partitioning Algorithms

4.5.1 Data Distribution

The hypergraph H(V, E) is distributed across the processors as follows. Each

processor stores |V |/p vertices and |E|/p hyperedges. The vertices are allocated

to processors lexically, so that the first |V |/p vertices (in terms of their index)

are allocated to the first processor, the subsequent |V |/p vertices to the second

processor and so on. For each vertex v ∈ V , its weight and current part index

in the partition are stored on the processor holding v and similarly, for each

hyperedge e ∈ E , its weight is stored on the processor holding e.

A randomized allocation of vertices to processors can be achieved by computing

a pseudorandom permutation of the indices of the elements of the set V and then

modifying the hyperedge set E by assigning to every vertex in each hyperedge a

new index, as given by the permutation.

A b-bit hash key is associated with each hyperedge e ∈ E . It is computed using

the hash-function h : Na → N, where a is the maximum hyperedge cardinality.

This hash function is a variant of the load balancing hash function from [Kno00].

An implementation of the function computing a 32-bit hash key is illustrated in

Listing 4.1.

The hash-function has the desirable property that for an arbitrary set of hyper-

edges E, h(e) mod p, e ∈ E, is near-uniformly distributed. Consequently, in order

to ensure an even spread of hyperedges across the processors, each hyperedge

4.5. Parallel Multilevel Partitioning Algorithms 122

typedef unsigned int hashkey ;

hashkey hashf (int ∗ hedge , int l ength) {
int s l i d e 1 = 0 , s l i d e 2 = s izeof (hashkey) / 2 , sum = 0;
hashkey key = 0 ;
for (int i = 0 ; i < MAX HYPEREDGE LENGTH; ++ i) {

i f (i < l ength) {
sum = sum + hedge [i] ;
key = XOR(key , r o t a t eL e f t (hedge [i] , s l i d e 1)) ;

} else {
sum = sum + 1;
key = XOR(key , r o t a t eL e f t (1 , s l i d e 1)) ;

}
key = XOR(key , r o t a t eL e f t (sum , s l i d e 2)) ;
s l i d e 1 = Mod(s l i d e 1 + 7 , s izeof (hashkey)) ;
s l i d e 2 = Mod(s l i d e 2 + 13 , s izeof (hashkey)) ;

}
return key ;

}

unsigned int r o t a t eL e f t (unsigned int num, int t imes) {

int r i g h t = s izeof (hashkey) − t imes ;
return (OR(Sh i f t r (num, r i g h t) , S h i f t l (num, t imes))) ;

}

Listing 4.1. Load-balancing hash function with 32-bit hash keys.

e resides on the processor given by h(e) mod p. To calculate the probability of

collision, assume that h distributes the keys independently and uniformly across

the key space (i.e. that all M = 2b key values are equally likely) and let C(N) be

the number of hash key collisions among N distinct hyperedges. We then have

P(C(N) ≥ 1) = 1− P(C(N) = 0) (4.1)

= 1− M !

(M −N)!MN
(4.2)

≤ 1− e
−N2

2M (4.3)

if N2 ¿ M , as shown in [Kno00]. Suppose that, for example, |E| = 108, the

4.5. Parallel Multilevel Partitioning Algorithms 123

hyperedges are distinct and that b = 64. Then P(C(108) ≥ 1) ≤ 0.0003 – ensur-

ing that the probability of collisions is remote. This facilitates rapid hyperedge

comparison, since given hyperedges e and e′, h(e) 6= h(e′) implies that e 6= e′.

The converse does not hold, but collisions do not affect the correctness of the

algorithm; when a collision occurs between hyperedges e, e′ ∈ E , full sets e and

e′ can be compared.

At the beginning of every multilevel step, each processor assembles the set of

hyperedges that are incident on each of its locally held vertices using an all-to-all

personalized communication. A map from the local vertices to their adjacent

hyperedges is then built. At the end of the multilevel step, the non-local assem-

bled hyperedges are deleted together with the vertex-to-hyperedge map. Note

that during the multilevel step, frontier hyperedges may be replicated on multi-

ple processors, but only for the hypergraph used in the current multilevel step.

Experience suggests that, given a sparse hypergraph with small average vertex

degree, the memory overhead incurred by duplicating frontier hyperedges at the

current multilevel step is modest.

4.5.2 Parallel Coarsening Phase

This section describes the parallel formulation of the First Choice (FC) serial

coarsening algorithm [KAKS97, KK98b]. In principle, a number of the other

algorithms described in Section 3.5.2 may also be parallelised in this fashion,

with the data distribution as described in Section 4.5.1.

Recall from Section 3.5.2 that given a hypergraph Hi(Vi, Ei), the serial FC coars-

ening algorithm proceeds by visiting the vertices of the hypergraph in a random

order. For each vertex v ∈ Vi, all vertices (both those already matched and those

unmatched) that are connected via hyperedges incident on v are considered for

matching with v. A connectedness metric is computed between pairs of vertices

and the most strongly connected vertex to v is chosen for matching, provided that

the resulting cluster v′ ∈ Vi+1 does not exceed a prescribed maximum weight. The

matching computation ends when |Vi|/|Vi+1| > r.

4.5. Parallel Multilevel Partitioning Algorithms 124

In parallel, each processor pj traverses its local vertex set V
pj

i in random order,

computing vertex matches as in the serial algorithm.

Processor pj also maintains a request set for each of the p − 1 other processors.

If the best match for a local vertex u ∈ V
pj

i is computed to be a vertex v stored

on processor pl 6= pj, then the vertex u is placed into the request set Spj ,pl
. If

another local vertex subsequently chooses u or v as its best match, then it is also

added to Spj ,pl
. The local matching computation terminates when the ratio of

the number of local vertices |V pj

i | to the number of local coarse vertices exceeds a

prescribed threshold (cf. Equation 3.7). When computing the cardinality of the

local coarse vertex set, potential matches with vertices from other processors are

included.

Now, with a view to addressing the potential conflicts outlined in Section 4.4,

there follows a communication step to resolve the vertex matching requests that

span multiple processors. In order to enable a match between two vertices on

different processors that make mutual requests to each other, this proceeds in

two stages. In the first stage, processor pj only communicates request sets Spj ,pl

to processor pl and only receives replies to its requests from pl if j > l, while in

the second stage processor pj only communicates request sets Spj ,pl
to processor

pl and only receives replies to its requests from pl if j < l. This communication

pattern is similar to that described in [KK96], in the context of parallel graph

partitioning.

The processors concurrently decide to accept or reject matching requests from

other processors. Denote by M v
pj ,pl

the set of vertices (possibly consisting of a

single vertex) from the remote processor pj that seeks to match with a local

vertex v stored on processor pl (thus, Spj ,pl
=

⋃
x Mx

pj ,pl
). Processor pl considers

the sets M v
pj ,pl

for each of its requested local vertices v ∈ V pl
i in turn, handling

them as follows:

1. If v is unmatched, matched locally or already matched remotely (during

the previous request communication stage), then a match with M v
pj ,pl

is

granted to processor pj if the weight of the combined cluster (including

4.5. Parallel Multilevel Partitioning Algorithms 125

vertices already matched with v) does not exceed the maximum allowed

vertex weight.

2. If v has been sent to a processor ps, ps 6= pj, as part of a request for another

remote match, then processor pl informs processor pj that the match with

M v
pj ,pl

has been rejected. This is necessary, since granting this match poten-

tially results in a vertex w ∈ Vi+1 that exceeds the maximum allowed vertex

weight if the remote match of v with a vertex on processor ps is granted (as

illustrated in Section 4.4). When informed of the rejection by processor pl,

processor pj will locally match the set M v
pj ,pl

into a single coarse vertex.

Note that in an implementation only the combined weight of the vertices in

M v
pj ,pl

and the index of vertex v need to be communicated from processor pj to

processor pl. The set Spj ,pl
can be received as an array on processor pl and in

our implementation, is processed in random order (because we do not quantify

importance of individual matching requests).

Having computed the map gi : Vi → Vi+1, the coarsening step is completed by

constructing Ei+1, which is done by applying gi to every vertex in each e ∈ Ei.

The values of gi not stored by a processor but required to transform a hyperedge

stored on that processor are first communicated by a personalized all-to-all com-

munication. Each processor then applies gi across each of the |Ei|/p hyperedges

stored on that processor. The removal of duplicate hyperedges in Ei+1 and load

balancing are done as follows. Processors communicate each hyperedge e ∈ Ei+1

and its weight to the destination processor given by h(e) mod p. The proces-

sors retain distinct hyperedges, setting their weight to be the sum of the weights

of their respective duplicates (if any), since all identical hyperedges will possess

the same hash key value and hence will have been communicated to the same

processor. The parallel coarsening step concludes with a load-balancing commu-

nication of Vi+1 such that each processor stores |Vi+1|/p vertices at the start of

the subsequent coarsening step.

4.5. Parallel Multilevel Partitioning Algorithms 126

4.5.3 Serial Initial Partitioning Phase

It is assumed that the hypergraph Hc(Vc, Ec) is small enough for a partition to be

rapidly computed on a single processor. Thus, the details of this phase are not

central to the algorithm. As discussed in Section 4.2.2, in principle, some multiple

of p runs of a given serial algorithm could be computed across the processors in

parallel, or the k-way partition could be computed via recursive bisection, with

the bisections performed in parallel.

4.5.4 Parallel Uncoarsening Phase

Consider the ith multilevel step during the uncoarsening phase, with Hi(Vi, Ei),

Hi+1(Vi+1, Ei+1) and a k-way partition Πi+1 of Hi+1. The projection Hi+1
Πi+1−−−→ Hi

is computed in parallel as follows. Let V
pj

i be the subset of Vi stored on processor

pj. For each v ∈ V
pj

i , if Πi+1(gi(v)) is not available, it is requested from the

processor that is responsible for gi(v) ∈ Vi+1. Then, we set Πi(v) = Πi+1(gi(v)).

The projected partition Πi is refined in parallel using a parallel formulation of the

greedy k-way serial refinement algorithm [KK98b] (cf. Section 3.5.4). Our paral-

lel formulation was motivated by the coarse-grained parallel graph partitioning

algorithm from [KK97] (cf. Section 3.6.5).

The parallel greedy k-way refinement algorithm proceeds in passes, during each

of which a vertex can be moved at most once; however, instead of moving single

vertices across a partition boundary, as in the serial algorithm, the parallel al-

gorithm moves sets of vertices (since vertices will be moved concurrently across

the processors). Each processor pj traverses the local vertex set V
pj

i in random

order and for each v ∈ V
pj

i , the legal move (if any) leading to the largest positive

gain in the objective function is computed. When such moves exist, they are

maintained in sets U
pj

i,l , i 6= l, i, l = 1, . . . , k, where i and l denote current and

destination parts respectively. In order to reduce the effect of vertex thrashing

(cf. Section 4.4.2), the refinement pass proceeds in two stages. During the first

stage, only moves from parts of higher index to parts of lower index are permitted

4.5. Parallel Multilevel Partitioning Algorithms 127

and vice versa during the second stage. Vertices moved during the first stage are

locked with respect to their new part in order to prevent them moving back to

their original part in the second stage of the current pass. Note that this does

not explicitly guarantee that a vertex move will always yield a non-negative gain,

but in practice, occurences of vertex thrashing are rarely observed.

As noted in Section 3.6, most parallel graph refinement algorithms attempt to

maintain partition balance without explicitly guaranteeing tight enforcement of

the partition balance constraint. In contrast, the parallel hypergraph refinement

algorithm presented in this section is guaranteed to produce a partition within

the balance constraint of Equation 2.3.

The partition balance constraint is maintained as follows. A particular processor

is first assigned the status of root processor at the start of refinement. At the

beginning of each of the two stages of a pass, all processors know the exact part

weights and maintain the balance constraint during the local computation of the

sets U
pj

i,l . The associated weights and gains of all the non-empty sets U
pj

i,l are

communicated to the root processor which then determines the actual partition

balance that results from the moves of the vertices in the sets U
pj

i,l . If the balance

constraint is violated, the root processor determines which of the moves should

be taken back to restore the balance and informs the processors containing the

vertices to be moved back. This may be simply implemented as a greedy scheme

favouring taking back moves of sets with large weight and small gain. Finally, the

root processor broadcasts the updated part weights before the processors proceed

with the subsequent stage. As in the serial algorithm, the refinement procedure

terminates when the overall gain of the most recent pass is not positive. Note that

vertices need not explicitly be moved between processors; rather, their part index

value can be changed by the processor that stores the vertex, as in [KK96, KK97].

4.5.5 Parallel Multi-phase Refinement

In Section 3.5.4, we described the iterative application of a serial multilevel hyper-

graph partitioning algorithm within multi-phase refinement. Each such iteration

4.6. Analytical Performance Model 128

is called a V-cycle. This section describes a parallel multi-phase refinement algo-

rithm, consisting of the three multilevel phases: the parallel restricted coarsening

phase, the serial initial partitioning phase and the parallel refinement phase.

The serial initial partitioning and the parallel uncoarsening phases are identical

to those described in Section 4.5.3 and Section 4.5.4. The parallel restricted

coarsening phase operates as follows.

The parallel restricted coarsening phase takes a partition Πi of the hypergraph Hi

as input. A vertex is only allowed to match with an adjacent vertex that belongs

to the same part within the partition, i.e. v ∈ Vi can match with u ∈ Vi if,

and only if, Πi(u) = Πi(v). To reduce the communication cost of the algorithm,

vertices belonging to the same part are collected onto a single processor. The

coarsening algorithm then proceeds serially (but concurrently) on each processor.

The partition balance criterion in Eq. 2.3 should ensure that computational load

balance across the processors during this phase is maintained. The construction

of the coarse hypergraph Hi+1(Vi+1, Ei+1) is done as in the parallel coarsening

algorithm from Section 4.5.2.

4.6 Analytical Performance Model

In this section, we present an analytical performance model of the parallel al-

gorithms described in Section 4.5 and derive the asymptotic runtime Tp on p

processors by modelling average-case behaviour. A theoretical scalability analy-

sis is then carried out. Assuming an asymptotic runtime of O(n) for the serial

multilevel partitioning algorithm (cf. Section 3.5.5), we show conditions under

which our parallel algorithm is cost-optimal and derive its isoefficiency function.

We consider the input hypergraph H(V, E) and let n = |V | and m = |E|. More-

over, let l and d denote the average hyperedge cardinality and the average vertex

degree of H(V, E), respectively. We assume that H(V, E) has low maximum

vertex degree and maximum hyperedge length (i.e. emax ¿ n and dmax ¿ n).

Consequently, we have that l ¿ n and d ¿ n.

4.6. Analytical Performance Model 129

We make the following assumptions about the input hypergraph H(V, E) and the

parallel multilevel hypergraph partitioning algorithm from Section 4.5:

1. H(V, E) is sparse and m is of the same order of magnitude as n.

2. The numbers of vertices and the numbers of hyperedges are respectively

reduced by constant factors 1 + ν and 1 + ω (ν, ω > 0) at each coarsening

step.

3. The number of parts in the partition sought, k, is small, when compared

to n (k ¿ n).

Because n and m are of the same order of magnitude and are both reduced by

constant factors at each multilevel step (assumptions 1 and 2), we need only

consider the number of vertices in the asymptotic parallel runtime analysis (since

the number of hyperedges at a given multilevel step will be of the same order of

magnitude as the number of vertices at that step). Since the number of vertices

in the successive coarser hypergraphs is reduced by a factor greater than one

at each coarsening step, there are O(log n) coarsening steps before the coarsest

hypergraph Hc(Vc, Ec) has Θ(k) vertices (as we assume k ¿ n).

In the following analysis, let ni denote the number of vertices in the hypergraph

Hi(Vi, Ei) at the ith multilevel step. The average vertex degree and average hy-

peredge cardinality of hypergraph Hi are given by li and di respectively. We

note that li is bounded above by l and thus li ¿ n holds for all i. Typically,

di increases (since in practice the number of hyperedges is usually reduced at a

slower rate than the number of vertices by the parallel coarsening algorithm).

However, di is bounded above by the number of hyperedges in Hi and in the

latter stages of the coarsening process, this is an order of magnitude less than n,

so that di ¿ n nevertheless. We assume that di remains small throughout the

multilevel process.

4.6. Analytical Performance Model 130

4.6.1 Performance Model of the Parallel Multilevel Algo-

rithm

The computation and the communication requirements of each phase, Tcmp and

Tcmm respectively, are considered in turn; the asymptotic parallel runtime on

p processors, Tp, is then given by the sum of the two (Tp = Tcmp + Tcmm) as

described in Section 2.5.2.

Computation time-complexity

Consider first the procedure of assembling the hyperedges incident on the lo-

cally stored vertices at the ith multilevel step. Each processor performs O(nili/p)

computation steps in determining destination processors for the locally held hy-

peredges and then O(nidi/p) computation steps in building a map from its local

vertices to the hyperedges incident on these vertices.

Now, consider the parallel coarsening procedure at the ith multilevel step. Here,

O(dili) computation steps are performed in computing matches for each of the

O(ni/p) vertices stored on a processor. Each processor will also potentially per-

form O(ni/p) computation steps in resolving matching requests from other pro-

cessors (assuming that each processor pair exchanges O(ni/p
2) match requests,

which is reasonable if it is assumed that a match with any given vertex is equally

likely). Having computed the matching vector, the algorithm constructs Ei+1

from Ei. To do this, each processor pj computes the matching vector values re-

quired from other processors and, having obtained them, computes the set Epj

i+1.

The former requires O(nili/p) and the latter O((nili log li)/p) computation steps.

Once a coarse hyperedge is constructed, checking for local duplicate hyperedges

in Epj

i+1 is done using a hash table. It takes O(li) steps to check for and resolve a

possible collision if a duplicate key is found in the table. Since li and di can be

bounded above by small constants, the overall computation requirement during

each coarsening step (including assembling incident hyperedges) is O(ni/p).

During the serial initial partitioning phase, the hypergraph has size Θ(k) and

4.6. Analytical Performance Model 131

can be heuristically partitioned to yield a “good” sub-optimal partition in O(k2)

computation steps, for example, by using one of the multilevel partitioning algo-

rithms described in Section 3.5.

A single uncoarsening step consists of projecting a partition Πi+1 of Hi+1 onto

Hi and refining the resulting partition of Hi to obtain Πi. Projecting a partition

at the ith multilevel step involves at most O(ni/p) computation steps on each

processor. Now, consider a single pass of the parallel greedy refinement algorithm

at the ith multilevel step, and assume that the refinement algorithm terminates

within a small number of passes. Vertex gains are computed concurrently and

then rebalancing moves are computed on the root processor, if required. In order

to compute the gain for a move of a vertex v ∈ Vi, the algorithm needs to visit

all the hyperedges incident on v and determine their connectedness to the source

and destination parts of the move. This requires O(dinili/p) computation steps

per pass. The rebalancing computation has complexity O(pk2), since all possible

directions of vertex move may have to be considered. Again, as li and di can be

bounded above by small constants, the overall computation requirement during

each uncoarsening step (including assembling incident hyperedges) is O(ni/p).

The overall asymptotic computational complexity, Tcmp, of the parallel partition-

ing algorithm from Section 4.5 is thus given by

Tcmp =

O(log n)∑
i=0

[
O(ni/p) + O(pk2)

]
(4.4)

=

O(log n)∑
i=0

O(n(1 + ν)−i/p)

 + O(pk2 log n) (4.5)

≤
[∞∑

i=0

O(n/p)

(1 + ν)i

]
+ O(pk2 log n) (4.6)

= O(n/p) + O(pk2 log n) (4.7)

Communication time-complexity

Our attention now shifts to an average-case communication cost analysis, as-

suming that the underlying parallel architecture is a p-processor hypercube with

4.6. Analytical Performance Model 132

bi-directional links and store-and-forward routing. This is a well-known example

of a richly-connected parallel architecture [GGKK03]. Again, first consider the

procedure of assembling the hyperedges incident to locally held vertices on each

processor at the ith multilevel step. This is done using an all-to-all personal-

ized communication. Given O(ni/p) vertices on each processor, the algorithm

will, on average, assemble O(nidi/p) hyperedges on each processor. Since di can

be bounded above by a small constant and the hyperedges are approximately

uniformly distributed across the processors by the hash function, the average

message size between any two processors is O(ni/p
2). An all-to-all personalised

communication with this message size can be performed in O(ni/p) time on a

hypercube architecture [GGKK03]. This result is important, since all-to-all com-

munications with message size O(ni/p
2) occur frequently in different phases of

the algorithm.

Now, consider the cost of communicating the required matching vector entries in

computing Epj

i+1 from Epj

i on each processor pj and the subsequent load balancing

communication of hyperedges of Hi+1. Given O(ni/p) hyperedges in Epj

i , to con-

struct Epj

i+1, each processor requires O(nili/p) matching vector entries. Assuming

that each of the required entries in gi (see Section 3.5.2) are on average equally

likely to be stored on any of the p processors, the message size between any two

processors in the all-to-all communication is on average O(nili/p
2). In the load

balancing communication, the hyperedges in Epj

i+1 are scattered across the p pro-

cessors with equal probability, thus also giving an average message size in the

all-to-all personalized communication of O(nili/p
2). Hence, given that li can be

bounded above by a small constant, these all-to-all personalized communications

can be done in O(ni/p) time.

By a similar argument, assuming that a vertex is on average equally likely to

match with any other vertex in the hypergraph during each coarsening step,

the communication of matching requests and their outcomes is done in O(ni/p)

time. During each coarsening step, a prefix sum computation is required to

determine the numbering of the vertices in the coarser hypergraph, which has

4.6. Analytical Performance Model 133

time-complexity O(log p).

During a pass of the parallel refinement algorithm, an additional broadcast of

rebalancing moves may be required, as well as a reduction operation to compute

the objective function, which have time-complexities O(k2 log p) and O(log p)

respectively (since each processor may be required to take moves back in O(k2)

directions).

Arguing as for the computational complexity Tcmp over O(log n) multilevel steps,

one can deduce that the overall asymptotic communication cost, Tcmm, of the

parallel partitioning algorithm is

Tcmm = O(n/p) + O(k2 log p log n) (4.8)

Asymptotic parallel runtime

Setting Tp = Tcmp + Tcmm and eliminating dominated terms from Equation 4.7

and Equation 4.8, the asymptotic total parallel run time, Tp, is

Tp = O(n/p) + O(pk2 log n) (4.9)

Since the asymptotic time-complexity of the serial algorithm is O(n), it follows

that the algorithm is cost-optimal if p2k2 log n = O(n).

Derivation of the isoefficiency function

As W = O(n), from Equation 4.9 and Equation 2.16 in Section 2.5.2, the total

overhead, To, of the parallel algorithm becomes:

To = O(p2k2 log W) (4.10)

The isoefficiency function is then given by Equation 2.23, from Section 2.5.3:

W = O(p2k2 log W) (4.11)

= O(p2k2 log(p2k2 log W)) (4.12)

= O(p2k2 log p) + O(p2k2 log k) + O(p2k2 log log W) (4.13)

4.6. Analytical Performance Model 134

Asymptotically, one can now omit the lower order term involving log log W in

Equation 4.13 to yield

W = O(p2k2(log p + log k)) (4.14)

This isoefficiency function implies that when the number of processors is doubled,

the problem size needs to increase by a little over a factor of four in order to

maintain a constant level of efficiency.

We note that this isoefficiency function is of the same order (in terms of p) as that

given in [KK96] for the parallel graph partitioning algorithm (described in Sec-

tion 3.6.5). However, because hypergraph partitioning is inherently more difficult

than graph partitioning, we expect the constants associated with the asymptot-

ically dominating terms in the isoefficiency function of the parallel hypergraph

partitioning algorithm to be larger than the equivalent constants for the parallel

graph partitioning algorithm’s isoefficiency function.

In applications where partitions of size k = p are sought (such as dynamic load-

balancing of parallel computations [DBH+05]), the isoefficiency function for the

parallel multilevel hypergraph partitioning algorithm becomes O(p4), making it

difficult to maintain constant efficiency with an increasing number of processors.

We do note, however, that the k2 term in Equation 4.14 is derived from the

runtime complexity of the rebalancing computation within the parallel refine-

ment algorithm (this is not present in the parallel graph partitioning algorithm

[KK96]). In practice, we observe that this rebalancing is required infreqently

and in the cases when it is required, significantly fewer than the possible O(k2p)

moves are actually taken back.

4.6.2 Model of Parallel Multilevel Algorithm with Multi-

phase Refinement

Here, the parallel multilevel algorithm (analysed in Section 4.6.1) uses multi-

phase refinement, as described in Section 4.5.5.

4.6. Analytical Performance Model 135

We assume that parallel V-cycles converge within a small number of iterations.

The asymptotic performance model of the algorithm with parallel multi-phase

refinement differs from that of the multilevel algorithm analysed in Section 4.6.1

only in the parallel restricted coarsening phase (as described in Section 4.5.5).

Recall from Section 4.5.5 that during the uncoarsening phase at multilevel step

i, the partition Πi+1 is projected onto Hi(Vi, Ei), yielding partition Πi. Then,

multi-phase refinement is applied to Hi(Vi, Ei) and Πi.

The parallel restricted coarsening algorithm first assigns the vertices belonging

to the same part in Πi to the same processor; then, the map gi is computed con-

currently on all processors in parallel, without communication. The remainder

of the parallel restricted coarsening algorithm proceeds as the parallel coarsening

algorithm described in Section 4.5.2, except that subsequent restricted coars-

ening steps j, j > i, do not involve interprocessor communication during the

computation of the map gj because vertices only match with other locally-stored

vertices.

When allocating vertices from Hi(Vi, Ei) to processors so that all vertices from

the same part in Πi are on the same processor, an all-to-all personalised com-

munication is used. It is assumed that the vertices have an equal probability

of being assigned to each of the k parts of the partition Πi, and assuming a

randomised distribution of vertices to processors prior to partitioning, the aver-

age message size in the all-to-all communication will be O(ni/p
2). This all-to-all

communication can be done in O(ni/p) time on a hypercube.

Since the k-way partition satisfies the partitioning constraint of Equation 2.3

and given a sufficiently low variance in vertex weights, each processor will on

average hold O(ni/p) vertices after the above all-to-all communication. The

computational requirement of a single step of the parallel restricted coarsening

algorithm that computes the map gi is then O(nidili/p). Since di and li can be

bounded above by small constants, a step of the parallel restricted coarsening

algorithm has time-complexity of O(ni/p).

Given that the initial partitioning phase and the uncoarsening phase of a V-

4.7. A New Two-Dimensional Parallel Hypergraph Partitioning Algorithm 136

cycle each have the same time-complexity as the respective phases in the parallel

multilevel partitioning algorithm analysed in Section 4.6.1, the overall asymptotic

time-complexity of the parallel multilevel partitioning algorithm with multi-phase

refinement is of the same order as for the parallel multilevel algorithm in Sec-

tion 4.6.1. Similarly, the cost-optimality conditions and the isoefficiency function

of the parallel multilevel partitioning algorithm with multi-phase refinement fol-

low from Section 4.6.1.

4.7 A New Two-Dimensional Parallel Hyper-

graph Partitioning Algorithm

Very recently, another approach to parallelism in multilevel hypergraph partition-

ing was explored by Devine et al. [DBH+06]. The authors use a two-dimensional

distribution of the hypergraph H(V, E) across the processors, which is analogous

to the two-dimensional graph distribution described in Section 3.6. We present

a brief summary of the proposed parallel algorithm, describing only the paral-

lel coarsening and parallel uncoarsening phases. The algorithm is based on the

multilevel approach and computes k-way partitions by recursive bisection.

The p processors are logically organised onto an x × y processor grid (so that

p = xy), where x and y are the number of processors in the processor row

and column, respectively. The hypergraph H(V, E) is represented across the

processors by the transpose of its incidence matrix AT , so that the rows in the

matrix AT correspond to the hyperedges of H(V, E). AT is distributed across the

processors in Cartesian fashion, so that each processor is allocated a rectangular

submatrix.

4.7.1 Parallel Coarsening Phase

The parallel coarsening algorithm is based on the serial inner product coarsening

algorithm. An unmatched vertex vi ∈ V (corresponding to a column of the

4.7. A New Two-Dimensional Parallel Hypergraph Partitioning Algorithm 137

matrix AT) is matched with another unmatched vertex vj so that the inner

product between columns i and j of AT is maximised. This is equivalent to

heavy-edge coarsening (cf. Section 3.5.2), since the rows of AT correspond to the

hyperedges and the sth entry of both column i and j is non-zero if, and only if,

vertices vi and vj are connected by a hyperedge.

Note that considering all possible vertex matches (column inner products) corre-

sponds to computing AAT ; however, because the algorithm only considers inner

products between two columns that share at least one row with non-zero entries

(i.e. the corresponding vertices are connected by at least one hyperedge) and

that both columns correspond to unmatched vertices, only a subset of the inner

product operations are computed.

The parallel inner product algorithm proceeds in a number of rounds. During

each round, every processor selects a random subset of its vertices, called the

candidates. The candidates are then broadcast across the processor rows (so

that matches with adjacent vertices can be computed) and across the processor

columns (to ensure that the inner product is computed across the entire processor

column). Each processor then computes the partial inner products between its

local vertices and the external candidates received during the above broadcast.

Having computed all the partial inner products locally, the actual inner prod-

uct values are reduced across the processor columns onto a particular processor,

chosen so that load balance is maintained.

The best potential vertex matches (given by the largest inner products) are ac-

cumulated on processors in processor row zero. These first greedily determine

the best local vertex for each external candidate vertex. The local vertex is then

locked, to prevent it subsequently matching with another vertex during the cur-

rent round. Communication across row zero is then used to find the best global

match for each external candidate vertex. The processor that owns the candidate

vertex greedily picks the best matching vertex.

During the construction of the coarse hypergraph Hi+1(Vi+1, Ei+1) (using Hi(Vi, Ei)

and the map gi : Vi → Vi+1), the parallel coarsening algorithm discards hyper-

4.7. A New Two-Dimensional Parallel Hypergraph Partitioning Algorithm 138

edges of size one and removes duplicate hyperedges by computing and comparing

hash values of the hyperedges. The hash values are computed by communication

across processor rows and compared by communication across processor columns.

4.7.2 Parallel Uncoarsening Phase

Bisseling et al. use a parallel formulation of the FM serial algorithm to refine a

projected partition. It performs pairs of passes, until the most recent pass pair

fails to improve the partitioning objective or the number of pass pairs exceeds a

prescribed limit.

Each pass within a pass pair involves moves in one direction only (either from P0

to P1 or vice versa), so that moves in both directions have been considered after

the pass pair has been completed. This has the advantage that the overall gain

of concurrent vertex moves across different processors is at least the sum of the

individual vertex move gains.

The implementation of the parallel algorithm is as follows. In each processor

column, the processor storing the largest number of non-zeros is designated as

the vertex mover. The vertex mover attempts to move vertices from the source

part to the destination part, subject to the partition balance constraint. After

each vertex move, the vertex mover uses only its local data to update the gains

of moves involving (necessarily local) adjacent vertices (in order to avoid inter-

processor synchronisation). A local balance constraint is imposed on each vertex

mover so that concurrent moves across the processors do not violate the (global)

partitioning balance constraint.

4.7.3 Parallel Recursive Bisection

The splitting step in recursive bisection is computed in parallel. The authors note

that the hypergraph splitting can be done explicitly, by communicating the two

hypergraphs to their respective processors, or implicitly without communication,

4.7. A New Two-Dimensional Parallel Hypergraph Partitioning Algorithm 139

by applying the parallel hypergraph partitioning algorithm first to one of the

hypergraphs and then to the other hypergraph, using all p processors.

It is noted that explicitly splitting the hypergraph, although initially incurring

additional communication, results in a reduction of communication time during

recursive bipartitioning. This is because the communication operations involve

fewer processors and enable individual processors to have a more global view

during partitioning.

4.7.4 Experimental Results

The two-dimensional parallel hypergraph partitioning algorithm was implemented

in ANSI C within the Zoltan toolkit, using the MPI library for interprocessor

communication. The experimental architecture used was a Linux cluster with

236 dual-processor Intel Xeon (3.0 GHz) nodes and a Myrinet-2000 interconnect.

The Zoltan parallel multilevel hypergraph partitioner was compared with the

serial multilevel hypergraph partitioner PaToH, the parallel multilevel hypergraph

partitioner Parkway2.0 (described in Chapter 5) and the parallel multilevel graph

partitioner ParMeTiS. We note that in their experiments, the authors used a

partition balance criterion of 10% (equivalent to ε = 0.1 in Equation 2.3) and also

that ParMeTiS was only run on hypergraphs derived from symmetric matrices.

In the experiments, the Zoltan parallel hypergraph partitioner exhibits faster

runtimes than Parkway2.0; advantages of the two-dimensional hypergraph dis-

tribution over a one-dimensional one are discussed in Section 7.3. However, in

general, Parkway2.0 produced partitions of better quality than those produced

by Zoltan. For completeness, the authors noted that the parallel graph par-

titioning approach using ParMeTiS was faster, but yielded partitions that were

of inferior quality when compared to the two parallel hypergraph partitioning

approaches.

Chapter 5

Parallel Implementation and

Experimental Results

5.1 Introduction

This chapter describes the implementation of the parallel multilevel hypergraph

partitioning algorithms from Section 4.5 in the parallel hypergraph partitioning

tool Parkway2.0 and their experimental evaluation.

The remainder of this chapter is organised as follows. Section 5.2 provides an

overview of our implementation of Parkway2.0. Section 5.3 then describes the

experimental evaluation of the proposed parallel hypergraph partitioning algo-

rithms on hypergraphs from a number of application domains, using Parkway2.0.

5.2 Parkway2.0: A Parallel Hypergraph Parti-

tioning Tool

5.2.1 Software Architecture

This section describes the parallel hypergraph partitioning tool Parkway2.0,

which was first presented in [TK04a] and which implements the parallel mul-

140

5.2. Parkway2.0: A Parallel Hypergraph Partitioning Tool 141

HypergraphLoader

UncoarsenerCoarsener

coarsen(Hypergraph&)
: Hypergraph&

load(Hypergraph&):void

Hypergraph

����������

hMeTiS Interface

PaToH Interface

Generic Serial
Partitioner

: Hypergraph&
uncoarsen(Hypergraph&)

:int
partitioning(Hypergraph&)

init_part(Hypergraph&)
:int

clear():void

1

1

1
Multilevel
Controller

Parallel Coarsening Implementations Parallel Refinement Implementations
1

1

Serial ControllerV−Cycle Controller

1..*

1

initialise(char *file):void

1..*

Figure 5.1. High-level diagram of the Parkway2.0 software architecture.

tilevel hypergraph partitioning algorithms described in Section 4.5. The tool is

written in the C++ language using the Message Passsing Interface (MPI) library

[SOHL+98] for interprocessor communication.

MPI is a standardised message-passing library designed to function on a wide

variety of distributed-memory parallel computers. The MPI standard is based

on the C/C++ and Fortran languages and defines the syntax and the semantics

of the library routines; however, in order to preserve portability across differ-

ent parallel platforms, it does not specify how the routines should be imple-

mented [SOHL+98]. Because it enjoys widespread support from both industry

and academia, MPI implementations are available for almost all commercial par-

allel computers [GGKK03].

The UML-style diagram in Figure 5.1 presents a high-level description of the

software architecture of the Parkway2.0 tool. A hypergraph H(V, E) is repre-

5.2. Parkway2.0: A Parallel Hypergraph Partitioning Tool 142

sented across the processors through the Hypergraph class, with each processor

pi storing sets V pi ⊂ V and Epi ⊂ E , such that for all 0 ≤ i < j < p, we have

that V pi ∩ V pj = ∅ and Epi ∩ Epj = ∅, while
⋃

i V
pi = V and

⋃
i Epi = E .

The composition of the set V pi is such that each processor pi stores vertices

of contiguous index, with p0 storing the set that includes the vertex with the

0th index. The composition of the set Epi is determined by a hash function, as

described in Section 4.5.1. Two additional integer arrays store the weights of the

vertices in V pi and the weights of the hyperedges in Epi .

The input hypergraph may be read from disk or read from memory by Parkway2.0.

These methods are implemented within the class Hypergraph. When reading the

hypergraph from disk using p processors, p files need to be specified; one file

to be read by each processor. The file to be read by processor pi contains the

weight and index information of the vertices in V pi and the weight and incidence

information for each hyperedge in Epi . Parkway2.0 also includes a number of

routines for converting hypergraphs that are stored in other file formats (e.g. the

PaToH [cA01b] and hMeTiS [KK98a] formats) into the Parkway2.0 format.

Through the load(Hypergraph&) method, the abstract class HypergraphLoader

implements the assembly onto processor pi of all the hyperedges in E that are

incident on vertices in V pi . The implementation uses MPI’s all-to-all personalised

communication routines. The load(Hypergraph&) method is called prior to each

multilevel step. The method clear() is used to delete all frontier hyperedges

upon the completion of each multilevel step.

The abstract classes Coarsener and Uncoarsener define the parallel coarsen-

ing and uncoarsening methods. Specific implementations of these methods are

provided in further subclasses. This allows for fast integration of new parallel

coarsening and parallel refinement algorithms within the Parkway2.0 tool.

The MultilevelController class implements the top-level call to the parallel

multilevel hypergraph partitioning algorithm, and maintains pointers to the se-

quence of approximate hypergraphs (including the original problem instance).

The V-CycleController class extends the MultilevelController class by pro-

5.2. Parkway2.0: A Parallel Hypergraph Partitioning Tool 143

viding the additional multi-phase refinement capability. It uses an implementa-

tion of restricted parallel coarsening, in addition to an orthodox parallel coars-

ening implementation.

When partitioning the coarsest hypergraph Hc(Vc, Ec) serially, control of program

execution passes to the SerialController. Implementations of this abstract

class provide interfaces to existing state-of-the-art serial multilevel hypergraph

partitioning tools (PaToH [cA01b] and hMeTiS [KK98a]) as well as a generic serial

multilevel recursive bisection partitioner.

5.2.2 Details of the Parkway2.0 Implementation

Here we describe the most important aspects of the parallel multilevel hypergraph

partitioning algorithm implementation.

Data Distribution

The load(Hypergraph&) method, implemented in parallel by HypergraphLoader,

assembles on each processor pi all the hyperedges incident on the local vertex set

V pi . We note that hypergraphs from certain application domains contain a small

number of hyperedges which have cardinalities significantly larger than the aver-

age hyperedge cardinality. For example, hypergraphs derived from web matrices

exhibit this characteristic [GZB04].

Such hyperedges are likely to be replicated over many processors during the

parallel coarsening and uncoarsening computations in a given multilevel step,

since they are incident on a large number of vertices. Moreover, the presence

of these large frontier hyperedges will increase the computational load on the

respective processors.

We note that it may still be possible to compute a partition of the hypergraph

without considering the (small number of) hyperedges with large cardinality

[AHK98, cA99]. To this end, Parkway2.0 allows user specification of maximum

hyperedge length; hyperedges with length greater than the prescribed threshold

5.2. Parkway2.0: A Parallel Hypergraph Partitioning Tool 144

do not take part in the multilevel step. During the coarsening phase, these hy-

peredges will nevertheless be contracted to form hyperedges in Hi+1(Vi+1, Ei+1).

Parkway2.0 also allows the user to specify whether the restriction on large hyper-

edges should apply during both the coarsening and uncoarsening phases or during

the coarsening phase only, or not at all. Note that when large hyperedges are

restricted during refinement, the parallel refinement algorithm can only optimise

an approximation to the actual value of the partitioning objective.

Parallel Coarsening Algorithm Implementation

Recall from Section 4.5.2 that the serial First Choice coarsening algorithm from

[KAKS97, KK98b] was used as the basis for our parallel coarsening algorithm.

Now, consider a hypergraph Hi(Vi, Ei) at stage i in the coarsening process. We

have implemented the following vertex connectivity metric between two vertices

u, v ∈ Vi, based on those from [HB97, AHK98, KAKS97]:

C(u, v) =
1

w(u) + w(v)

∑

{e∈Ei:u∈e,v∈e}

w(e)

|e| − 1
(5.1)

Our parallel coarsening implementation within Parkway2.0 enables user modifi-

cation of the above metric, so that division by w(u)+w(v) (if the user is impartial

to large vertex clusters during the coarsening process) and/or division by |e| − 1

(if the user does not wish to differentiate hyperedge cardinalities) can be omitted

from the metric.

Serial Partitioning Implementation

The SerialController (cf. Figure 5.1) implements serial methods for producing

a partition of the coarsest hypergraph in the multilevel sequence. Currently, we

employ three different methods within Parkway2.0.

The first of these is a generic implementation of a serial multilevel k-way hyper-

graph partitioning algorithm that uses recursive bisection. For the remaining

5.2. Parkway2.0: A Parallel Hypergraph Partitioning Tool 145

methods, SerialController provides interfaces to HMETIS PartKway() (a rou-

tine from the hMeTiS library [KK98a] that implements the serial multilevel k-way

hypergraph partitioning algorithm presented in [KK98b]) and PaToH Partition()

(a serial multilevel recursive bisection routine from the PaToH library [cA01b]).

For serial partitioning by recursive bisection, PaToH was preferred to the mul-

tilevel recursive bisection variant of hMeTiS because in our experiments, PaToH

was found to produce partitions of comparable quality but with shorter runtimes

[TK04a].

Parallel Uncoarsening Algorithm Implementation

During the parallel uncoarsening phase, Parkway2.0 allows multiple (distinct)

partitions that may have been computed during the serial partitioning phase

to be propagated through the uncoarsening phase. This is specified by a user-

prescribed percentage value. A value of x means that partitions with objective

function within x% of the best partition at that level will be projected onto the

successive finer level. The user may also specify for x to vary with the number

of steps completed so far during the uncoarsening phase.

The Parkway2.0 implementation of the parallel greedy k-way refinement algo-

rithm also supports a form of early exit from the current pass of the parallel

refinement algorithm. A pass of the refinement algorithm may be terminated

early if the number of successive vertices visited whose part index has not been

changed (i.e. they have not been moved during the pass) exceeds a prescribed

threshold, expressed as a percentage of the number of vertices in the hypergraph.

The user may invoke a similar early-exit condition for parallel multi-phase refine-

ment, as well as set explicit limits on the number of passes and parallel V-cycles

within a single run of the parallel refinement algorithm.

5.3. Experimental Evaluation 146

5.3 Experimental Evaluation

5.3.1 Aims and Objectives

This section presents our experimental evaluation of the parallel multilevel hy-

pergraph partitioning algorithms. To this end, the Parkway2.0 tool was applied

to hypergraphs from a wide range of application domains. The principal aims of

the experiments were (cf. Section 1.1.5):

• To compare the Parkway2.0 tool with state-of-the-art serial multilevel hy-

pergraph partitioning tools in terms of the quality of computed partition.

• To evaluate the parallel runtimes of the Parkway2.0 tool using state-of-

the-art serial multilevel partitioning tools as base-case comparison.

• To evaluate scalability by observing Parkway2.0 processor efficiencies in

experiments involving hypergraphs from the same application domain.

5.3.2 Experimental Setup

Software

In all experiments, the parallel hypergraph partitioning tool Parkway2.0, imple-

menting the algorithms from Section 4.5, was used. When the test hypergraphs

were small enough to be partitioned on a single processor, the base-case compari-

son was provided by the state-of-the-art serial multilevel hypergraph partitioning

tools PaToH [cA01b] and hMeTiS [KK98a]. The HMETIS PartKway() routine from

the hMeTiS library was used to provide direct k-way serial multilevel hypergraph

partitioning. For serial multilevel hypergraph partitioning by recursive bisec-

tion, the PaToH Partition() routine from the PaToH library was preferred to

the hMeTiS equivalent because we observed that it produced partitions of com-

parable quality with those produced by hMeTiS, but with shorter runtimes (cf.

Section 5.2.2).

5.3. Experimental Evaluation 147

For test hypergraphs that were too large to be partitioned on a single proces-

sor, comparison was provided by the parallel multilevel graph partitioning tool

ParMeTiS [KSK02]. The parallel graph partitioning algorithm implemented by

ParMeTiS was described in more detail in Section 3.6. As noted in Section 4.1, in

the absence of available parallel hypergraph partitioners, the use of an approxi-

mate graph model together with a parallel graph partitioner is currently the only

way to partition very large hypergraphs.

In all experiments, unless explicitly stated otherwise, the parallel hypergraph

partitioning tool Parkway2.0 was configured as follows. The load(Hypergraph&)

method was configured to consider all hyperedges (rather than omit a small

number of large hyperedges, as described in Section 5.2.2).

During the parallel coarsening phase, we used the parallel formulation of the First

Choice coarsening algorithm, described in Section 4.5.2. Vertex connectivity was

quantified using the metric shown in Equation 5.1. The reduction ratio between

successive coarser hypergraphs in the multilevel pipeline, given by Equation 3.7,

was set to 1.75.

During the serial initial partitioning phase, we used the HMETIS PartKway() rou-

tine with FC coarsening and V-cycle refinement applied to only the final partition.

The serial initial partitioning was computed on each processor, so that we per-

formed p serial partitioning runs in total when using p processors. We projected

only one partition from the serial initial partitioning phase through the parallel

uncoarsening phase.

In the parallel uncoarsening phase, during each run of the parallel greedy k-way

refinement algorithm, no early exit was used and no explicit limit was set on the

number of passes. We did not use parallel multi-phase refinement.

Test Hypergraphs

The hypergraph test cases for the experiments described in this section are shown

in Table 5.1. All of the test hypergraphs, except the ibm hypergraphs, were

5.3. Experimental Evaluation 148

Name Vertices Hyperedges Non-zeros Domain
ibm16 183 484 190 048 778 823 VLSI CAD
ibm17 185 495 189 581 860 036 VLSI CAD
ibm18 210 613 201 920 819 617 VLSI CAD

voting100 249 760 249 760 1 391 617 performance analysis
voting125 541 280 541 280 3 044 557 performance analysis
voting150 778 850 778 850 4 532 947 performance analysis
voting175 1 140 050 1 140 050 6 657 722 performance analysis
voting250 5 218 300 5 218 300 32 986 597 performance analysis
voting300 10 991 400 10 991 400 69 823 797 performance analysis
cage13 445 315 445 315 7 479 343 DNA electrophoresis
cage14 1 505 785 1 505 785 27 130 349 DNA electrophoresis
cage15 5 154 859 5 154 859 99 199 551 DNA electrophoresis

ATTpre2 659 033 659 033 6 384 539 analogue circuits
uk-2002 18 520 486 18 520 486 310 764 149 PageRank analysis

Table 5.1. Significant properties of test hypergraphs.

derived from sparse matrices; they were constructed to accurately model the

communication cost of 1D row-wise (or column-wise) decomposition of their cor-

responding sparse matrix for parallel matrix–vector multiplication, as described

in Section 6.3.1. The ibm test hypergraphs were taken from the domain of VLSI

CAD. These are the three largest hypergraphs from the ISPD98 Circuit Bench-

mark Suite [Alp98]. A more detailed description of the hypergraphs and their

respective application domains is presented in Appendix A.

Experimental Platform and Configuration

We used the k− 1 partitioning objective function in our experiments (cf. Defini-

tion 2.14). The k − 1 objective function is used in circuit partitioning because

it provides an accurate model of signal delay for nets that span multiple parts

[Alp96]. In sparse matrix decomposition for parallel sparse matrix–vector multi-

plication and dynamic load balancing of parallel computations, the k−1 objective

correctly quantifies the total communication volume [cA99, DBH+05]. When us-

ing the hMeTiS tool, we chose to minimise the Sum of External Degrees (SOED)

partitioning objective because hMeTiS cannot directly optimise the k−1 objective.

SOED is closely related to the k − 1 objective and is described in Section 2.3.2.

A balance constraint of 5% (ε = 0.05 in Equation 2.3) was used in all of the

experiments. Note that this specifies the partitioning constraint for the k-way

5.3. Experimental Evaluation 149

partitioning problem. When computing the k-way partition by recursive bisec-

tion, we imposed a different balance constraint for bipartitioning, so that the

resulting k-way partition would satisfy the 5% balance constraint. Setting the

balance constraint on each bipartitioning run to (1.05/k)1/ log2 k−0.5 ensured that

the resulting k-way partition was feasible. Note that this is only necessary for

k > 2 (the formula yields an incorrect balance constraint when k = 2).

The parallel architecture used in all of the experiments consisted of a Beowulf

Linux Cluster with 64 dual-processor nodes. However, in our experiments, we

were only able to use a 32-processor (16-node) partition, due to configuration

limitations and high machine utilisation. Each node in the cluster has two Intel

Pentium 4 processors, running at 2GHz with 2GB RAM. The nodes in the cluster

are connected by a Myrinet network, which has a peak throughput of 250 MB/s.

We note that we were unable to gain access to a hypercube parallel architecture,

which was assumed in the theoretical performance model.

All of our reported results (the serial and parallel runtimes and partition quality

in terms of the k − 1 objective) are averages taken over ten randomised runs of

the graph and hypergraph partitioning tools for the appropriate experiment.

5.3.3 Experiments to Evaluate Partition Quality

The purpose of these experiments was to compare the quality of the partitions

produced by the parallel multilevel hypergraph partitioning algorithm with the

quality of those produced by state-of-the-art serial multilevel hypergraph parti-

tioning tools and an approximate parallel graph partitioning approach.

We noted in Section 4.2 that, in general, serial hypergraph partitioning algo-

rithms are expected to produce slightly better partition quality than their respec-

tive parallel formulation. A contributing factor is that the parallel formulations

approximate the serial algorithms in order to achieve better concurrency.

In our experiments, we make three distinct empirical comparisons. First, the

performance of Parkway2.0 is compared with state-of-the-art serial multilevel

5.3. Experimental Evaluation 150

tools PaToH and hMeTiS on the smaller test hypergraphs. Then, Parkway2.0 is

compared with the graph partitioning-based approximation of hypergraph par-

titioning using the parallel multilevel graph partitioning tool ParMeTiS on large

hypergraphs that could not be partitioned on a single processor. Finally, in the

third experiment, multi-phase refinement is incorporated within Parkway2.0 and

comparison is made with Parkway2.0 running with the orthodox parallel refine-

ment algorithm. The complete set of experimental results for evaluating partition

quality is presented (in tabular form) in Section B.2.

Comparisons Between Parkway2.0 and PaToH/hMeTiS

We first describe the settings used in the PaToH and hMeTiS tools for these ex-

periments. The PaToH tool was used with settings for sparse matrices or VLSI

hypergraphs, as appropriate [cA01b]. Coarsening was performed using the Heavy

Connectivity Clustering (HCC) algorithm, described in Section 3.5.2. During the

uncoarsening phase, the Boundary FM bisection algorithm was used, described

in Section 3.5.4. The tool hMeTiS was run with the First Choice coarsening al-

gorithm and the serial greedy k-way refinement algorithm, which are described

in Section 3.5.2 and Section 3.5.4, respectively.

Figure 5.2 shows how the k − 1 partitioning objective varies with the number

of processors used on the ibm17, ibm18, cage13 and voting175 hypergraphs. The

single processor k − 1 objective value was taken as the minimum of the average

values obtained by PaToH and hMeTiS.

We observe that the serial and parallel multilevel hypergraph partitioning algo-

rithms produce partitions of comparable quality. It is significant that there is

little variance in partition quality produced by the parallel multilevel partition-

ing algorithm as the number of processors is increased. A detailed look at the

results in Section B.2 confirms this observation across all of the test hypergraphs.

In some cases, for example voting250, partition quality improves slightly as the

number of processors is increased. We conjecture that this is because running

the parallel partitioning algorithm on a large number of processors allows a large

5.3. Experimental Evaluation 151

 0

 10000

 20000

 30000

1 2 4 8 12 16

k−
1

ob
je

ct
iv

e
va

lu
e

number of processors

Average partition quality for ibm17 hypergraph

8 parts
16 parts
32 parts

 0

 5000

 10000

 15000

 20000

1 2 4 8 12 16

k−
1

ob
je

ct
iv

e
va

lu
e

number of processors

Average partition quality for ibm18 hypergraph

8 parts
16 parts
32 parts

 0

 80000

 160000

 240000

 320000

 400000

1 2 4 8 12 16 20 24 28 32

k−
1

ob
je

ct
iv

e
va

lu
e

number of processors

Average partition quality for cage13 hypergraph

8 parts
16 parts
32 parts

 0

 20000

 40000

 60000

 80000

 100000

 120000

1 2 4 8 12 16 20 24 28 32

k−
1

ob
je

ct
iv

e
va

lu
e

number of processors

Average partition quality for voting175 hypergraph

8 parts
16 parts
32 parts

Figure 5.2. Parkway2.0 and hMeTiS/PaToH: variation of partition quality with the number of

processors used.

number of partitioning runs to be performed during the serial partitioning phase,

with no significant additional parallel runtime cost.

Comparisons Between Parkway2.0 and ParMeTiS

In these experiments, we compared the performance of Parkway2.0 with that of

the approximate graph partitioning approach using the ParMeTiS parallel graph

partitioning tool on hypergraphs that were too large to be partitioned serially.

The ParMETIS PartKway() method within the ParMeTiS library was used, run-

ning with default parameters. We note that it was not possible to explic-

itly enforce the partitioning balance constraint on the partitions produced by

ParMETIS PartKway(). However, in practice, we usually observed the partition

balance to be within the 5% threshold, although some of the larger partitions

(k = 32) were found to violate the 5% constraint. The hypergraph-to-graph con-

version was computed according to the construction of the graph model for 1D

row-wise sparse matrix decomposition described in [cA99].

5.3. Experimental Evaluation 152

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 900000

 1e+06

 1.1e+06

8 16 24 32

k−
1

ob
je

ct
iv

e
va

lu
e

Number of processors

Average partition quality for cage14 hypergraph

 ParMetis on cage14
 Parkway on cage14

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 220000

8 16 24 32

k−
1

ob
je

ct
iv

e
va

lu
e

Number of processors

Average partition quality for voting300 hypergraph

 ParMetis on voting300
 Parkway on voting300

Figure 5.3. Parkway2.0 and ParMeTiS: variation of partition quality with the number of

processors used for k = 8.

Figure 5.3 compares the k − 1 objective values of 8-way partitions produced by

Parkway2.0 and ParMeTiS on the cage14 and voting300 hypergraphs. We ob-

serve that Parkway2.0 consistently outperforms the approximate parallel graph

partitioning-based approach using ParMeTiS, with a significant difference in the

k − 1 partitioning objective. This trend can also be seen across other large hy-

pergraphs, as shown in Section B.2. For example, on the uk-2002 hypergraph,

we observe that Parkway2.0 records improvements of up to 60% over ParMeTiS.

Experiments With Multi-phase Refinement

In this set of experiments, we investigate the effect that parallel multi-phase

refinement has on the quality of partition produced by Parkway2.0. The parallel

multi-phase refinement implementation in Parkway2.0 used in these experiments

applied parallel V-cycles to each multilevel step during the parallel uncoarsening

phase. Before each call to the parallel k-way refinement algorithm within a V-

cycle, a random permutation of vertices to processors was carried out, because

this was found to improve the partition quality, when compared to using the

inherited distribution of vertices to processors. When using the parallel multi-

phase refinement algorithm, we note that the partition size is required to be an

integer multiple of the number of processors used, so that each processor can be

assigned vertices from the same number of parts during the parallel restricted

coarsening algorithm.

5.3. Experimental Evaluation 153

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

2 4 8 16 32

k−
1

ob
je

ct
iv

e
va

lu
e

Number of processors

Average partition quality for ATTpre2 hypergraph

parallel k−way refinement
parallel multi−phase refinement

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 110000

 120000

2 4 8 16 32

k−
1

ob
je

ct
iv

e
va

lu
e

Number of processors

Average partition quality for voting175 hypergraph

 parallel k−way refinement
 parallel multi−phase refinement

Figure 5.4. Parkway2.0: variation of partition quality with the number of processors used,

with and without parallel multi-phase refinement.

Figure 5.4 shows the comparison of k − 1 objective values of partitions pro-

duced by Parkway2.0 with orthodox parallel k-way refinement and Parkway2.0

with parallel multi-phase refinement on the ATTpre2 and voting175 hypergraphs.

The benefit of using multi-phase refinement appears to be strongly dependent

on the input hypergraph. For example, on the ATTpre2 hypergraph, a signifi-

cant improvement in partition quality over the orthodox parallel refinement is

observed. On the other hand, on the voting175 hypergraph, the improvement

achieved is much less significant. We note that the introduction of parallel multi-

phase refinement significantly increased the parallel runtime of Parkway2.0 (cf.

Section 5.3.4).

5.3.4 Experimental Runtime Analysis

Here, we observe the average serial and parallel partitioning runtimes in order to

analyse the parallel runtime performance of Parkway2.0. The average runtimes

for every experimental configuration are shown (in tabular form) in Section B.2.

In our speedup observations, base-case (single processor) comparison is provided

by the tool PaToH, with settings as described in Section 5.3.3.

Figure 5.5 shows the speedups achieved by Parkway2.0, over the PaToH tool on

the ibm17, ATTpre2, cage13 and voting175 hypergraphs.

We observe good speedups on the ATTpre2 and voting175 hypergraphs, when

5.3. Experimental Evaluation 154

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of Processors

Speedup graph for ibm17 hypergraph

ibm17 8 parts
ibm17 16 parts
ibm17 32 parts

 0

 1

 2

 3

 4

 5

 6

 7

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

Speedup graph for ATTpre2 hypergraph

ATTpre2 8 parts
ATTpre2 16 parts
ATTpre2 32 parts

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

Speedup graph for cage13 hypergraph

cage13 8 parts
cage13 16 parts
cage13 32 parts

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35

S
pe

ed
up

Number of Processors

Speedup graph for voting175 hypergraph

voting175 8 parts
voting175 16 parts
voting175 32 parts

Figure 5.5. Parkway2.0: variation of speedup over the PaToH serial base-case with the number

of processors used.

less than 24 processors are used. As the number of processors increases for a

fixed problem size, the parallel overhead becomes a significant percentage of the

runtime and a limiting speedup value over the best serial runtime is reached.

In the case of the ATTpre2 hypergraph, the drop in speedup as the number of

processors is increased beyond twenty may be attributed to the presence of a

small number of hyperedges that are significantly larger than the average hy-

peredge length (Table A.2 in Appendix A). These potentially connect vertices

across many processors and thus, as frontier hyperedges, have to be replicated

on many processors during a multilevel step. On the other hand, hyperedges in

the voting175 hypergraph have maximum length of seven and we observe that for

this hypergraph, the Parkway2.0 parallel runtime scales better as the number of

processors is increased.

For the cage13 hypergraph, the speedup levels off as the number of processors

is increased beyond eight; however, this hypergraph, although sparse, is signif-

5.3. Experimental Evaluation 155

icantly more dense than both the ATTpre2 and the voting175 hypergraphs and

the parallel overhead associated with data distribution during each multilevel

step is correspondingly more significant. In the case of the much smaller ibm17

hypergraph, only a shallow speedup was achieved and a limiting speedup value

was attained with only a few processors.

In addition to the above, we make two more important observations. Firstly,

in experiments on large hypergraphs, it was observed that parallel multilevel

graph partitioning is considerably faster than the parallel multilevel hypergraph

partitioning algorithm. This is to be expected because the parallel multilevel

hypergraph partitioning algorithm has a potentially significant computation and

communication overhead associated with each multilevel step (locally assembling

hyperedges incident to local vertices on each processor) which is not present

in the serial multilevel hypergraph partitioning algorithm (cf. Section 4.5.1) or

necessary for the parallel multilevel graph partitioning algorithms.

Secondly, we observe from Table B.9 in Section B.2 that with the introduction

of parallel multi-phase refinement, Parkway2.0 exhibits similar parallel runtime

scaling behaviour to Parkway2.0 with only orthodox parallel refinement. How-

ever, the absolute parallel runtimes of Parkway2.0 with parallel multi-phase re-

finement are significantly longer than those of Parkway2.0 with orthodox parallel

refinement.

5.3.5 Empirical Evaluation of Predicted Scalability Be-

haviour

This section describes experiments carried out to investigate the scalability be-

haviour of the parallel multilevel hypergraph partitioning algorithm, as predicted

by the theoretical performance model in Section 4.6.1.

Recall from Section 2.5.3 that existence of the isoefficiency function should en-

able a cost-optimal parallel algorithm to maintain a constant level of efficiency as

the number of processors is increased, by appropriately increasing the problem

5.3. Experimental Evaluation 156

size. In order to be able to investigate this behaviour in the context of paral-

lel hypergraph partitioning, we need to be able to increase the problem size (the

number of computation steps taken by the serial multilevel hypergraph partition-

ing algorithm) by appropriately modifying the input hypergraph as a function of

the number of processors used by the parallel multilevel hypergraph partitioning

algorithm.

Even though we have derived the parallel multilevel hypergraph partitioning al-

gorithm’s isoefficiency function in terms of p, establishing the exact relationship

between the number of computational steps taken by the serial multilevel parti-

tioning algorithm (the problem size) and the number of processors p is difficult;

we instead chose to approximate the problem size by the number of vertices in

the hypergraph. In order for this approximation to be meaningful, we consider a

family of hypergraphs that exhibit a very similar structure.

We used the family of hypergraphs constructed from transition matrices given by

a semi-Markov model of a voting system [BDKW03]. The size of the transition

matrix, and thus the size of the hypergraph, depends on the number of voters in

the model. As can be seen from Table 5.3.5, the voting hypergraphs used in the

experiments exhibit a very similar structure and range in size from 250 000 to

11 000 000 vertices. The voting hypergraphs were also chosen because they pos-

sess small maximum and average vertex degrees and hyperedge lengths, which is

consistent with the analytical performance model used to derive the isoefficiency

function in Section 4.6.

From Equation 4.14, the isoefficiency function of the parallel hypergraph parti-

tioning algorithm for a constant partition size is O(p2 log p); we assume a small

constant term in the isoefficiency function. As the number of processors in-

creases, we increase problem size by computing partitions for succesive larger

voting hypergraphs, according to Table 5.3.

In these experiments, Parkway2.0 was run with settings as described in Sec-

tion 5.3.2, except that during the uncoarsening phase, the number of passes of

the parallel k-way refinement algorithm was restricted to at most four.

5.3. Experimental Evaluation 157

Hyperedge lengths Vertex weights
Name avg 90% 95% max avg 90% 95% max

voting100 5.57 7 7 7 5.57 7 7 7
voting125 5.62 7 7 7 5.62 7 7 7
voting150 5.82 7 7 7 5.82 7 7 7
voting175 5.84 7 7 7 5.84 7 7 7
voting250 6.32 7 7 7 6.32 7 7 7
voting300 6.35 7 7 7 6.35 7 7 7

Table 5.2. Average, 90th, 95th and 100th percentiles of hyperedge length and vertex weight

of the voting hypergraphs.

p Hypergraph Number of vertices

2 voting100 249 760

3 voting125 541 280

4 voting175 1 140 050

8 voting250 5 218 300

11 voting300 10 991 400

Table 5.3. Parkway2.0 isoefficiency experimental configuration: the hypergraphs and the

numbers of processors used.

We used the serial multilevel tool PaToH, with settings as described in Sec-

tion 5.3.3. Figure 5.6 shows PaToH runtimes across the voting100, voting125,

voting150 and voting175 hypergraphs. We note that the graph increases superlin-

early with increasing problem size; this may be partly due to effects of hierarchical

memory.

In order to compute parallel efficiencies on hypergraphs that could not be par-

titioned on a single processor, we constructed approximations for the serial run-

times by fitting a linear regression model to a log-log plot of the existing serial

runtimes. Specifically, we observed an approximate linear relationship between

the natural logarithm of the number of vertices in a voting hypergraph and the

natural logarithm of the PaToH serial runtime (see Figure 5.7). This yields ex-

pected serial PaToH runtimes for the two larger hypergraphs, namely voting250

and voting300. These, together with the actual PaToH runtimes, were used to

compute processor efficiencies for parallel hypergraph partitioning configurations

described in Table 5.3. Full results from the experiments are presented in Sec-

5.3. Experimental Evaluation 158

 0

 20

 40

 60

 80

 100

 120

 200000 400000 600000 800000 1e+06 1.2e+06

tim
e(

s)

number of vertices

PaToH partitioning times

4 parts
8 parts

16 parts
32 parts

Figure 5.6. PaToH: variation of runtimes on the voting hypergraphs.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 12.4 12.6 12.8 13 13.2 13.4 13.6 13.8 14

na
tu

ra
l l

og
ar

ith
m

 o
f P

aT
oH

 r
un

tim
e

natural logarithm of the number of vertices

Log-log plot of PaToH runtimes

4 parts
8 parts

16 parts
32 parts

Figure 5.7. PaToH: the log-log plot of the variation of runtimes on the voting hypergraphs.

tion B.2.

Figure 5.8 shows the relationship between Parkway2.0 processor efficiency and

the number of processors used, when the number of parts in the partition sought

is fixed, with values k = 4, k = 8, k = 16 and k = 32. The processor efficiency

is expected to remain relatively constant for different processor/problem size

configurations. For the 4-way and 8-way partitions, we observe a relatively steady

but shallow descrease in efficiency as the number of processors used increases.

The parallel computation of the 8-way partition exhibits a significantly larger

5.3. Experimental Evaluation 159

 0
 0.05
 0.1

 0.15
 0.2

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

2 3 4 8 11

E
ff

ic
ie

nc
y

Number of processors

Parkway2.0 efficiencies on voting hypergraphs

4 parts
8 parts

16 parts
32 parts

Figure 5.8. Parkway2.0: variation of processor efficiency with the number of processors used

on the voting hypergraphs.

processor efficiency than the parallel computation of the 4-way partition. In the

case of 16-way partitions, the observed processor efficiency remains relatively

constant. Finally, for the 32-way partitions, we observe an increase in efficiency,

as the number of processors increases.

Although some of our observations are based on extrapolated serial runtimes,

we note an increasing efficiency of our parallel multilevel hypergraph partition-

ing algorithm with increasing partition size. This may be partly because serial

partitioning is done by multilevel recursive bisection, while in parallel, partitions

are computed directly; a runtime advantage in favour of the direct partitioning

method as the size of the partition increases is usually observed [KK98b].

Finally, from the observed processor efficiencies, we conclude that the exper-

iments do not provide any evidence to reject our hypothesis that the isoeffi-

ciency function of our parallel multilevel hypergraph partitioning algorithm is

W (p) = O(p2 log p).

Chapter 6

Application to Parallel PageRank

Computation

This chapter presents the application of parallel hypergraph partitioning to ac-

celerate parallel PageRank computation. PageRank is extensively used by in-

ternet search engines as a quantitative measure of the relative importance of

web pages. At the core of the PageRank computation is an iterative eigen-

system solver, whose kernel operation is sparse matrix–vector multiplication

[PBMW99, HK03, GZB04]. We apply state-of-the-art hypergraph-based models

for sparse matrix decomposition to make this kernel operation more efficient in a

parallel context. We apply the parallel hypergraph partitioning tool Parkway2.1

to parallel PageRank computation using a number of web matrices in the public

domain. Parkway2.1 is an optimised version of the Parkway2.0 parallel hyper-

graph partitioning tool described in Section 5.2.

The remainder of this chapter is organised as follows. Section 6.1 provides a brief

introduction to the random surfer model giving rise to the PageRank metric.

Section 6.2 introduces parallel sparse matrix–vector multiplication, while Sec-

tion 6.3 discusses hypergraph-based models for sparse matrix decomposition in

the context of parallel sparse matrix–vector multiplication. Finally, Section 6.4

describes the application of Parkway2.1 to accelerate parallel iterative PageRank

computation on a number of web matrices from the public domain.

160

6.1. The PageRank Algorithm 161

6.1 The PageRank Algorithm

6.1.1 Introduction

The PageRank metric is a widely-used hyperlink-based estimate of the relative

importance of web pages. Its computation was originally outlined by Page and

Brin [PBMW99]; later Kamvar et al. [KHMG03b] presented a more rigorous

formulation that differs from the original. However, apart from the respective

treatment of web pages with no outgoing links, the difference is largely superficial

[de 04]. Here, we consider the Kamvar et al. formulation.

Two intuitive explanations are offered for PageRank [KHMG03b]. The first

presents PageRank as an analogue of citation theory: that is, an out-link from

a web page w to a web page w′ is an indication that w′ may be “important”

to the author of w. Many such links into w′, especially from pages that are

themselves “important”, should raise the importance of w′ relative to other web

pages. More specifically, the importance that is propagated from w to w′ should

be proportional to the importance of w and inversely proportional to the number

of out-links from w. This account of PageRank is still incomplete as it does not

take into account any form of user personalisation, or how to deal with pages

with no outgoing links.

The second conceptual model of PageRank is called the random surfer model.

Consider a surfer who starts at a web page and picks one of the links on that

page at random. On loading the next page, this process is repeated. If the surfer

encounters a page with no outgoing links, then (s)he chooses to visit a random

page. During normal browsing, the user may also decide, with a fixed probability,

not to choose a link from the current page, but instead to jump at random to an-

other page. In the latter case, to support both unbiased and personalised surfing

behaviour, the model allows for the specification of a probability distribution of

target pages.

The PageRank of a page is considered to be the (steady-state) probability that

the surfer is visiting a particular page after a large number of click-throughs.

6.1. The PageRank Algorithm 162

Calculating the steady-state probability vector corresponds to finding a maxi-

mal eigenvector of the modified web graph transition matrix. As shown in Sec-

tion 6.1.3 below, this can be done via an iterative numerical method based on

sparse matrix–vector multiply operations.

6.1.2 Random Surfer Model

In the random surfer model, the web is represented by a directed graph G(V, E),

with web pages forming the set of vertices, V , and the links between web pages

forming the set of directed edges, E . If a link exists from page ui to page uj then

(ui → uj) ∈ E .

To represent the following of hyperlinks, we construct a transition matrix P from

the web graph, setting:

pij =

1
deg(ui)

: if (ui → uj) ∈ E
0 : otherwise

where deg(u) is the out-degree of vertex u, i.e. the number of outbound links

from page u. From this definition, it can be seen that if a page has no out-links,

then this corresponds to a zero row in the matrix P.

To represent the surfer’s jumping from pages with no outgoing links, we construct

a second matrix D = dpT , where d and p are both column vectors and:

di =

1 : if deg(ui) = 0

0 : otherwise

and p is the personalisation vector representing the probability distribution of

destination pages when a random jump is made. Typically, this distribution is

taken to be uniform, i.e. pi = 1/n for an n-page graph (1 ≤ i ≤ n). But it need

not be – many distinct personalisation vectors may be used to represent different

classes of user with different web browsing patterns. This flexibility comes at a

cost: for each distinct personalisation vector, another PageRank calculation is

required.

6.1. The PageRank Algorithm 163

Putting together the surfer’s following of hyperlinks and his/her random jumping

from cul de sac pages yields the matrix P′ = P + D, such that P′ is a transition

matrix of a discrete-time Markov chain (DTMC).

To represent the surfer’s decision not to follow any of the current page links, but to

instead jump to a random web page, we construct a teleportation matrix E, where

eij = pj for all i, i.e. this random jump is also dictated by the personalisation

vector.

Incorporating this matrix into the model gives:

A = cP′ + (1− c)E (6.1)

where 0 < c < 1, and c represents the probability that the user chooses to follow

one of the links on the current page, i.e. there is a probability of (1− c) that the

surfer randomly jumps to another page instead of following links on the current

page.

This definition of A avoids two potential problems. The first is that P′, although

a valid DTMC transition matrix, is not necessarily irreducible (i.e. it might have

more than one strongly connected subset of states) and aperiodic. Taken to-

gether, these are a sufficient condition for the existence of a unique steady-state

distribution. Now, provided pi > 0 for all 1 ≤ i ≤ n, irreducibility and aperiod-

icity are trivially guaranteed.

The second problem relates to the rate of convergence of power method iterations

used to compute the steady-state distribution. This rate depends on the recipro-

cal of the modulus of the subdominant eigenvalue (λ2) [Ste94]. For a general P′,

|λ2| may be very close to 1, resulting in a very poor rate of convergence. How-

ever, it has been shown in [HK03] that in the case of matrix A, |λ2| ≤ c, thus

guaranteeing a good rate of convergence for the widely taken value of c = 0.85.

The unique PageRank vector, π, can now be defined to be the steady-state vector

or the maximal eigenvector that satisfies:

πA = π (6.2)

6.1. The PageRank Algorithm 164

6.1.3 Power Method Solution

Having constructed A, the näıve attempt to finding the PageRank vector of

Equation 6.2 uses a direct power method approach:

x(i+1) = x(i)A (6.3)

where x(i) is the ith iterate towards the PageRank vector, π. However, given

that A is a (completely) dense matrix and the large (and increasing) size of the

web, it is clear that this is not a practical approach. Fortunately, the PageRank

algorithm, as cited in [KHMG03a] for instance, reduces Equation 6.3 to a series

of sparse vector–matrix operations on the original P matrix.

In particular, transforming Equation 6.3 gives:

x(i+1) = x(i)A (6.4)

= cx(i)P′ + (1− c)x(i)E (6.5)

= cx(i)P + cx(i)D + (1− c)x(i)(1pT) (6.6)

Now x(i)D = (‖x(i)‖1 − ‖x(i)P‖1)p
T , where ‖a‖1 =

∑
j |aj| is the 1-norm of a

and further ‖a‖1 = 1Ta if aj ≥ 0 for all j. It can be shown inductively that

‖x(i)‖1 = 1 for all i (if ‖x(0)‖1 = 1), so:

x(i+1) = cx(i)P + c(1− ‖x(i)P‖1)p
T + (1− c)(x(i)1)pT (6.7)

= cx(i)P + (1− c‖x(i)P‖1)p
T (6.8)

This leads to the algorithm shown in Algorithm 4. In practice, the power

method iterations are computed in parallel. This is because parallel computation

in general yields faster per-iteration runtimes than serial computation and more

importantly, because the sparse matrix P is too large to be stored within the

memory of a single processor (e.g. in 2003, the World Wide Web contained at

least 8.9 billion webpages [WD04]).

6.2. Parallel Sparse Matrix–Vector Multiplication 165

Algorithm 4 Iterative computation of PageRank via the Power Method

Require: 0 < ε ¿ 1

1: i := 0

2: x(i) := pT

3: repeat

4: y := cx(i)P

5: ω := 1− ‖y‖1

6: x(i+1) := y + ωpT

7: i := i + 1

8: until ‖x(i) − x(i−1)‖1 < ε

6.2 Parallel Sparse Matrix–Vector Multiplica-

tion

We consider parallel sparse matrix–vector multiplication in the context of a dis-

tributed memory parallel architecture. Let Ax = b be the sparse matrix–vector

product to be computed in parallel on p distributed processors that are connected

by a network. A parallel algorithm for sparse matrix–vector multiplication with

an arbitrary non-overlapping distribution of the matrix and the vectors across

the processors has the following general form [VB05]:

1. Each processor sends its components xj to those processors that possess a

non-zero aij in column j.

2. Each processor computes the products aijxj for its non-zeros aij and adds

the results for the same row index i. This yields a set of contributions bis,

where s is the processor identifier 0 ≤ s < p.

3. Each processor sends its non-zero contributions bis to the processor that is

assigned vector element bi.

4. Each processor adds the contributions received for its components bi, giving

bi =
∑p−1

s=0 bis.

Efficient parallel sparse matrix–vector multiplication requires intelligent a priori

partitioning of the sparse matrix non-zeros across the processors to ensure that

6.3. Hypergraph Models for Sparse Matrix Decomposition 166

interprocessor communication during stages 1 and 3 is minimised and computa-

tional load balance is achieved across the processors (cf. Section 1.1.3).

We note that the computational requirement of step 2 dominates that of step 4;

henceforth we assume that the computational load of the entire parallel sparse

matrix–vector multiplication algorithm can be represented by the computational

load induced during step 2 only.

The decomposition of the sparse matrix to the p processors may be one-dimensional

or two-dimensional (Cartesian). In a one-dimensional decomposition, entire rows

(or columns) of the matrix A are allocated to processors. In literature, this

is called a row (or column) block distribution [GGKK03]. Note that a one-

dimensional row-wise decomposition has the effect of making the communication

step 3 in the parallel sparse matrix–vector multiplication pipeline redundant; in

the one-dimensional column-wise decomposition, step 1 is redundant.

A two-dimensional sparse matrix decomposition involves the allocation of indi-

vidual sparse matrix non-zeros to processors. Note that a one-dimensional sparse

matrix decomposition is a special case of a two-dimensional sparse matrix decom-

position.

6.3 Hypergraph Models for Sparse Matrix De-

composition

Recently, a number of hypergraph-based models for parallel sparse matrix–vector

multiplication that correctly model total communication volume (the aggregate

size of all messages) and per-processor computational load have been proposed

[cA99, cA01a, UA04, VB05]. These have addressed the shortcomings implicit

in traditional graph models, which can, in general, only approximate the total

communication volume [Hen98]. In [cA99], a hypergraph-based model for one-

dimensional decomposition of the sparse matrix is proposed. The hypergraph-

based models in [cA01a, UA04, VB05] are two-dimensional.

6.3. Hypergraph Models for Sparse Matrix Decomposition 167

6.3.1 One-Dimensional Sparse Matrix Decomposition

In our description, all non-zeros in a row of the matrix are allocated to the same

processor. A similar column-wise model follows from considering the allocation

of all non-zeros in a column of the matrix to the same processor. These one-

dimensional hypergraph-based models were first proposed in [cA99].

The hypergraph model H(V, E) for the row-wise decomposition of a sparse n×n

matrix A is constructed by interpreting A as the incidence matrix of the hyper-

graph H(V, E) (cf. Section 2.1). The rows of the matrix A form the set of vertices,

V , in the hypergraph H(V, E) and the columns form the set of hyperedges, E .

That is, if aij 6= 0, then hyperedge ej ∈ E , defined by column j of the matrix A,

contains vertex vi ∈ V . The weight of vertex vi ∈ V is given by the number of

non-zero elements in row i of the matrix A, representing the computational load

induced by assigning row i to a processor. The weights of each hyperedge are set

to unity.

The allocation of the rows of the matrix A to p processors for parallel sparse

matrix–vector multiplication corresponds to a p-way partition Π of the hyper-

graph H(V, E). The computational load on each processor i is given by the

number of scalar multiplications performed on that processor during stage 2 of

the general parallel sparse matrix–vector multiplication pipeline. This quantity

is given by the number of non-zeros of the matrix A allocated to processor i,

which is in turn given by the weight of part Pi.

The vector elements xi and bi are allocated to the processor that is allocated

row i of the matrix A. There remains one further condition that the hypergraph

model must satisfy to ensure that the k−1 metric objective function on partition

Π exactly represents the total communication volume incurred during a single

parallel sparse matrix–vector multiplication (in this case stage 1 in the pipeline

only). It is required that, for all 1 ≤ i ≤ n, vi ∈ ei holds. If this is not the case

for some 1 ≤ i′ ≤ n, then we add vi′ to hyperedge ei′ in the hypergraph model.

The weight of vi′ is not modified.

6.3. Hypergraph Models for Sparse Matrix Decomposition 168

Upon construction, the hypergraph model H(V, E) is partitioned to minimise

the k − 1 objective function subject to a partitioning balance constraint; this

directly corresponds to minimising communication volume during parallel sparse

matrix–vector multiplication while maintaining a computational load balance.

6.3.2 Two-Dimensional Sparse Matrix Decomposition

The two-dimensional sparse matrix decomposition takes a more general approach,

no longer imposing the restriction of allocating entire rows (or columns) of the

sparse matrix A to the same processor (as the one-dimensional decomposition

does). Instead, an arbitrary distribution of matrix non-zeros to processors is

considered. Compared to a one-dimensional row-wise decomposition, this may

introduce additional communication operations during stage 3 in the general par-

allel sparse matrix–vector multiplication pipeline. We describe the fine-grained

hypergraph model introduced in [cA01a].

The hypergraph model H(V, E) is constructed as follows. Each aij 6= 0 is modelled

by a vertex v ∈ V , so that a p-way partition Π of the hypergraph H(V, E) will

correspond to an assignment of matrix non-zeros across p processors.

In order to define the hyperedges in the hypergraph model, we consider the cause

of communication between processors in stages 1 and 3 of the parallel sparse

matrix–vector multiplication pipeline. In stage 1, the processor with non-zero

aij requires vector element xj for computation during stage 2. This results in a

communication of xj to the processor assigned aij if xj is assigned to a different

processor than aij. The dependence between non-zeros in column j of matrix A

and vector element xj can be modelled by a hyperedge, whose constituent vertices

are the non-zeros of column j of the matrix A. So that the communication volume

associated with communicating vector element xj is given by λj − 1, where λj

denotes the number of parts spanned by the column j hyperedge, it is required

that the column j hyperedge contains the vertex corresponding to non-zero ajj. If

ajj is zero in the matrix A, a “dummy” vertex with zero weight corresponding to

ajj is added. The fact that this vertex has weight zero means that its allocation

6.3. Hypergraph Models for Sparse Matrix Decomposition 169

to a processor will have no bearing on the processor’s computational load, while

the exact communication volume during stage 1 is modelled correctly.

During stage 3, the processor assigned vector element bi requires the value of the

inner product of row i of the matrix A with the vector x. A communication

between processors is induced if matrix non-zero aij is assigned to a different

processor from vector entry bi. The dependence between non-zeros in row i of

matrix A and vector element bi can be modelled by a hyperedge, whose con-

stituent vertices are the non-zeros of row i of the matrix A. This is analogous to

modelling the communication of stage 1 with column hyperedges and likewise,

dummy vertices corresponding to aii are added to row hyperedge i if the value of

aii in matrix A is zero.

Upon construction, the hypergraph model H(V, E) is then partitioned into p

parts, minimising the k − 1 objective subject to a partition balance constraint.

As for the one-dimensional hypergraph model in Section 6.3.1, this corresponds

to minimising communication volume during parallel sparse matrix–vector mul-

tiplication while maintaining the computational load balance.

Thus far, the vector entries have not been explicitly allocated to processors. We

assume that the ith components of vectors x and b are allocated to the same

processor. This is also called symmetric vector partitioning in literature and

is usually necessary when, during an iterative computation, the output vector

b is used as the input vector in the following iteration. Non-symmetric vector

partitioning (with an arbitrary distribution of vector elements to processors) is

discussed in more detail in [UA04, BM05, VB05].

The overall communication volume during the parallel sparse matrix–vector mul-

tiplication will be correctly modelled by the two-dimensional hypergraph model,

provided that the vector elements are allocated to processors in the following

fashion. Consider the vector element with index i:

1. If both the row i hyperedge and the column i hyperedge are not cut, then

assign vector elements xi and bi to the processor assigned vertices from row

i and column i hyperedges.

6.4. Case Study: Parallel PageRank Computation 170

2. If the row i hyperedge is cut and the column i hyperedge is not cut, then

assign vector elements xi and bi to the processor assigned vertices from

column i hyperedge.

3. If the row i hyperedge is not cut and the column i hyperedge is cut, then

assign vector elements xi and bi to the processor assigned vertices from row

i hyperedge.

4. If both the row i hyperedge and the column i hyperedge are cut, then

let Ri denote the set of processors that contain row i hyperedge elements

and let Ci denote the set of processors that contain column i hyperedge

elements. Since either aii 6= 0 or there exists a “dummy” vertex in the

row i and column i hyperedges corresponding to aii, the set Ti = Ri ∩ Ci

is non-empty and vector elements xi and bi may be assigned to any of the

processors in Ti.

With the additional freedom in the assignment of vector elements to processors

given by case 4 above, it may be possible to further decrease the maximum

number of messages as well as the volume of communication sent or received by an

individual processor, while keeping the overall communication volume constant.

Such vector partitioning is discussed in detail in [BM05].

6.4 Case Study: Parallel PageRank Computa-

tion

This section describes a case-study application of the hypergraph models for

sparse matrix decomposition to parallel iterative PageRank computation. We

consider a parallel formulation of the iterative PageRank algorithm described in

Section 6.1.3, which has the parallel computation of the sparse matrix–vector

product x(i)P as the kernel operation during each iteration i.

When distributing this algorithm, it is important to distribute the sparse matrix–

vector calculation of x(i)P in such a way so as to balance computational load

6.4. Case Study: Parallel PageRank Computation 171

as evenly as possible across the processors and minimise communication over-

head between processors. Here, we investigate the use of hypergraph models for

sparse matrix decomposition and use the parallel hypergraph partitioning tool

Parkway2.1 to compute partitions of the hypergraph models in parallel.

Although our discussion is in the context of power method solution, there is noth-

ing to prevent the application of the hypergraph partitioning-based techniques to

other iterative linear system solvers with a sparse matrix–vector multiplication

kernel, such as the Krylov subspace methods proposed in [GZB04]. Furthermore,

our approach does not preclude the application of power method acceleration

techniques, for example those proposed in [KHMG03b].

6.4.1 Experimental Setup

Sparse Matrix Decomposition Strategies

Four sparse matrix decomposition strategies were evaluated in the case-study.

The two hypergraph decomposition methods of Section 6.3 (here referred to as

one-dimensional and two-dimensional models) were tested against two purely load

balancing methods.

In the cyclic row-striping matrix decomposition, the non-zeros of the matrix A

in the row with index i are assigned to the processor i mod p. Vector elements xi

and bi are also allocated to processor i mod p. This ensures that each processor

is allocated the same number (±1) of rows of matrix A and vector elements of x

and b. However, this scheme does not take into account the distribution of the

non-zeros within the rows.

The load balancing scheme, presented in [GZB04], and hereafter referred to as

the GleZhu scheme, attempts to balance the number of non-zeros across the

processors, while assigning consecutive rows of the matrix A to each processor.

A threshold value τp = (wnn + wηη)/p is computed, where n is the number of

rows and η the number of non-zeros in the matrix. The parameters wn and wη

are both set to unity in [GZB04] and in the case-study experiments. Starting

6.4. Case Study: Parallel PageRank Computation 172

WebGraph rows columns non-zeros

Stanford 281 903 281 903 2 594 228

Stanford Berkeley 683 446 683 446 8 262 087

india-2004 1 382 908 1 382 908 16 917 053

Table 6.1. The main characteristics of the web matrices.

with row index zero and processor p0, the load-balancing algorithm then assigns

consecutive rows of matrix A and consecutive elements of vectors x and b to each

processor pi, maintaining the value of τi = wnni + wηηi, where ni is the number

of rows and ηi the number of non-zeros assigned thus far to processor pi. When

τi exceeds τp, the algorithm begins to assign subsequent rows to processor pi+1.

Case Study Web Matrices

Our experiments were performed on three publicly available web graphs. Each

web graph was generated from a crawl of a particular domain or combination

of domains and is represented by a sparse matrix A with non-zero aij whenever

there exists a link from page i to page j. The Stanford and Stanford Berkeley

web graphs were obtained from the University of Florida Sparse Matrix Collec-

tion [Dav05] and represent lexically ordered crawls of the Stanford and combined

Stanford/Berkeley domains respectively. The india-2004 web graph represents a

breadth-first crawl of the .in domain, conducted in 2004, obtained from the Ubi-

Crawler public data set [BCSV04]. The main characteristics of the web matrices

are given in Table 6.1.

The hypergraph partitioning-based models for sparse matrix decomposition give

rise to the following hypergraphs, whose characteristics are shown in more de-

tail in Appendix A. Stanford-1D and Stanford-2D are the 1-dimensional and 2-

dimensional hypergraph models for sparse matrix decomposition of the Stanford

web matrix. Similarly, the Stfd Bkly-1D and Stfd Bkly-2D hypergraphs corre-

spond to the Stanford Berkeley web matrix, while the india-2004-1D and india-

6.4. Case Study: Parallel PageRank Computation 173

WebGraph

x1

x2
.

.

.

xn

Pagerank

Vector
x =

Sparse

Matrix

Decomposition

PageRank

Parallel

Computation

Naive Partitioning Models

Hypergraph Partitioning Models

1D

2D

Cyclic

Gleich−Zhukov

Parallel Partitioning with Parkway2.1

Figure 6.1. Parallel PageRank computation pipeline.

2004-2D hypergraphs correspond to the india-2004 web matrix.

Experimental Platform and Configuration

The parallel PageRank computation pipeline is shown in Figure 6.1. Taking the

web-graph matrix A as input, a decomposition of this matrix across p processors

is performed using either one of the hypergraph partitioning-based models (i.e.

1D or 2D) or one of the purely load balancing row-wise decomposition methods

(i.e. cyclic or GleZhu). The hypergraph partitioning-based schemes compute a p-

way partition of the hypergraph representation of the sparse web matrix using the

parallel hypergraph partitioning tool Parkway2.1, which is an optimised version

of the tool described in Section 5.2.

Parkway2.1 was configured for the experiments as follows. A 5% partition bal-

ance constraint was imposed, equivalent to setting ε = 0.05 in Equation 2.3.

The parallel coarsening and uncoarsening settings were as used in experiments

in Chapter 5 and are described in Section 5.3.2. No multi-phase refinement was

used and the number of passes of the parallel k-way refinement algorithm at each

multilevel step was restricted to at most four.

6.4. Case Study: Parallel PageRank Computation 174

The computed hypergraph partition was then used to allocate the rows (in the

case of 1D partitioning) or the non-zeros (in the case of 2D partitioning) of the

web matrix to the processors. Finally, the algorithm described in Section 6.1.3

was used to compute the PageRank vector for the matrix, with all matrix–vector

and vector operations performed in parallel. The criterion of convergence for the

PageRank calculation was taken to be 10−8 and convergence was computed using

the L1 norm.

The architecture used in all the experiments consisted of a Beowulf Linux Cluster

with 8 dual processor nodes. Each node has two Intel Pentium 4 3.0GHz pro-

cessors and 2GB RAM. The nodes are connected by a gigabit Ethernet network.

The algorithms were implemented in C++ using the Message Passing Interface

(MPI) standard [SOHL+98].

6.4.2 Experimental Results

For each matrix decomposition method, we observed the following measures of

communication cost during each parallel PageRank iteration:

• The total communication volume (the total volume of all messages sent)

• The number of messages sent

• The maximum total communication volume of messages sent and received

by a single processor

The purely load balancing matrix decomposition approaches did not attempt to

minimise the metrics above. The one- and two-dimensional hypergraph-based

models aimed to minimise the overall communication volume. In a row-wise

decomposition, the number of messages sent during parallel sparse matrix–vector

multiplication is at most p(p − 1). In a two-dimensional decomposition, the

number of messages is at most 2p(p− 1).

6.4. Case Study: Parallel PageRank Computation 175

 1000

 10000

 100000

 1e+06

 1e+07

C
yc

lic

G
le

Z
hu

1D
 H

−
gr

ap
h

2D
 H

−
gr

ap
h

C
om

m
un

ic
at

io
n

vo
l.

(#
 o

f f
lo

at
in

g
po

in
t e

le
m

en
ts

)

Partition algorithm

Total inter−processor communication for different webgraph partitions

Number of FP elements sent

Figure 6.2. Total per-iteration communication

volume for 16-processor Stanford Berkeley Page-

Rank computation (note log scale on communi-

cation volume axis).

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

G
le

Z
hu

1D
 H

−
gr

ap
h

2D
 H

−
gr

ap
h

T
im

e,
 s

Partition algorithms

Breakdown of PageRank time per iteration into constituent components

Communication
Computation

Residual

Figure 6.3. Per-iteration execution time for

16-processor Stanford Berkeley PageRank com-

putation.

The complete set of experimental results is presented in Section B.3. We note

that due to numerical inaccurracies (truncation and roundoff), the number of

iterations varied slightly across the different methods.

We observe that the hypergraph partitioning-based sparse matrix decomposition

schemes attracted a significantly lower overall communication overhead than the

two purely load-balancing schemes. The two-dimensional hypergraph model was

the most effective at reducing overall communication volume, although this did

not always translate into a lower PageRank per-iteration time, on account of the

higher number of messages sent and the relatively high message start-up cost on

the gigabit PC cluster.

Figure 6.2 displays the total per-iteration communication volume for each parti-

tioning algorithm (note the log scale on the y axis). It shows that the GleZhu

technique had a lower communication overhead than the näıve cyclic partition-

ing, as might have been expected. It also shows that, when compared to the

GleZhu method, hypergraph partitioning reduced communication volume by an

order of magnitude for one-dimensional hypergraph partitioning and by 2 orders

of magnitude for two-dimensional hypergraph partitioning.

Figure 6.3 shows the overall PageRank iteration time for GleZhu, one-dimensional

and two-dimensional hypergraph-partitioning based decompositions of the Stan-

6.4. Case Study: Parallel PageRank Computation 176

ford Berkeley web matrix on the 16-processor cluster. The computation label

refers to the time taken to compute a single Ax = b iteration. The commu-

nication label represents the time taken in communication when performing a

single Ax = b iteration. The residual label corresponds to the time taken by

the remaining computation and communication operations during an iteration of

the parallel PageRank computation. The results for the cyclic technique are not

shown as they are orders of magnitude larger and the main interest here is in com-

paring the GleZhu sparse matrix decomposition method (as the best currently

used alternative) with the hypergraph-based methods. It is clear that the overall

PageRank iteration time was dictated by the communication overhead incurred

in performing the distributed Ax = b calculation. As might have been expected,

the computation element and the residual of the PageRank computation (those

calculations not involving the distributed matrix–vector multiplication) of the

algorithm contributed an (approximately) fixed cost to the overall iteration time.

We observe that one-dimensional and two-dimensional hypergraph partitioning

successfully reduced the communication overhead by factors of 2 and 6 respec-

tively. This reduction resulted in a decrease in the overall PageRank per-iteration

time by 50% in the 2-dimensional case, when compared to the GleZhu method.

We note that, contrary to intuition, in some cases computation times did vary

significantly, depending on decomposition method used. It is conjectured that

this occurred because no attempt was made to optimise the caching behaviour

of the parallel PageRank solver. As a consequence, the GleZhu method (which

assigns consecutive vector elements to processors) had a good cache hit rate;

conversely the cyclic method (which assigns vector elements on a striped basis)

suffered a poor cache hit rate.

Finally, we observe that the partitioning overhead for hypergraphs arising from

the one-dimensional model was significantly lower than the partitioning overhead

for hypergraphs arising from the two-dimensional model. There are a number of

reasons for this. Firstly, the more sophisticated nature of the two-dimensional

hypergraph model yields a significantly larger hypergraph for partitioning than

6.4. Case Study: Parallel PageRank Computation 177

the one-dimensional hypergraph model. Secondly, our parallel multilevel hyper-

graph partitioning tool Parkway2.1 has not yet been optimised for partitioning

hypergraphs arising from two-dimensional models of parallel sparse matrix–vector

multiplication; such hypergraphs possess a particular structure, where each ver-

tex is incident on exactly two hyperedges.

Chapter 7

Conclusion

7.1 Summary of Achievements

The main contributions of this thesis are the first parallel algorithms for mul-

tilevel hypergraph partitioning. These significantly increase capacity, enabling

partitioning of very large hypergraphs, and achieve good speedups over existing

state-of-the-art serial partitioners, without sacrificing partition quality.

Our explorations into parallel hypergraph partitioning began in Section 4.3 with

an application-specific high-capacity disk-based parallel hypergraph partitioning

algorithm. This algorithm was developed to exploit the particular structure found

in hypergraphs derived from Markov and semi-Markov transition matrices that

are constructed by a breadth-first traversal of the state-transition graphs. The

high capacity of this disk-based parallel algorithm enabled very large hypergraphs

(with Θ(107) vertices) to be partitioned for the first time. In our experiments

with the parallel implementation Parkway1.0, our parallel algorithm was shown

to consistently outperform an approximate approach based on parallel graph

partitioning (using the state-of-the-art tool ParMeTiS), by up to 27% in terms

of the k − 1 partitioning objective function. However, our parallel algorithm

exhibited long runtimes and poor scalability due to relatively poor processor

utilisation and slow disk access times; the number of processors was also restricted

to (positive) powers of two only.

178

7.1. Summary of Achievements 179

This preliminary experience led to the main contribution of this thesis, which is

a general parallel multilevel hypergraph partitioning algorithm that imposes no

restrictions on the input hypergraph (cf. Section 4.5). It can compute k-way par-

titions for k > 1, independent of the number of processors used, p. The algorithm

uses a one-dimensional distribution of the hypergraph across the processors. At

every multilevel step, the hyperedges incident on the local vertices are assem-

bled at each processor. Conflicts that may result from making coarsening and

refinement decisions concurrently across many processors are avoided through a

two-stage communication schedule. A hash function ensures that computational

load balance is achieved at each multilevel step by inducing an evenly-spread

allocation of hyperedges to processors. We have also developed a parallel for-

mulation of multi-phase refinement during the uncoarsening phase. This parallel

refinement algorithm recursively applies the multilevel approach to a partition in

order to further improve partition quality.

Section 4.6 presented an analytical average-case performance model for our gen-

eral parallel algorithm. Under a number of assumptions, including that the input

hypergraph has small maximum vertex and hyperedge degrees and that the paral-

lel coarsening algorithm reduces the hypergraph by a constant factor at each mul-

tilevel step, we showed that the algorithm is cost-optimal on a hypercube parallel

architecture. We also showed that the algorithms are technically scalable, by de-

riving their isoefficiency function. The isoefficiency function O(p2k2(log p+log k))

is of the same order in p as that of Karypis and Kumar’s parallel graph parti-

tioning algorithm.

Chapter 5 described the implementation of the general parallel multilevel hyper-

graph partitioning algorithm from Section 4.5 in the parallel tool Parkway2.0.

We also presented an extensive experimental evaluation of the general parallel

multilevel hypergraph partitioning algorithm, using Parkway2.0. The experi-

ments were performed on hypergraphs from a wide range of application domains,

including VLSI Computer-Aided Design, Markovian performance modelling and

DNA electrophoresis; partition quality was evaluated using the k − 1 objective

7.1. Summary of Achievements 180

function. The parallel architecture used in the experiments was a Beowulf Linux

cluster with a Myrinet interconnect.

On hypergraphs that were small enough to be partitioned serially, Parkway2.0

was shown to produce partitions of comparable quality with those produced

by the state-of-the-art serial tools PaToH and hMeTiS. On larger hypergraphs,

Parkway2.0 consistently outperformed the parallel graph partitioner ParMeTiS,

with improvements of up to 60% in the k − 1 partitioning objective function.

The partitioning runtimes from the experiments were used to investigate speedups

achieved by Parkway2.0 over state-of-the-art serial tools. We used the serial tool

PaToH as the base-case comparison in speedup calculations because it has been

highly optimised for fast runtimes. Parkway2.0 exhibited good speedups on

hypergraphs with small average and maximum vertex degrees. On hypergraphs

with higher maximum-, but small average-vertex degrees, shallower speedups

were observed.

Another set of experiments investigated the scalability behaviour of the general

parallel multilevel hypergraph partitioning algorithm, as predicted by its iso-

efficiency function. For a scalable parallel algorithm, the isoefficiency function

specifies how the problem size should be increased in order to maintain a constant

level of efficiency, as the number of processors used increases.

We used a family of hypergraphs derived from transition matrices generated by

a semi-Markov model of a voting system, because these possess a very similar

structure, and thus, proportionally similar partitioning overheads. As the number

of processors used was increased, we increased the problem size by choosing the

appropriate input hypergraph, according to the algorithm’s isoefficiency function.

For computation of processor efficiency, the PaToH serial multilevel partitioner

was used for hypergraphs that could be partitioned serially. For hypergraphs that

we could not partition serially, we used linear regression on a log-log plot of the

PaToH runtimes against problem size for the smaller hypergraphs to extrapolate

the serial runtimes.

Across the different partition sizes, we observed no consistent increasing or de-

7.2. Applications 181

creasing trend in efficiency, as the number of processors and problem size are

increased in accordance with the isoefficiency function. The experiments are

thus consistent with our hypothesised isoefficiency function.

In Chapter 6, we presented the application of the optimised parallel multilevel

hypergraph partitioning tool Parkway2.1 to parallel PageRank computation on

a gigabit ethernet Linux cluster. Hypergraph partitioning-based sparse matrix

decomposition methods for parallel sparse matrix–vector multiplication were used

within a parallel iterative PageRank solver for the first time.

We investigated the use of both one-dimensional (row-wise) and two-dimensional

fine-grained hypergraph partitioning-based sparse matrix decomposition methods

and compared them against a recently-proposed purely load-balancing partition-

ing and a simple row-wise cyclic partitioning. The comparison was performed on

three publicly available webgraphs that were constructed from crawls of actual

web domains. The hypergraphs constructed by the models were partitioned in

parallel using Parkway2.1. This partition was then used to distribute the web

matrix across the processors, prior to the parallel iterative PageRank computa-

tion.

The hypergraph partitioning-based methods were observed to outperform the

purely load-balancing method in terms of per-iteration runtime by up to 50%,

while both of these methods dominated the cyclic row-wise decomposition method.

7.2 Applications

In this section, we outline possible applications of our contributions across a

number of hypergraph partitioning application domains.

The parallel algorithms presented in this thesis have significantly increased ca-

pacity enabling the partitioning of very large hypergraphs. As discussed in Sec-

tion 1.1.3, large-scale static and dynamic load balancing of parallel computations

give rise to large-scale hypergraph partitioning problems. As an illustration of

7.3. Future Work 182

the latter, in Chapter 6, we investigated the application of parallel hypergraph

partitioning to parallel PageRank computation.

In general, parallel computations that require repeated parallel sparse matrix–

vector multiplication, such as iterative linear system solvers, could achieve faster

runtimes and better scalability through the use of parallel hypergraph parti-

tioning. A striking example of this is response time analysis in Markov and

semi-Markov performance models of concurrent systems. Here, a large number

of sparse systems of linear equations are solved; each sparse system of linear equa-

tions is solved using a parallel iterative method, for which the kernel operation

is parallel sparse matrix–vector multiplication [BDKW03]. Because the systems

of linear equations all have the same non-zero sparsity pattern, hypergraph par-

titioning is computed only once, but reused many thousands of times.

We noted in Section 1.1.4 that direct implementation of programs written us-

ing high-level languages into reconfigurable hardware has recently attracted con-

siderable research effort. The resulting circuits are mapped using hypergraph

partitioning and as the complexity of programs to be compiled into reconfig-

urable hardware increases, high-capacity parallel hypergraph partitioning will be

required.

7.3 Future Work

In this section, we identify a number of possible directions for future work, based

on our work presented in this thesis. Future work may involve identifying im-

provements within the existing parallel multilevel pipeline or developing new

application-specific and general algorithms.

We first outline various aspects of our parallel multilevel algorithm that require

further investigation:

1. Multi-phase refinement: consider its use at coarser levels of the parallel

multilevel pipeline only, while using parallel greedy k-way refinement at

levels where the hypergraph is larger.

7.3. Future Work 183

2. Reduction ratio: consider varying the reduction ratio during the coarsening

phase, rather than using the same value at each coarsening step.

3. Runtime and partition quality tradeoff: investigate this by imposing limits

on the number of passes during the parallel refinement phase, the size of

the coarsest hypergraph and the number of multilevel steps.

4. Recursive bisection: investigate a recursive bisection multilevel formulation

instead of the currently-used direct multi-way partitioning formulation.

We noted in Chapter 5 and Chapter 6 that the performance of our parallel hyper-

graph partitioning algorithm depends on the structure of the input hypergraph.

We have identified two related areas requiring further attention:

1. Hypergraphs with a small number of large hyperedges induce a large com-

munication overhead during each multilevel step as a result of having to

replicate these large hyperedges on many processors. Future work should

aim to reduce the impact of this overhead.

2. Hypergraphs arising from two-dimensional models of parallel sparse matrix–

vector multiplication have a particular structure that may be exploited by

a parallel partitioning algorithm; that is, each vertex in the hypergraph is

incident on exactly two hyperedges.

Finally, the two-dimensional parallel multilevel hypergraph partitioning algo-

rithm described in Section 4.7 has the advantages that it does not replicate

hyperedges across the processors and that the number of processors taking part

in all-to-all communication operations is proportional to
√

p (rather than p, as in

our parallel multilevel hypergraph partitioning algorithm). In conjuction with ex-

perience from our one-dimensional parallel multilevel algorithm, developing scal-

able parallel hypergraph partitioning algorithms based on the two-dimensional

data distribution is a promising direction for future work.

Appendix A

Test Hypergraphs

This appendix describes in detail the test hypergraphs that have been used in this

thesis. The test hypergraphs were taken from a number of application domains.

The following hypergraphs have been constructed from sparse matrices obtained

from the University of Florida Sparse Matrix Collection [Dav05]. ATTpre2 was

derived from a matrix representing a set of linear equations that are solved dur-

ing the harmonic balance analysis of a large non-linear analogue circuit [FML96].

The cage hypergraphs were derived from transition matrices describing a model

of DNA electrophoresis, where the entries represent the probability of changes be-

tween polymer configurations, for various polymer lengths (13, 14, 15) [HBB02].

These hypergraphs have all been constructed using the hypergraph model for

one-dimensional row-wise decomposition, described in Section 6.3.1.

The voting hypergraphs were derived from transition matrices of a semi-Markov

performance model of an electronic voting system with failures and repairs, for

various numbers of voters [BDKW03]. Entries in a transition matrix reflect the

rates at which the system moves from one system configuration to another. These

have also been constructed using the hypergraph model for one-dimensional row-

wise decomposition.

The following hypergraphs have been derived from web matrices. The entries in

each web matrix represent the link structure between URLs within the domain.

184

185

Name Vertices Hyperedges Non-zeros Domain
ibm16 183 484 190 048 778 823 VLSI CAD
ibm17 185 495 189 581 860 036 VLSI CAD
ibm18 210 613 201 920 819 617 VLSI CAD

voting100 249 760 249 760 1 391 617 performance analysis
voting125 541 280 541 280 3 044 557 performance analysis
voting150 778 850 778 850 4 532 947 performance analysis
voting175 1 140 050 1 140 050 6 657 722 performance analysis
voting250 5 218 300 5 218 300 32 986 597 performance analysis
voting300 10 991 400 10 991 400 69 823 797 performance analysis
cage13 445 315 445 315 7 479 343 DNA electrophoresis
cage14 1 505 785 1 505 785 27 130 349 DNA electrophoresis
cage15 5 154 859 5 154 859 99 199 551 DNA electrophoresis

ATTpre2 659 033 659 033 6 384 539 analogue circuits
Stanford-1D 281,903 281 903 2 594 400 PageRank analysis
Stanford-2D 2 594 400 563 806 5 188 800 PageRank analysis
Stfd Bkly-1D 683 446 683 446 8 266 822 PageRank analysis
Stfd Bkly-2D 8 266 822 1 366 892 16 533 644 PageRank analysis
india-2004-1D 1 382 908 1 382 908 17 922 551 PageRank analysis
india-2004-2D 17 922 551 2 765 816 35 845 102 PageRank analysis

uk-2002 18 520 486 18 520 486 310 764 149 PageRank analysis

TableA.1. Significant properties of test hypergraphs.

The lexically ordered crawls of the Stanford and combined Stanford/Berkeley

domains yield four hypergraphs, corresponding to two hypergraph-based sparse

matrix decomposition models (one-dimensional and two-dimensional) for each

domain, as described in Section 6.3. The hypergraphs are Stanford-1D, Stanford-

2D and Stanford Berkeley-1D, Stanford Berkeley-2D respectively. Both of these

web matrices were also obtained from the University of Florida Sparse Matrix

Collection [Dav05].

The uk-2002 and india-2004 hypergraphs have been derived from web matrices

representing a 2002 web crawl of the .uk domain and a 2004 crawl of the .in do-

main, respectively. Both were obtained from [BCSV04]. These web matrices have

been used in PageRank calculations in [GZB04]. Note that the india-2004-1D and

india-2004-2D hypergraphs correspond to hypergraph models for one-dimensional

and two-dimensional decomposition of the .in web matrix, respectively. The uk-

2002 hypergraph was constructed according to the hypergraph model for one-

dimensional row-wise sparse matrix decomposition.

The ibm16, ibm17 and ibm18 hypergraphs are the three largest hypergraphs from

the ISPD98 Circuit Benchmark Suite [Alp98]. They represent the correspond-

186

Hyperedge lengths Vertex weights
Name avg 90% 95% max avg 90% 95% max

ATTpre2 9.04 14 21 745 9.69 18 628 628
cage13 16.8 24 26 39 16.8 22 27 39
cage14 18.0 25 27 41 18.0 23 29 41
cage15 19.2 27 29 47 19.2 25 31 47

voting100 5.57 7 7 7 5.57 7 7 7
voting125 5.62 7 7 7 5.62 7 7 7
voting150 5.82 7 7 7 5.82 7 7 7
voting175 5.84 7 7 7 5.84 7 7 7
voting250 6.32 7 7 7 6.32 7 7 7
voting300 6.35 7 7 7 6.35 7 7 7

ibm16 4.10 9 12 40 1 1 1 1
ibm17 4.54 11 13 36 1 1 1 1
ibm18 4.06 8 14 66 1 1 1 1

Stanford-1D 9.20 20 32 256 8.20 1,883 19 377 38 606
Stanford-2D 9.20 16 25 38 607 0.89 1 1 1
Stfd Bkly-1D 12.10 27 37 250 11.10 2 675 44 037 83 448
Stfd Bkly-2D 12.10 21 35 83 449 0.92 1 1 1
india-2004-1D 12.96 26 35 7 753 12.23 1 948 9 206 21 866
india-2004-2D 12.96 21 31 21 866 0.94 1 1 1

uk-2002 16.9 17 36 194 943 16.1 111 208 2 450

TableA.2. Average, 90th, 95th and 100th percentiles of hyperedge length and vertex weight

of the test hypergraphs.

ing benchmark circuits with unit cell areas (yielding unit vertex weights in the

hypergraphs, as described in Section 1.1.3).

Table A.1 shows the most significant properties of the test hypergraphs, namely

their respective numbers of vertices, hyperedges and non-zeros in the incidence

matrix. Table A.2 shows percentiles corresponding to the vertex weights and

hyperedge lengths of the test hypergraphs.

Appendix B

Summary of Experimental

Results

This appendix presents a detailed summary of results from the experiments de-

scribed in this thesis. All of the results shown (i.e. both partitioning runtimes

and objective function values achieved) are averages, taken from ten runs of the

respective partitioners. We note that in all experiments, the k − 1 partitioning

objective function was used. The parallel hypergraph partitioning algorithms

proposed in this thesis were implemented within the different versions of the

Parkway parallel partitioner.

The remainder of this appendix is organised as follows. Section B.1 presents

experimental results evaluating the Parkway1.0 disk-based parallel multilevel

hypergraph partitioning tool. These are discussed in more detail in Section 4.3.5.

Section B.2 shows the results of experiments using the Parkway2.0 parallel

multilevel hypergraph partitioning tool. These are discussed in more detail in

Section 5.3. Finally, Section B.3 presents the results from the application of

Parkway2.1, an optimised version of Parkway2.0, to parallel PageRank compu-

tation in Section 6.4.

187

B.1. Experiments Using Parkway1.0 188

voting250 results using 4 processors

Parkway1.0 ParMeTiS

Partition size k − 1 objective time(s) k − 1 objective time(s)

8 91 511 1 309 117 354 25

16 182 206 1 393 249 415 27

32 354 561 1 495 402 681 32

64 525 856 1 777 610 597 33

total: 1 154 134 5 974 1 380 047 117

TableB.1. Parkway1.0 and ParMeTiS: variation in partition quality and runtime for the

voting250 hypergraph.

B.1 Experiments Using Parkway1.0

This section presents the average k− 1 objective function values and runtimes in

experiments performed using the Parkway1.0 tool. Parkway1.0 implements the

application-specific disk-based parallel multilevel hypergraph partitioning algo-

rithm described in Section 4.3.

In the experiments described in Section 4.3.5, Parkway1.0 was compared to ap-

proximations produced by a graph model using the state-of-the-art parallel mul-

tilevel graph partitioning tool ParMeTiS [KSK02].

voting300 results using 8 processors

Parkway1.0 ParMeTiS

Partition size k − 1 objective time(s) k − 1 objective time(s)

16 322 737 4 827 442 387 85

32 529 763 4 762 687 659 61

64 874 652 5,007 1 033 312 80

total: 1 727 152 14 596 2 163 358 246

TableB.2. Parkway1.0 and ParMeTiS: variation in partition quality and runtime for the

voting300 hypergraph.

B.2. Experiments Using Parkway2.0 189

Partition Size

p 8 16 32 8 16 32

ATTpre2 voting175

1 (khm) 9 799 20 829 41 245 25 245 49 997 94 550
1 (pat) 10 036 20 462 32 936 22 328 46 324 93 088

2 8 598 17 270 35 008 26 135 51 139 96 078
4 8 545 17 111 36 416 25 991 52 531 95 679
8 8 460 16 839 37 410 26 735 52 787 96 072
12 8 496 16 836 36 480 26 357 53 662 97 654
16 8 452 16 981 37 304 25 942 53 766 97 204
20 8 470 16 498 38 098 26 120 52 053 97 307
24 8 385 16 248 37 395 25 970 52 154 96 898
28 8 456 16 121 36 611 26 127 52 869 96 160
32 8 469 16 264 35 858 25 990 52 363 97 428

cage13 ibm16

1 (khm) 186 566 275 542 378 718 8 651 13 719 20 713
1 (pat) 190 282 272 624 375 378 8 012 13 323 20 990

2 184 435 265 638 364 558 8 843 13 628 20 782
4 185 317 262 630 362 390 8 456 14 072 20 971
8 182 751 264 586 362 355 8 401 13 714 20 699
12 182 878 261 919 365 280 8 384 13 531 20 323
16 182 544 263 569 361 083 8 542 13 712 20 208
20 183 431 260 250 359 392 - - -
24 182 042 263 237 361 352 - - -
28 181 889 265 108 360 998 - - -
32 181 974 262 001 360 909 - - -

ibm17 ibm18

1 (khm) 13 181 19 797 28 476 7 973 12 084 18 271
1 (pat) 12 731 19 586 27 597 7 470 11 967 18 038

2 13 196 20 420 27 466 7 555 11 473 18 114
4 12 900 20 176 28 561 7 192 11 415 18 013
8 13 153 19 940 28 655 7 496 11 321 17 862
12 13 334 20 340 28 303 7 368 11 373 18 049
16 13 647 20 087 28 752 7 140 11 159 18 150

TableB.3. Parkway2.0 and PaToH/hMeTiS: variation of partition quality and the number of

processors on hypergraphs that were small enough to be partitioned serially.

B.2 Experiments Using Parkway2.0

This section presents the average k− 1 objective function values and runtimes in

the experiments using the Parkway2.0 tool described in Chapter 5.2. Parkway2.0

implements the parallel multilevel hypergraph partitioning algorithms described

in Section 4.5. For the purpose of the experimental evaluation, the following

B.2. Experiments Using Parkway2.0 190

Partition Size

p 8 16 32 8 16 32

voting250 voting300

4 90 097 184 606 347 024 - - -
8 91 236 181 442 348 208 164 817 327 519 593 010
16 92 233 184 184 347 083 162 246 326 545 590 840
24 90 620 181 286 348 644 159 848 324 384 592 926
32 90 864 180 529 347 975 161 196 322 932 594 465

cage14 cage15

4 668 788 958 857 1 237 890 - - -
8 678 092 961 587 1 248 730 1 707 530 2 419 960 3 328 120
16 677 753 955 970 1 249 470 1 770 500 2 440 040 3 318 620
24 677 723 953 470 1 243 310 1 730 530 2 433 260 3 336 230
32 674 826 945 271 1 245 700 1 756 520 2 439 560 3 324 270

uk-2002

16 217 107 302 274 387 122 - - -
24 217 400 298 641 378 878 - - -
32 212 252 295 966 376 774 - - -

TableB.4. Parkway2.0: variation of partition quality and the number of processors for hy-

pergraphs that were too large to be partitioned serially.

partitioners were also used:

• Serial multilevel hypergraph partitioning tool hMeTiS [KK98a]; khm refers

to the HMETIS PartKway() direct k-way multilevel partitioning routine.

• Serial multilevel hypergraph partitioning tool PaToH [cA01b]; pat refers to

the PaToH Partition() recursive bisection partitioning routine.

• Parallel multilevel graph partitioning tool ParMeTiS [KSK02].

The settings for the partitioning tools used in these experiments are described in

Sections 5.3.2, 5.3.3 and 5.3.4.

Table B.3 and Table B.10 show the experimental results for those hypergraphs

that could be partitioned serially on a single processor. For multiple processors,

the parallel multilevel hypergraph partitioning tool Parkway2.0 was used.

Table B.4 and Table B.7 show Parkway2.0 results for those hypergraphs that

were too large to be partitioned serially. Table B.5 and Table B.8 show the ex-

B.2. Experiments Using Parkway2.0 191

perimental results achieved by the graph-based approximation using the parallel

multilevel graph partitioning tool ParMeTiS on the same hypergraphs.

For the experimental results shown in Table B.6 and Table B.9, the Parkway2.0

tool used parallel multi-phase refinement, described in Section 4.5.5. The exper-

iments were carried out on hypergraphs that could be partitioned serially.

An empirical evaluation of the parallel hypergraph partitioning algorithms’ iso-

efficiency function was described in Section 5.3.5. The serial results using the

PaToH multilevel partitioner are shown in Table B.11 and Table B.12. These

include the extrapolated serial runtimes on hypergraphs that were too large to

be partitioned serially, as described in Section 5.3.5.

The parallel multilevel hypergraph partitioning tool Parkway2.0 was config-

ured as described in Section 5.3.5. The Parkway2.0 results are shown in Ta-

ble B.13 and Table B.14. Table B.15 shows the calculated processor efficiencies

for Parkway2.0, based on the PaToH serial runtimes from Table B.11.

Partition Size

p 8 16 32 8 16 32

voting250 voting300

4 112 788 237 915 399 692 - - -
8 113 728 234 113 406 717 199 398 410 645 695 402
16 109 923 234 113 406 717 194 006 403 825 682 900
24 109 181 221 080 400 740 199 810 400 474 681 524
32 108 171 220 157 399 971 196 580 398 681 683 293

cage14 cage15

4 927 047 1 283 558 1 615 524 - - -
8 966 840 1 247 109 1 613 363 2 721 964 3 767 945 4 821 755
16 974 369 1 336 449 1 695 092 2 692 714 3 774 712 4 989 808
24 954 539 1 362 100 1 751 141 2 662 354 3 862 317 5 132 662
32 978 009 1 350 387 1 730 139 2 744 563 3 811 813 5 194 172

uk-2002

32 530 630 657 702 753 548 - - -

TableB.5. ParMeTiS: variation of partition quality and the number of processors on hyper-

graphs that were too large to be partitioned serially.

B.3. Experimental Results From the PageRank Case Study 192

Partition Size

p 8 16 32 8 16 32

voting175 ATTpre2

2 24 252 48 222 93 125 8 684 16 748 30 917
4 24 422 48 166 93 121 8 504 16 534 30 771
8 24 553 48 714 93 104 8 503 16 440 30 634
16 - 48 435 91 842 - 16 095 30 162
32 - - 93 243 - - 28 675

cage13 ibm16

2 177 736 256 145 352 296 7 860 13 197 19 943
4 181 881 257 594 349 765 7 824 13 098 19 769
8 176 894 254 349 350 416 8 179 13 011 19 775
16 - 253 155 350 881 - 13 126 19 597
32 - - 351 058 - - -

ibm17 ibm18

2 12 266 18 463 26 318 6 951 10 896 17 150
4 12 622 18 672 26 528 6 896 10 670 17 325
8 12 444 19 045 27 097 6 885 10 689 17 266
16 - 19 382 27 065 - 10 838 17 264

TableB.6. Parkway2.0 with parallel multi-phase refinement: variation of partition quality

and the number of processors on hypergraphs that were small enough to be partitioned serially.

B.3 Experimental Results From the PageRank

Case Study

This section presents the experimental results from the case-study presented in

Chapter 6. Here, the parallel multilevel hypergraph partitioning tool Parkway2.1

(an optimised version of Parkway2.0) was applied as a pre-processing step in the

parallel iterative PageRank computation pipeline.

Partitions computed by Parkway2.1 were used to distribute the web matrix

across the processors for parallel PageRank computation according to the hyper-

graph partitioning-based models, described in Section 6.3. This was compared to

sparse matrix decompositions produced by purely load-balancing methods. The

experimental setup and discussion of results are presented in Section 6.4.

Table B.16, Table B.17 and Table B.18 present results of the experiments on the

Stanford, Stanford Berkeley and india-2004 web graphs, respectively.

B.3. Experimental Results From the PageRank Case Study 193

Partition Size

p 8 16 32 8 16 32

voting250 voting300

4 330.9 413.9 490.0 - - -
8 176.9 204.9 304.6 402.1 526.5 574.1
16 91.29 116.1 170.2 217.4 292.5 383.7
24 65.68 82.38 113.1 162.7 193.8 243.8
32 54.95 66.91 86.81 140.9 170.1 197.1

cage14 cage15

4 1 002 1 557 2 019 - - -
8 815.2 1 157 1 559 4 118 5 169 7 090
16 641.6 828.3 1 170 3 188 4 270 5 256
24 522.1 703.2 1 063 2 603 3 430 4 597
32 453.9 631.4 986.7 2 322 3 054 4 093

uk-2002

16 10 882 11 199 11 460 - - -
24 8 181 8 457 8 439 - - -
32 7 188 7 421 7 428 - - -

TableB.7. Parkway2.0: variation of runtime and the number of processors on hypergraphs

that were too large to be partitioned serially.

The following statistics were also recorded, for the combination of different web

graph models being run on 4, 8 and 16 processor clusters using the 4 distinct

partitioning algorithms:

• decomposition time (time taken to prepare the partition for each of the

different partitioning algorithms)

• number of iterations (number of iterations to convergence of the dis-

tributed PageRank algorithm)

• per iteration times (average time for a single PageRank iteration)

• Ax = b time (average time to perform a single Ax = b iteration)

• Ax = b comp. time (time taken by the local computation in an Ax = b

iteration)

• Ax = b comm. time (time taken by the interprocessor communication

in an Ax = b iteration)

B.3. Experimental Results From the PageRank Case Study 194

Partition Size

p 8 16 32 8 16 32

voting250 voting300

4 10.67 10.88 11.11 - - -
8 5.58 5.69 5.86 12.11 12.31 12.55
16 3.23 3.32 3.39 7.03 7.18 7.28
24 2.69 2.83 2.83 5.44 5.54 5.61
32 2.41 2.43 2.51 5.01 5.16 5.20

cage14 cage15

4 10.36 11.43 12.37 - - -
8 6.16 6.53 7.09 22.74 24.35 25.79
16 3.66 3.82 4.02 13.58 14.16 14.84
24 2.90 2.98 3.11 9.35 9.82 10.25
32 2.45 2.55 2.59 8.01 8.30 8.68

uk-2002

32 337.4 353.7 382.5 - - -

TableB.8. ParMeTiS: variation of runtime and the number of processors on hypergraphs that

were too large to be partitioned serially.

• max non-zeros per proc. (maximum number of non-zeros allocated per

processor)

• max vector elems per proc. (maximum number of vector elements

allocated per processor)

• max per proc. comm. vol. (maximum communication volume sent and

received by a processor)

• total comm. vol. (total communication volume of number of floating

point elements sent in a single PageRank iteration)

B.3. Experimental Results From the PageRank Case Study 195

Partition Size

p 8 16 32 8 16 32

voting175 ATTpre2

2 753.0 968.4 1 030 155.0 172.9 216.8
4 479.4 881.6 1 020 82.13 105.5 140.9
8 318.8 560.9 418.0 47.08 62.26 108.4
16 - 301.0 436.4 - 49.45 81.73
32 - - 147.5 - - 64.89

cage13 ibm16

2 1 392 1 798 2 875 45.88 70.17 94.81
4 1 129 1 688 2 511 38.85 58.09 80.91
8 1 065 1 425 2 379 37.69 50.61 68.72
16 - 1 381 2 102 - 43.48 68.95
32 - - 1 672 - - -

ibm17 ibm18

2 66.22 94.69 137.1 50.13 70.58 110.3
4 50.10 79.26 95.62 36.59 64.42 84.62
8 60.02 71.73 95.98 35.59 57.08 70.82
16 - 57.21 96.34 - 43.90 69.30

TableB.9. Parkway2.0 with parallel multi-phase refinement: variation of runtime and the

number of processors on hypergraphs that were small enough to be partitioned serially.

B.3. Experimental Results From the PageRank Case Study 196

Partition Size

p 8 16 32 8 16 32

ATTpre2 voting175

1 (khm) 28.5 33.0 41.3 73.0 78.8 90.4
1 (pat) 32.2 42.4 52.3 59.2 77.6 95.5

2 63.89 66.39 76.33 84.64 108.1 130.7
4 29.74 31.26 38.70 44.64 54.03 74.10
8 14.07 14.98 20.42 21.45 25.01 34.54
12 8.85 9.74 14.56 14.45 17.18 24.55
16 6.71 7.54 12.23 11.86 14.18 21.23
20 5.69 6.40 11.29 10.44 12.98 18.78
24 9.07 9.76 14.63 9.74 11.50 17.42
28 9.59 10.19 14.81 8.85 11.26 16.55
32 8.95 9.82 13.65 8.52 10.38 15.54

cage13 ibm16

1 (khm) 283.3 397.7 506.5 8.66 11.58 15.52
1 (pat) 267.0 327.2 380.0 14.50 17.10 19.00

2 300.7 355.1 470.0 14.26 16.59 20.51
4 207.0 264.3 323.4 10.03 12.42 15.29
8 147.3 185.1 250.4 8.05 10.14 12.92
12 117.6 164.1 240.0 8.07 10.29 12.60
16 111.6 159.2 229.8 8.90 10.57 12.93
20 111.3 154.6 218.8 - - -
24 106.4 148.3 211.6 - - -
28 106.2 145.7 216.8 - - -
32 101.6 141.0 224.9 - - -

ibm17 ibm18

1 (khm) 11.02 14.99 20.57 9.91 12.93 17.75
1 (pat) 9.62 11.74 13.37 16.50 19.04 21.17

2 17.47 20.63 25.78 15.67 18.28 22.69
4 13.00 16.00 19.88 11.25 13.61 16.72
8 10.17 12.81 17.22 8.92 10.67 14.20
12 9.49 12.70 15.94 9.19 11.12 14.23
16 9.99 13.06 16.26 9.23 11.51 14.21

TableB.10. Parkway2.0 and PaToH/hMeTiS: variation of runtime and the number of proces-

sors on hypergraphs that were small enough to be partitioned serially.

B.3. Experimental Results From the PageRank Case Study 197

Hypergraph k = 4 k = 8 k = 16 k = 32

voting100 7.32 10.74 14.14 17.07
voting125 17.43 26.42 33.43 41.06
voting150 27.08 40.84 54.50 65.96
voting175 40.34 61.84 83.17 101.9
voting250 227 364 496 614
voting300 527 862 1190 1480

TableB.11. PaToH: variation of runtime on voting hypergraphs (including extrapolated run-

times for voting250 and voting300).

Hypergraph k = 4 k = 8 k = 16 k = 32

voting100 4 040 7 924 16 729 31 268
voting125 7 251 14 609 32 880 54 957
voting150 8 715 18 152 41 676 74 827
voting175 11 218 22 285 48 517 94 855

TableB.12. PaToH: variation of partition quality on voting hypergraphs.

Hypergraph p k = 4 k = 8 k = 16 k = 32

voting100 2 10.88 12.03 16.25 25.48
voting125 3 19.75 22.44 26.68 37.62
voting175 4 41.44 45.11 58.25 79.89
voting250 8 131.8 137.5 147.9 167.1
voting300 11 231.4 237.0 251.7 280.0

TableB.13. Parkway2.0: variation of runtime on voting hypergraphs.

Hypergraph p k = 4 k = 8 k = 16 k = 32

voting100 2 4 498 9 157 18 303 31 848
voting125 3 8 145 16 378 33 136 55 208
voting175 4 12 569 25 970 52 870 95 313
voting250 8 45 614 91 938 183 954 349 634
voting300 11 81 141 163 573 334 346 593 446

TableB.14. Parkway2.0: variation of partition quality on voting hypergraphs.

Hypergraph p k = 4 k = 8 k = 16 k = 32

voting100 2 0.34 0.45 0.44 0.33
voting125 3 0.29 0.39 0.42 0.36
voting175 4 0.24 0.34 0.38 0.32
voting250 8 0.22 0.33 0.42 0.46
voting300 11 0.21 0.33 0.43 0.48

TableB.15. Parkway2.0: variation of processor efficiencies on voting hypergraphs.

B.3. Experimental Results From the PageRank Case Study 198

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 15.2 1 181

iterations 83 83 85 88

per iteration time(s) 0.2153 0.1681 0.0699 0.0762

Ax = b time(s) 0.2028 0.1621 0.0583 0.0657

Ax = b comp. time(s) 0.0607 0.0390 0.0551 0.0599

Ax = b comm. time(s) 0.1427 0.1237 0.0035 0.0058

messages 12 12 12 19

max non-zeros per proc. 614 346 583 653 607 030 601 362

max vector elems per proc. 70 476 73 611 90 601 87 253

max per proc. comm. vol. 304 442 267 683 12 344 1 318

total comm. vol. 601 964 530 420 13 849 1 399

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 13.2 1 061

iterations 79 79 83 86

per iteration time(s) 0.1854 0.1473 0.0443 0.0465

Ax = b time(s) 0.1716 0.1415 0.0318 0.0365

Ax = b comp. time(s) 0.0425 0.0169 0.0269 0.0309

Ax = b comm. time(s) 0.1299 0.1253 0.0055 0.0056

messages 56 56 44 64

max non-zeros per proc. 326 891 297 854 303 515 299 503

max vector elems per proc. 35 238 38 962 49 443 55 398

max per proc. comm. vol. 255 053 231 233 31 564 1 660

total comm. vol. 989 071 894 098 34 221 2 285

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.3 543.1

iterations 75 76 79 81

per iteration time(s) 0.1810 0.1446 0.0515 0.0513

Ax = b time(s) 0.1614 0.1377 0.0347 0.0353

Ax = b comp. time(s) 0.0532 0.0182 0.0242 0.0277

Ax = b comm. time(s) 0.1094 0.1203 0.0116 0.0076

messages 240 240 147 207

max non-zeros per proc. 192 857 155 898 151 757 151 236

max vector elems per proc. 17 619 21 208 31 215 28 221

max per proc. comm. vol. 186 331 173 525 39 820 2 214

total comm. vol. 1 364 285 1 325 808 74 137 4 307

TableB.16. Stanford web graph parallel PageRank computation results.

B.3. Experimental Results From the PageRank Case Study 199

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 22.9 5 169

iterations 84 87 89 89

per iteration time(s) 0.4596 0.0618 0.0353 0.0377

Ax = b time(s) 0.4341 0.0527 0.0253 0.0264

Ax = b comp. time(s) 0.0632 0.0237 0.0239 0.0244

Ax = b comm. time(s) 0.3714 0.0293 0.0018 0.0019

messages 12 12 12 20

max non-zeros per proc. 1 977 527 1 906 240 1 990 554 1 989 151

max vector elems per proc. 170 862 188 568 204 129 243 758

max per proc. comm. vol. 810 530 112 101 6 432 2 023

total comm. vol. 1 605 286 165 765 6 648 2 081

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.4 3 304

iterations 80 85 85 84

per iteration time(s) 0.4616 0.0458 0.0285 0.0246

Ax = b time(s) 0.4376 0.0395 0.0202 0.0167

Ax = b comp. time(s) 0.0774 0.0123 0.0136 0.0130

Ax = b comm. time(s) 0.3578 0.0276 0.0071 0.0038

messages 56 56 42 62

max non-zeros per proc. 1 063 001 961 340 994 257 994 592

max vector elems per proc. 85 431 115 805 131 713 142 253

max per proc. comm. vol. 727 768 129 977 35 117 2 620

total comm. vol. 2 744 682 269 095 45 132 3 479

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 18.8 1 842

iterations 76 85 85 83

per iteration time(s) 0.5955 0.0518 0.0351 0.0238

Ax = b time(s) 0.5549 0.0443 0.0271 0.0150

Ax = b comp. time(s) 0.1435 0.0110 0.0101 0.0102

Ax = b comm. time(s) 0.4132 0.0340 0.0169 0.0048

messages 240 178 129 165

max non-zeros per proc. 627 253 510 616 497 659 497 055

max vector elems per proc. 42 716 73 665 78 873 69 754

max per proc. comm. vol. 548 922 120 589 80 112 3 242

total comm. vol. 4 002 962 478 162 147 590 7 302

TableB.17. Stanford Berkeley web graph parallel PageRank computation results.

B.3. Experimental Results From the PageRank Case Study 200

p = 4 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 557.5 13 480

iterations 81 84 84 85

per iteration time(s) 0.7577 0.1142 0.0762 0.0781

Ax = b time(s) 0.7094 0.0972 0.0537 0.0528

Ax = b comp. time(s) 0.1243 0.0501 0.0526 0.0506

Ax = b comm. time(s) 0.5856 0.0475 0.0015 0.0022

messages 12 12 11 24

max non-zeros per proc. 4 346 286 4 319 031 4 431 469 4 264 282

max vector elems per proc. 345 727 381 623 501 669 557 602

max per proc. comm. vol. 1 326 626 147 078 2 110 1 901

total comm. vol. 2 646 280 223 467 2 428 3 018

p = 8 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 280.9 11 360

iterations 77 81 83 81

per iteration time(s) 0.8489 0.0756 0.0458 0.0444

Ax = b time(s) 0.7985 0.0641 0.0290 0.0292

Ax = b comp. time(s) 0.1455 0.0251 0.0276 0.0263

Ax = b comm. time(s) 0.6537 0.0395 0.0024 0.0028

messages 56 56 46 105

max non-zeros per proc. 2 196 083 2 165 349 2 218 547 2 185 533

max vector elems per proc. 172 864 204 069 335 547 309 293

max per proc. comm. vol. 1 214 716 105 491 3 248 2 996

total comm. vol. 4 800 997 266 447 4 758 5 867

p = 16 Cyclic GleZhu 1D hypergraph 2D hypergraph

decomposition time(s) Neg. Neg. 157.3 7 857

iterations 74 81 79 80

per iteration time(s) 0.9548 0.0577 0.0396 0.0405

Ax = b time(s) 0.8755 0.0455 0.0229 0.0255

Ax = b comp. time(s) 0.2797 0.0207 0.0194 0.0198

Ax = b comm. time(s) 0.5987 0.0257 0.0045 0.0055

messages 240 240 154 306

max non-zeros per proc. 1 124 363 1 126 092 1 110 174 1 091 597

max vector elems per proc. 86 432 122 143 182 236 198 703

max per proc. comm. vol. 928 783 88 210 4 486 3 896

total comm. vol. 7 237 257 313 198 14 433 11 684

TableB.18. india-2004 web graph parallel PageRank computation results.

Bibliography

[AHK95] C.J. Alpert, J-H. Huang, and A.B. Kahng. Recent directions in

netlist partitioning. Integration, the VLSI Journal, 19(1–2):1–81,

1995.

[AHK96] C.J. Alpert, L.W. Hagen, and A.B. Kahng. A hybrid multilevel/ge-

netic approach for circuit partitioning. In Proc. 5th ACM/SIGDA

Physical Design Workshop, pages 100–105, 1996.

[AHK97] C.J. Alpert, J-H. Huang, and A.B. Kahng. Multilevel circuit par-

titioning. In IEEE/ACM Design Automation Conference, pages

752–757, 1997.

[AHK98] C.J. Alpert, J-H. Huang, and A.B. Kahng. Multilevel circuit par-

titioning. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits, 17(8):655–666, 1998.

[AK94a] C.J. Alpert and A.B. Kahng. A general framework for vertex or-

derings, with applications to netlist clustering. In IEEE/ACM Int.

Conf. on Computer Aided Design, pages 63–67, 1994.

[AK94b] C.J. Alpert and A.B. Kahng. Multi-way partitioning via spacefilling

curves and dynamic programming. In IEEE/ACM Int. Conf. on

Computer Aided Design, pages 652–657, 1994.

[Alp96] C.J. Alpert. Multi-way Graph and Hypergraph Partitioning. PhD

thesis, University of California Los Angeles, 1996.

201

BIBLIOGRAPHY 202

[Alp98] C.J. Alpert. The ISPD98 circuit benchmark suite. In Proc. Inter-

national Symposium of Physical Design, pages 80–85, April 1998.

[Amd67] G.M. Amdahl. Validity of the single processor approach to achieving

large-scale computing capabilities. In AFIPS Conference Proceed-

ings, pages 483–485, 1967.

[Are00] S. Areibi. An integrated genetic algorithm with dynamic hill climb-

ing for VLSI circuit partitioning. In Genetic and Evolutionary

Computation Conference (GECCO–2000), pages 97–102, Las Ve-

gas, USA, July 2000.

[AV00] S. Areibi and A. Vannelli. Tabu search: A meta heuristic for netlist

partitioning. VLSI Design Journal, 11(3):259–283, 2000.

[AV03] S. Areibi and A. Vannelli. Tabu search: Implementation and com-

plexity analysis for netlist partitioning. ISCA International Jour-

nal of Computers and Their Applications, 10(4):211–232, December

2003.

[AY04] S. Areibi and Z. Yang. Effective memetic algorithms for VLSI de-

sign = genetic algorithms + local search + multi-level clustering.

Journal of Evolutionary Computations, Special Issue on Memetic

Evolutionary Algorithms, 12(3):327–353, May 2004.

[AYM+04] S.N. Adya, M.C. Yildiz, I.L. Markov, P.G. Villarrubia, P.N. Parakh,

and P.H. Madden. Benchmarking for large-scale and beyond.

IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits, 23(4):472–488, April 2004.

[Bar95] S.T. Barnard. PMRSB: Parallel multilevel recursive spectral bisec-

tion. In Proc. 1995 ACM/IEEE Supercomputing Conference, pages

602–625, 1995.

BIBLIOGRAPHY 203

[BB99] R. Battiti and A.A. Bertossi. Greedy, prohibition and reactive

heuristics for graph partitioning. IEEE Transactions on Computers,

48(4):361–385, 1999.

[BCLS87] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser. Graph bisec-

tion algorithms with good average case behaviour. Combinatorica,

7(2):171–191, 1987.

[BCSV04] P. Boldi, B. Codenotti, M. Santini, and S. Vigna. UbiCrawler:

A scalable fully distributed web crawler. Software – Practice and

Experience, 34(8):711–726, July 2004.

[BDHK03] J.T. Bradley, N.J. Dingle, P.G. Harrison, and W.J. Knottenbelt.

Performance queries on semi-Markov stochastic Petri Nets with an

extended continuous stochastic logic. In Proc. 10th International

Workshop on Petri Nets and Performance Models (PNPM’03),

pages 62–71, Urbana-Champaign IL, USA, September 2nd–5th

2003.

[BDKW03] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J. Wilson.

Hypergraph-based parallel computation of passage time densities in

large semi-Markov models. In Proc. 4th International Conference

on the Numerical Solution of Markov Chains (NSMC’03), pages

99–120, Urbana-Champaign IL, USA, September 2nd–5th 2003.

[BDKW04] J.T. Bradley, N.J. Dingle, W.J. Knottenbelt, and H.J. Wilson.

Hypergraph-based parallel computation of passage time densities

in large semi-Markov models. Linear Algebra and Its Applications,

386:311–334, July 2004.

[BGG+99] D. Boley, M. Gini, R. Gross, E-H. Han, K. Hastings, G. Karypis,

V. Kumar, B. Mobasher, and J. Moore. Partitioning-based clus-

tering for web document categorization. Decision Support Systems,

27(3):329–341, 1999.

BIBLIOGRAPHY 204

[BHJL89] T. Bui, C. Heigham, C. Jones, and T. Leighton. Improving the

performance of the Kernighan-Lin and Simulated Annealing graph

bisection algorithms. In Proc. 26th ACM/IEEE Conference on De-

sign Automation, pages 775–778, 1989.

[BKdT05] J.T. Bradley, W.J. Knottenbelt, D.V. de Jager, and A. Trifunović.

Hypergraph partitioning for faster parallel PageRank computation.

In Proc. 2nd European Performance Evaluation Workshop, volume

3670 of LNCS, pages 155–171. Springer, September 2005.

[BM96] T. Bui and B. Moon. Genetic algorithm and graph partitioning.

IEEE Transactions on Computers, 45(7):841–855, July 1996.

[BM05] R.H. Bisseling and W. Meesen. Communication balancing in par-

allel sparse matrix–vector multiplication. Electronic Transactions

on Numerical Analysis: Special Issue on Combinatorial Scientific

Computing, 21:47–65, 2005.

[Bol86] B. Bollobás. Combinatorics. Cambridge University Press, 1986.

[BPR+97] R.F. Boisvert, R. Pozo, K. Remington, R. Barrett, and J.J. Don-

garra. The Matrix–Market: a web resource for test matrix col-

lections. In R.F. Boisvert, editor, Quality of Numerical Software,

Assessment and Enhancement, pages 125–137. Chapman & Hall,

1997. http://www.math.nist.gov/MatrixMarket/index.html.

[Brg93] F. Brglez. A D&T special report on ACM/SIGDA design automa-

tion benchmarks: Catalyst or anathema. IEEE Design and Test,

10(3):87–91, 1993.

[Bro41] R.L. Brooks. On colouring the nodes of a network. Proc. Cambridge

Phil. Soc., 37:194–197, 1941.

[BS94] S.T. Barnard and H.D. Simon. A fast multilevel implementation of

recursive spectral bisection for partitioning unstructured problems.

Concurrency: Practice and Experience, 6(2):101–117, April 1994.

BIBLIOGRAPHY 205

[BVCG04] M. Budiu, G. Venkataramani, T. Chelcea, and S.C. Goldstein. Spa-

tial computation. In Proc. Intl. Conf. Architectural Support for Pro-

gramming Languages and Operating Systems, pages 14–26, Boston,

MA, 2004.

[cA99] U.V. Çatalyürek and C. Aykanat. Hypergraph partitioning-based

decomposition for parallel sparse matrix–vector multiplication.

IEEE Transactions on Parallel and Distributed Systems, 10(7):673–

693, 1999.

[cA01a] U.V. Çatalyürek and C. Aykanat. A fine-grain hypergraph model

for 2D decomposition of sparse matrices. In Proc. 8th International

Workshop on Solving Irregularly Structured Problems in Parallel,

San Francisco, USA, April 2001.

[cA01b] U.V. Çatalyürek and C. Aykanat. PaToH: Partitioning Tool for

Hypergraphs, Version 3.0, 2001.

[Cer85] V. Cerny. A thermodynamical approach to the travelling salesman

problem: An efficient simulation algorithm. J. Optimization Theory

Applications, 45(1):41–51, 1985.

[CKM99a] A.E. Caldwell, A.B. Kahng, and I.L. Markov. Hypergraph parti-

tioning for VLSI CAD: Methodology for reporting and new results.

In Proc. ACM/IEEE Design Automation Conference, pages 349–

354, June 1999.

[CKM99b] A.E. Caldwell, A.B. Kahng, and I.L. Markov. Hypergraph parti-

tioning with fixed vertices. In Proc. ACM/IEEE Design Automation

Conf., pages 355–360, June 1999.

[CKM00a] A.E. Caldwell, A.B. Kahng, and I.L. Markov. Improved algorithms

for hypergraph bipartitioning. In Proc. 2000 ACM/IEEE Confer-

ence on Asia South Pacific Design Automation, pages 661–666, Jan-

uary 2000.

BIBLIOGRAPHY 206

[CKM00b] A.E. Caldwell, A.B. Kahng, and I.L. Markov. UCLA Physi-

cal Design Tools Release. University of California, Los Angeles,

http://nexus6.cs.ucla.edu/software/PDtools/tar.gz/, 2000.

[CKR+97] J.A. Chandy, S. Kim, B. Ramkumar, S. Parkes, and P. Banerjee. An

evaluation of parallel Simulated Annealing strategies with applica-

tion to standard cell placement. IEEE Transactions on Computer-

Aided Design of Integrated Circuits, 16(4):398–410, April 1997.

[CL98] J. Cong and S.K. Lim. Multiway partitioning with pairwise move-

ment. In Proc. ACM/IEEE International Conference on Computer

Aided Design, pages 512–516, San Jose, CA, November 1998.

[CL00] J. Cong and S.K. Lim. Edge separability-based circuit clustering

with application to circuit partitioning. In Asia South Pacific De-

sign Automation Conference, pages 429–434, 2000.

[CLL+97] J. Cong, H.P. Li, S.K. Lim, T. Shibuya, and D. Xu. Large-scale

circuit partitioning with loose/stable net removal and signal flow

based clustering. In Proc. IEEE International Conference on CAD,

pages 441–446, San Jose, CA, November 1997.

[CRX03] J. Cong, M. Romesis, and M. Xie. Optimality, scalability and sta-

bility study of partitioning and placement algorithms. In Proc. 2003

International Symposium on Physical Design, pages 88–94, 2003.

[CS93] J. Cong and M. Smith. A parallel bottom-up clustering algorithm

with applications to circuit partitioning in VLSI design. In Proc.

30th ACM/IEEE Design Automation Conference, pages 755–760,

1993.

[CSZ94] P.K. Chan, M.D.F. Schlag, and J.Y. Zien. Spectral k-way ratio-cut

partitioning and clustering. IEEE Transactions on Computer-Aided

Design of Integrated Circuits, 13(9):1088–1096, September 1994.

BIBLIOGRAPHY 207

[DA97] A. Dasdan and C. Aykanat. Two novel multiway circuit partitioning

algorithms using relaxed locking. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 16(2):169–177,

February 1997.

[Dav05] T. Davis. University of Florida sparse matrix collection, 2005.

http://www.cise.ufl.edu/research/sparse/matrices.

[DBH+05] K.D. Devine, E.G. Boman, R.T. Heaphy, B.A. Hendrickson, J.D.

Teresco, J.Faik, J.E. Flaherty, and L.G. Gervasio. New challenges

in dynamic load balancing. Appl. Numer. Math., 52(2–3):133–152,

2005.

[DBH+06] K.D. Devine, E.G. Boman, R.T. Heaphy, R.H. Bisseling, and U.V.

Çatalyürek. Parallel hypergraph partitioning for scientific comput-

ing. In IEEE International Parallel and Distributed Processing Sym-

posium, 2006. Accepted for publication.

[DD96a] S. Dutt and W. Deng. A probability-based approach to VLSI circuit

partitioning. In Proc. 33rd Annual Design Automation Conference,

pages 100–105, June 1996.

[DD96b] S. Dutt and W. Deng. VLSI circuit partitioning by cluster-removal

using iterative improvement techniques. In Proc. 1996 IEEE/ACM

International Conference on Computer-Aided Design, pages 194–

200, Nov 1996.

[DD99] S. Dutt and W. Deng. Probability-based approaches to VLSI circuit

partitioning. Technical report, University of Illinois at Chicago,

1999.

[DD00] S. Dutt and W. Deng. Probability-based approaches to VLSI cir-

cuit partitioning. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 19(5):534–549, May 2000.

BIBLIOGRAPHY 208

[DD02] S. Dutt and W. Deng. Cluster-aware iterative improvement tech-

niques for partitioning large VLSI circuits. ACM Transactions on

Design Automation of Electronic Systems, 7(1):91–121, January

2002.

[de 04] D.V. de Jager. PageRank: Three distributed algorithms. M.Sc. the-

sis, Department of Computing, Imperial College London, Septem-

ber 2004.

[DPHL95] P. Diniz, S.J. Plimpton, B.A. Hendrickson, and R. Leland. Parallel

algorithms for dynamically partitioning unstructured grids. In Proc.

7th SIAM Conf. on Parallel Processing for Scientific Computing,

pages 615–620, 1995.

[DT97] S. Dutt and H. Theny. Partitioning around roadblocks: Tack-

ling constraints with intermediate relaxations. In Proc. 1997

IEEE/ACM International Conference on Computer-Aided Design,

pages 350–355, November 1997.

[Dut93] S. Dutt. New faster Kernighan-Lin type graph-partitioning algo-

rithms. In Proc. IEEE International Conference on Computer Aided

Design, pages 138–143, 1993.

[EC99] C.K. Eem and J. Chong. An efficient iterative improvement tech-

nique for VLSI circuit partitioning using hybrid bucket structures.

In Proc. Asia and South Pacific Design Automation Conference,

pages 73–76, January 1999.

[Fie73] M. Fiedler. Algebraic connectivity of graphs. Czechoslovak Mathe-

matical Journal, 23(98):298–305, 1973.

[Fie75a] M. Fiedler. Eigenvectors of acyclic matrices. Czechoslovak Mathe-

matical Journal, 25(100):607–618, 1975.

BIBLIOGRAPHY 209

[Fie75b] M. Fiedler. A property of eigenvectors of nonnegative symmetric

matrices and its applications to graph theory. Czechoslovak Math-

ematical Journal, 25(100):619–633, 1975.

[FM82] C.M. Fiduccia and R.M. Mattheyses. A linear time heuristic for im-

proving network partitions. In Proc. 19th IEEE Design Automation

Conference, pages 175–181, 1982.

[FML96] P. Feldmann, R. Melville, and D. Long. Efficient frequency domain

analysis of large nonlinear analog circuits. In Proc. IEEE Custom

Integrated Circuits Conference, pages 461–464, Santa Clara, CA,

1996.

[Gaz93] H. Gazit. Synthesis of Parallel Applications, chapter 1, pages 197–

214. Morgan Kaufmann Publishers, 1993.

[GGKK03] A. Grama, A. Gupta, G. Karypis, and V. Kumar. Introduction to

Parallel Computing. Addison-Wesley, 2nd edition, 2003.

[GHR95] R. Greenlaw, H.J. Hoover, and W.L. Ruzzo. Limits to Parallel

Computation: P-Completeness Theory. Oxford University Press,

1995.

[GJ79] M.R. Garey and D.S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W.H. Freeman and Co.,

1979.

[Glo89] F. Glover. Tabu search – part 1. ORSA Journal of Computing,

1(3):190–206, 1989.

[GZ87] J.R. Gilbert and E. Zmijewski. A parallel graph partitioning algo-

rithm for a message-passing multiprocessor. International Journal

of Parallel Programming, 16(6):498–513, 1987.

[GZB04] D. Gleich, L. Zhukov, and P. Berkhin. Fast parallel PageRank: A

linear system approach. Tech. Rep. YRL-2004-038, Institute for

BIBLIOGRAPHY 210

Computation and Mathematical Engineering, Stanford University,

2004.

[Haj88] B. Hajek. Cooling schedules for optimal annealing. Mathematics of

Operations Research, 13(2):311–329, 1988.

[Hal70] K.M. Hall. An r-dimensional quadratic placement algorithm. Man-

agement Sci., 17(3):219–229, 1970.

[HB97] S. Hauck and G. Borriello. An evaluation of bipartitioning tech-

niques. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 16(8):849–866, August 1997.

[HBB02] A. Van Heukelum, G.T. Barkema, and R.H. Bisseling. DNA elec-

trophoresis studied with the cage model. Journal of Computational

Physics, 180(1):313–326, July 2002.

[Hen98] B.A. Hendrickson. Graph partitioning and parallel solvers: Has the

emperor no clothes. In Proc. Irregular’98, volume 1457 of LNCS,

pages 218–225. Springer, 1998.

[HHK97] L.W. Hagen, J-H. Huang, and A.B. Kahng. On implementation

choices for iterative improvement partitioning algorithms. IEEE

Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 16(10):1199–1205, 1997.

[HK92] L. Hagen and A. Kahng. A new approach to effective circuit cluster-

ing. In Proc. IEEE/ACM International Conference on CAD, pages

422–427, 1992.

[HK00] B.A. Hendrickson and T. Kolda. Partitioning rectangular and struc-

turally nonsymmetric sparse matrices for parallel processing. SIAM

Journal on Scientific Computing, 21(6):2048–2072, 2000.

BIBLIOGRAPHY 211

[HK03] T.H. Haveliwala and S.D. Kamvar. The second eigenvalue of the

Google matrix. Stanford Database Group Tech. Rep. 2003–20, Com-

putational Mathematics, Stanford University, March 2003.

[HKKM97] E-H. Han, G. Karypis, V. Kumar, and B. Mobasher. Clustering in a

high-dimensional space using hypergraph models. Technical Report

97063, University of Minnesota, 1997.

[HL93] B.A. Hendrickson and R. Leland. A multilevel algorithm for par-

titioning graphs. Technical Report SAND93-1301, SANDIA Natl.

Laboratories, 1993.

[HL94] B.A. Hendrickson and R. Leland. The chaco user’s guide. Technical

Report SAND94-2692, SANDIA Natl. Laboratories, 1994.

[HL95] B.A. Hendrickson and R. Leland. An improved spectral graph par-

titioning algorithm for mapping parallel computations. SIAM J.

Sci. Stat. Comput., 16(2):452–469, 1995.

[Hol75] J. Holland. Adaptation in Natural and Artificial Systems. University

of Michigan Press, 1975.

[HR95] M.T. Heath and P. Raghavan. A cartesian parallel nested dissec-

tion algorithm. SIAM Journal of Matrix Analysis and Applications,

16(1):235–253, 1995.

[IWW93] E. Ihler, D. Wagner, and F. Wagner. Modeling hypergraphs by

graphs with the same mincut properties. Information Processing

Letters, 45(4):171–175, March 1993.

[KA05] M. Koyutürk and C. Aykanat. Iterative improvement-based declus-

tering heuristics for multi-disk databases. Information Systems,

30(1):47–70, 2005.

[Kah98] A. Kahng. Futures for partitioning in physical design. In Proc.

ACM/IEEE intl. Symp. on Physical Design, pages 190–193, 1998.

BIBLIOGRAPHY 212

[KAKS97] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar. Multilevel

hypergraph partitioning: Applications in VLSI domain. In Proc.

34th Annual ACM/IEEE Design Automation Conference, pages

526–529, 1997.

[Kar02] G. Karypis. Multilevel hypergraph partitioning. Technical Report

02–025, University of Minnesota, 2002.

[KH99] W.J. Knottenbelt and P.G. Harrison. Distributed disk-based solu-

tion techniques for large Markov models. In Proceedings of the 3rd

International Meeting on the Numerical Solution of Markov Chains

(NSMC ’99), pages 58–75, Zaragoza, Spain, September 1999.

[KHMG03a] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H. Golub.

Exploiting the block structure of the web for computing Page-

Rank. Stanford Database Group Tech. Rep. 2003–17, Computa-

tional Mathematics, Stanford University, March 2003.

[KHMG03b] S.D. Kamvar, T.H. Haveliwala, C.D. Manning, and G.H. Golub.

Extrapolation methods for accelerating PageRank computations. In

Twelfth International World Wide Web Conference, pages 261–270,

Budapest, Hungary, May 2003. ACM.

[KJV83] S. Kirkpatrick, C.D. Gelatt Jr., and M.P. Vecchi. Optimization by

Simulated Annealing. Science, 220(4598):671–680, May 1983.

[KK95] G. Karypis and V. Kumar. Multilevel k-way partitioning scheme for

irregular graphs. Technical Report 95–064, University of Minnesota,

1995.

[KK96] G. Karypis and V. Kumar. Parallel multilevel k-way partitioning

scheme for irregular graphs. Technical Report 96–036, University

of Minnesota, 1996.

BIBLIOGRAPHY 213

[KK97] G. Karypis and V. Kumar. A coarse-grain parallel formulation of

multilevel k-way graph partitioning algorithm. In Proc. 8th SIAM

Conference on Parallel Processing for Scientific Computing, 1997.

[KK98a] G. Karypis and V. Kumar. hMeTiS: A Hypergraph Partitioning

Package, Version 1.5.3. University of Minnesota, 1998.

[KK98b] G. Karypis and V. Kumar. Multilevel k-way hypergraph partition-

ing. Technical Report 98-036, University of Minnesota, 1998.

[KK98c] G. Karypis and V. Kumar. A parallel algorithm for multilevel graph

partitioning and sparse matrix ordering. Journal of Parallel and

Distributed Computing, 48(1):71–95, 1998.

[KK99] G. Karypis and V. Kumar. A fast and high quality multilevel scheme

for partitioning irregular graphs. SIAM Journal on Scientific Com-

puting, 20(1):359–392, 1999.

[KKM04] J-P. Kim, Y-H. Kim, and B-R. Moon. A hybrid genetic approach for

circuit bipartitioning. In Proc. Genetic and Evolutionary Computa-

tion Conference (GECCO), volume 3102 of LNCS, pages 1054–1064.

Springer, 2004.

[KL70] B.W. Kernighan and S. Lin. An efficient heuristic procedure for

partitioning graphs. The Bell System Technical Journal, 2(49):291–

307, 1970.

[KL87] S. Kauffman and S. Levin. Toward a general theory of adaptive

walks on rugged landscapes. J. Theoret. Biol., 128:11–45, 1987.

[Kno00] W.J. Knottenbelt. Parallel Performance Analysis of Large Markov

Models. PhD thesis, Imperial College, London, United Kingdom,

2000.

BIBLIOGRAPHY 214

[Kri84] B. Krishnamurthy. An improved min-cut algorithm for partitioning

VLSI networks. IEEE Transactions on Computers, 33(C):438–446,

1984.

[KSK02] G. Karypis, K. Schloegel, and V. Kumar. ParMeTiS: Parallel Graph

Partitioning and Sparse Matrix Ordering Library, Version 3.0. Uni-

versity of Minnesota, 2002.

[Len90] T. Lengauer. Combinatorial Algorithms for Integrated Circuit Lay-

out. Wiley-Teubner, 1990.

[LR88] T. Leighton and S. Rao. An approximate max-flow min-cut theo-

rem for uniform multicommodity flow problems with applications

to approximation algorithms. In Proc. IEEE Sym. Foundations of

Computer Science, pages 422–431, 1988.

[Lub86] M. Luby. A simple parallel algorithm for the maximal independent

set problem. SIAM J. Computing, 15(4):1036–1053, 1986.

[Mis04] M. Mishra. Scalable defect tolerance beyond the SIA roadmap. In

14th Intl. Conf. Field Programmable Logic and Application, volume

3203 of LNCS, pages 1181–1182. Springer, 2004.

[NI92] H. Nagamochi and T. Ibaraki. Computing edge-connectivity in

multigraphs and capacitated graphs. SIAM Journal on Discrete

Math., 5(1):54–66, 1992.

[NORL87] A. Nour-Omid, A. Raefsky, and G.A. Lyzenga. Solving finite ele-

ment equations on concurrent processors. In Proc. Symposium on

Parallel Computations and their Impact on Mechanics, pages 209–

227, 1987.

[Pap94] C.H. Papadimitriou. Computational Complexity. Addison-Wesley,

1994.

BIBLIOGRAPHY 215

[PBMW99] L. Page, S. Brin, R. Motwani, and T. Winograd. The PageRank

citation ranking: Bringing order to the Web. Stanford Database

Group Tech. Rep. 1999–66, Stanford University, November 1999.

[PSL90] A. Pothen, H.D. Simon, and K.-P. Liou. Partitioning sparse ma-

trices with eigenvectors of graphs. SIAM J. Mat. Anal. Appl.,

11(3):430–452, 1990.

[Rag95] P. Raghavan. Parallel ordering using edge-contraction. Technical

Report CS–95–293, University of Tennessee, 1995.

[RM03] A. Ramani and I.L. Markov. Combining two local search approaches

to hypergraph partitioning. In Proc. Intl. Joint Conf. on Artificial

Intelligence (IJCAI), pages 1546–1548, 2003.

[RS93] K. Roy and C. Sechen. A timing driven n-way chip and multi-

chip partitioner. In Proc. IEEE Intl. Conf. Computer-Aided Design,

pages 240–247, 1993.

[Saa04] Y.G. Saab. An effective multilevel algorithm for bisecting graphs

and hypergraphs. IEEE Transactions on Computers, 53(6):641–652,

2004.

[San89] L.A. Sanchis. Multiple-way network partitioning. IEEE Transac-

tions on Computers, 38(1):62–81, 1989.

[San93] L.A. Sanchis. Multiple-way network partitioning with different cost

functions. IEEE Transactions on Computers, 42(22):1500–1504,

1993.

[Sim91] H.D. Simon. Partitioning of unstructured problems for parallel pro-

cessing. Computing Systems in Engineering, 2(2/3):679–693, 1991.

[SK72] D.G. Schweikert and B.W. Kernighan. A proper model for the

partitioning of electrical circuits. In Proc. ACM/IEEE Design Au-

tomation Conference, pages 57–62, 1972.

BIBLIOGRAPHY 216

[SKC94] B. Selman, H. Kautz, and B. Cohen. Noise strategies for improving

local search. In Proc. 12th Natl. Conf. on Artificial Intelligence

(AAAI), pages 337–343, 1994.

[SNK95] T. Shibuya, I. Nitta, and K. Kawamura. SMINCUT: VLSI place-

ment tool using min-cut. Fujitsu Scientific and Technical Journal,

pages 197–207, 1995.

[SO99] J. Schwarz and J. Ocenasek. Experimental study: Hypergraph

partitioning based on the simple and advanced genetic algorithms

BMDA and BOA. In Proc. of the Mendel 1999 Conference, pages

124–130, Brno, CZ, 1999.

[SOHL+98] M. Snir, S. Otto, S. Huss-Lederman, D. Walker, and J. Dongarra.

MPI – The Complete Reference. MIT Press, Cambridge, Mas-

sachussets, 2nd edition, 1998.

[SS93] W. Sun and C. Sechen. Efficient and effective placements for very

large circuits. In Proc. IEEE Intl. Conf. Computer-Aided Design,

pages 170–177, 1993.

[Ste94] W.J. Stewart. Introduction to the Numerical Solution of Markov

Chains. Princeton University Press, 1994.

[SW91] J. Savage and M. Wloka. Parallelism in graph partitioning. Journal

of Parallel and Distributed Computing, 12(3):257–272, 1991.

[TK04a] A. Trifunović and W. Knottenbelt. Parkway2.0: A parallel mul-

tilevel hypergraph partitioning tool. In Proc. 19th International

Symposium on Computer and Information Sciences, volume 3280

of LNCS, pages 789–800. Springer, 2004.

[TK04b] A. Trifunović and W.J. Knottenbelt. A parallel algorithm for mul-

tilevel k-way hypergraph partitioning. In Proc. 3rd International

Symposium on Parallel and Distributed Computing, pages 114–121,

University College Cork, Ireland, July 2004.

BIBLIOGRAPHY 217

[TK04c] A. Trifunović and W.J. Knottenbelt. Towards a parallel disk-based

algorithm for multilevel k-way hypergraph partitioning. In Proc. 5th

Workshop on Parallel and Distributed Scientific and Engineering

Computing, Santa Fe, NM, USA, April 2004.

[TK06a] A. Trifunović and W. Knottenbelt. Parallel multilevel algorithms

for hypergraph partitioning. Journal of Parallel and Distributed

Computing, 2006. Submitted for publication.

[TK06b] A. Trifunović and W. Knottenbelt. Towards a parallel disk-based al-

gorithm for multilevel k-way hypergraph partitioning. International

Journal of Computational Science and Engineering, 2006. Accepted

for publication.

[TYAS94] M. Toyonaga, S-T. Yang, T. Akino, and I. Shirakawa. A new ap-

proach of fractal-dimension based module clustering for VLSI lay-

out. In IEEE International Symposium on Circuits and Systems,

pages 185–188, 1994.

[UA04] B. Uçar and C. Aykanat. Encapsulating multiple communication-

cost metrics in partitioning sparse rectangular matrices for parallel

matrix–vector multiples. SIAM Journal on Scientific Computing,

25(6):1837–1859, 2004.

[VB05] B. Vastenhouw and R.H. Bisseling. A two-dimensional data dis-

tribution method for parallel sparse matrix–vector multiplication.

SIAM Review, 47(1):67–95, 2005.

[VCS00] P. Verplaetse, J. Van Campenhout, and D. Stroobandt. On syn-

thetic benchmark generation methods. In Proc. Intl. Symp. On

Circuits and Systems (ISCAS), pages 213–216, 2000.

[Vis93] U. Vishkin. A case for the PRAM as a standard programmer’s

model. In Proc. Workshop on Parallel Architectures and Their Ef-

BIBLIOGRAPHY 218

ficient Use: State of the Art and Perspectives, volume 678 of LNCS,

pages 11–19, Padeborn, 1993. Springer.

[WA98] S. Wichlund and E.J. Aas. On multilevel circuit partitioning. In

Proc. IEEE International Conf. on Computer-Aided Design, pages

505–511, 1998.

[Wal02] C. Walshaw. The Parallel JOSTLE Library User’s Guide. Univer-

sity of Greenwich, 2002. Version 3.0.

[WC89] Y.-C. Wei and C.-K. Cheung. Towards efficient hierarchical designs

by ratio-cut partitioning. In Proc. IEEE Intl. Conf. Computer-

Aided Design, pages 298–301, 1989.

[WC99] C. Walshaw and M. Cross. Parallel optimisation algorithms for mul-

tilevel mesh partitioning. Technical Report 99/IM/44, University

of Greenwich, 1999.

[WCE95] C. Walshaw, M. Cross, and M. G. Everett. Dynamic mesh partition-

ing: A unified optimisation and load-balancing algorithm. Techni-

cal Report 95/IM/06, University of Greenwich, Greenwich, London,

1995.

[WCE97] C. Walshaw, M. Cross, and M. G. Everett. Parallel dynamic graph

partitioning for adaptive unstructured meshes. J. Parallel Distrib.

Comput., 47(2):102–108, 1997.

[WD04] Y. Wang and D.J. DeWitt. Computing PageRank in a distributed

internet search system. In Proc. 30th Conf. Very Large Databases,

pages 420–431, Toronto, 2004.

[YCL92] C-W. Yeh, C-K. Cheng, and T-T.Y. Lin. A probabilistic multi-

commodity flow solution to circuit clustering problems. In Proc.

IEEE Intl. Conf. Computer-Aided Design, pages 428–431, 1992.

