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Abstract

This paper is concerned with the image registration
problem as applied to video sequences that have been sub-
jected to geometric distortions. This work involves the de-
velopment of a computationally efficient algorithm to re-
store the video sequence using image registration tech-
niques. An approach based on motion vectors is proposed
and is found to be successful in restoring the video sequence
for any affine transform based distortion. The algorithm
is implemented in FPGA hardware targeted for a reconfig-
urable computing platform called SONIC. It is shown that
the algorithm can efficiently restore the video data in real-
time.

1. Introduction

The computational demand and the high data throughput
of real-time video image processing have long been recog-
nised as a niche area for reconfigurable computing. Many
successful image and video applications have been imple-
mented on various general purpose reconfigurable comput-
ing platforms [1] [2] [3]. Unfortunately most of them
never go beyond the few basic common applications such as
convolution, correlation, edge detection and linear transfor-
mations. Together with Sony Broadcast, Imperial College
has developed a dedicate reconfigurable computing archi-
tecture, known as SONIC, which was designed specifically
for broadcast video image editing, manipulation and pro-
cessing [4] [5]. Many interesting video effects and process-
ing problems have been successfully implemented on this
experimental research platform. This paper is concerned
with one such application known as the ‘image registration’

problem.
Image registration in this work is defined as the restora-

tion of an image or a video sequence that is subjected to
some form of geometric distortion. One example of the
need for image registration is that of improving the robust-
ness of watermarks in image or video data. It is well known
that one way of destroying watermark information in an im-
age or a video frame is to apply geometric distortion such
as rotation, shear or scaling [6]. A number of approaches
have been proposed to restore the image to the pre-distorted
form [7] [8]. However, most of the proposed methods em-
ploy algorithms that are suited to a general-purpose com-
puter with a floating-point unit. In this paper, a computa-
tional efficient algorithm for image registration is proposed.
Our algorithm is based on localised motion vectors and is
particularly suitable for reconfigurable computers. Its im-
plementation on the SONIC architecture is described, and
the effectiveness of the algorithm is examined.

This paper is organised as follows: after a brief descrip-
tion of the SONIC architecture and its latest implementation
known as UltraSONIC in Section 2, the image registration
problem for watermarking is explained in Section 3. Sec-
tion 4 describes the proposed algorithm followed by its im-
plementation on UltraSONIC in Section 5. The results of
the algorithm are described in Section 6 and Section 7 con-
cludes this paper.

2. The SONIC Architecture

The SONIC platform [4] [5] is a reconfigurable com-
puting system capable of handling the high data through-
put and delivering the computational power needed for real-
time video applications. Figure 1 depicts a simplified block
diagram of the SONIC system. The design consists of Plug-
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Figure 1. Simplified Block Diagram of the SONIC architecture

In Processing Elements (PIPEs) connected by a PIPE bus
and two PIPEflo w buses. SONIC’s architecture exploits the
spatial and temporal parallelism in video image processing
algorithms. It also enables design reuse and supports the
software plug-in methodology.

SONIC’s bus architecture consists of two shared global
buses combined with a fl exible pipeline bus. The global
PIPE bus is used for transferring information between the
host system and the PIPEs such as image data, configura-
tion data to the PIPEs’ FPGA resources and control of the
routing of data on the PIPEflo w buses.

Two PIPEflo w buses are used to transfer information be-
tween PIPEs. The global PIPEflo w bus allows broadcast
data while the PIPEflo w Chain connects adjacent PIPEs to

support pipelined operations. The system uses a predefined
raster-scan protocol to send data over these buses.

The PIPE consists of three parts: PIPE Engine (PE),
PIPE Router (PR) and PIPE Memory (PM). The PIPE en-
gine handles computation while the PIPE router handles im-
age data movement and formatting. The PIPE memory pro-
vides local buffers for video data which reduce bus traffic.

The principle of separating the computation engine PE
from the routing engine PR has many advantages. It allows
computational functions to be implemented independently
from dataflo w, thus facilitating design reuse. A particular
user-application configures only the PIPE engine and not
the PIPE router. For example, the same median filter ’hard-
ware routine’ on the PIPE engine could be used to process
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video data from the host via the global PIPE bus, from adja-
cent PIPEs via either PIPEflo w buses, or from PIPE mem-
ory.

The unique design of the PIPE router provides a fl ex-
ible and scalable solution to routing and formatting video
data. User’s application running on the host system controls
the PIPE router via a set of well-defined SONIC Applica-
tion Programming Interface (API) routines. Under software
control, the PIPE router can perform three different type of
dataflo w functions: 1) data formatting – such as � ����
to ��� colour space conversion, 2) data routing – allows
fle xible dataflo w between the various buses, 3) data access-
ing – provides various data scanning functions such as raster
scanning or ”stripped access” which is particularly useful
for 2D filters and block processing.

An earlier implementation of SONIC was based around
a Flex10K100 device for the PIPE engine and a Flex10K50
device for the PIPE router [5]. The latest implementa-
tion, UltraSONIC, is designed with a Virtex XCV1000E
device implementing both the PIPE engine and the PIPE
router. The PIPE memory is implemented with synchronous
SRAM, therefore easing interfacing timing problems. Suf-
ficient memory is included to buffer two video frames at
HDTV resolution. Interface to the host system is via a 64-
bit PCI bus running at 66MHz.

Although the SONIC architecture is designed mainly to
use FPGA to implement the PIPEs, the same architecture
can be extended to substitute the FPGA with a custom ASIC
or a DSP processor. For example, video I/O PIPE or MPEG-
2 codec PIPE can easily be designed and incorporated into
the system.

3. The Image Registration Problem in Water-
marking

Watermarking is the insertion of information (watermark
data) into host data without perceptible corruption. This
embedded data should only be accessible by authorised par-
ties and a degree of robustness is necessary to withstand
possible attacks. Watermarking systems are used for a
broad range of applications including copyright protection
and metadata embedding.

One method of attack to watermarked image and video
is through geometric distortion. For example, most wa-
termark extraction and detection algorithms cannot toler-
ate rotations, shifts or shear. To overcome such attack, the
corrupted image can be passed through an image registra-
tion step before watermark detection is performed as shown
in Figure 2. Furthermore, the watermarking algorithm can
either be blind or non-blind. In blind watermarking, the
original image is not required to extract or detect the wa-
termark. In contrast, non-blind watermarking assumes that
the original image is available. Figure 3 shows a possible

Image
Registration

Watermark
detection or
extraction

Watermarked
Video

Watermark data
or Detected/
not_detected

Figure 2. Image Registration in Watermarking

approach to the non-blind image registration problem. The
watermarked video sequence � is subjected to a geometric
distortion function � to produce a corrupted video sequence
� with the watermark information corrupted. Given that the
original video sequence � is known, an estimate of the dis-
tortion function �� is made. From this estimate, an inverse
distortion function ���� is derived. This inverse function
is then used to restore the corrupted video to improve the
possibility of extracting or detecting the watermark. The
restored video � can further be compared with the original
video sequence in order to improve the estimated distortion
function in a recursive manner.

Since the data throughput of a broadcast quality video se-
quence is high, it is reasonable to assume that the distortion
function � is applied globally over the entire video frame.
Furthermore, linear distortions such as rotation, shift, shear
and scaling can be formulated as an affine transformation
given by (1):

�
	�


�

�
�

�
� �

 �

��
	




�
�

�
�

�

�
(1)

where �	� 
� represent the original pixel position, �	 �� 
��
the position to which the pixel is mapped, and �� �� � �� �

and � are constants for a given distortion function. To per-
form image registration, these six constants need to be es-
timated and an inverse function constructed to restore the
image.

4. The Solution

Our approach in solving the image registration problem
is based on localised motion vectors [9]. A frame from
the original video sequence is divided into square blocks.
For each reference block a motion vector is computed by
finding the best match in the correspondent frame from the
corrupted video (see Figure 4). Since the distortion cannot
be large otherwise it would be noticeable, only a relatively
small region in the vicinity of the reference block needs
to be searched. Typically the reference window would be
��� �� pixels while the search window would be �	� �	.
Figure 5 shows the motion vector map for a global rota-
tional distortion with the centre of rotation at the centre of
the frame.

In order to find the relationship between a motion
vector ��� ��, the coordinate of the centre of an image
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block �	� 
� and the affine transform distortion parameters
��� �� � �� �� ��, we can arrange (1) as:
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(2) can be separated into two orthogonal components for
	 and 
 directions:
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� �
�
	 
 �

�
�
� 

�� �
�

�
� (4)

In theory only three motion vectors are necessary to
compute the six distortion parameters. However (3) and (4)
are exact only for the case where the distortion is a transla-
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Figure 5. Motion Vector Map with anticlock-
wise rotation

tion by an integer number of pixels in the 	 and 
 directions.
It is an approximation for all other cases of affine transform
distortion. For example, some of the motion vectors shown
in Figure 5 at the corners of the frame where the distance
from the centre of rotation is largest are wrong. To obtain
the best estimates for ��� �� � �� �� ��, all motion vector in-
formation can be combined as:

� � �� (5)

� � �� (6)
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(5) and (6) represent an over-determined system with un-
knowns � and �. The least square solutions for � and � can
be obtained by:

�� �

�
� ��� �

��
��

�
� � ���� (10)

�� �

�
� �

��� �
��

�
� � ���� (11)

where ��� is the pseudo-inverse of � and ���� ��� �� ��� ��� ���
are the least square solutions for the six parameters of the
distortion function. Note that� is a constant matrix with its
values �	�� 	�� � � � � 	� � and �
�� 
�� � � � � 
� � given by the
centre coordinates of the reference windows used to com-
pute the motion vectors. Therefore the pseudo-inverse���

only needs to be computed once for each reference window
size.

Once ������� �� ��� ��� ��� are found, image registration is ac-
complished by applying the inverse distortion function to
the corrupted video according to:

�
�	
�


�
�

�
�� ��

� ��

����
	� � ��


� � ��

�
(12)

where ��	� �
� and �	�� 
�� are the pixel coordinates in the re-
stored and corrupted video frames respectively. In practical
applications, (12) is not applied directly since mapping each
pixel in the corrupted frame to a restored frame will in gen-
eral leave many pixels unfilled. Therefore the restoration
process is conducted in a reverse manner: for each pixel
in the restored frame, the pixel coordinate in the corrupted
frame is computed in order to reverse the distortion process.
Linear interpolation is also employed to produce a smooth
image.

5. Implementation

The implementation of the image registration system
on UltraSONIC consists of three main blocks: 1) motion
vectors calculation, 2) distortion parameter estimation and,
3) image registration. The hardware/software partitioning
of these three blocks is obvious. Both motion vector compu-
tation and image registration are computationally expensive
and involve vast amount of dataflo w. They are implemented
in VHDL for the Virtex resource on the UltraSONIC PIPE.
Distortion parameter estimation is only done at most once
per video frame. In fact, it is very unlikely that the dis-
tortion function changes frequently because this would pro-
duce noticeable distortion in the video sequence. This block
is therefore implemented on the host system in C++.
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Figure 6. Simplified Block Diagram of the Motion Vector Estimation Engine

5.1 Motion vector estimation

Many full-search motion vector estimation architectures
have been proposed. Our implementation is adapted from
a design proposed by [11]. This architecture has the ad-
vantage of minimizing dataflo w in such a way that all data
are read only once from the external memory that stores the
original and the corrupted video frames. This is achieved
with extensive data buffering using the large amount of em-
bedded RAM in the Virtex devices. By storing one entire
row of blocks from the search frame and prefetching new
data into buffer locations as soon as its content is no longer
needed, the motion vector estimation engine is implemented
with complete overlapping of matching error calculation
and data fetch.

Figure 6 shows a block diagram of the motion vector es-
timation engine. The entire motion vector estimation fits
onto one UltraSONIC PIPE.

For a 
	�� �
� video frame, assuming that a reference
block size of 16 is used and the search window range is �
to ��� pixels, calculating the motion vector map for each
frame takes around 7ms with the UltraSONIC PIPE running
at 66MHz clock. This is well within the video frame rate of
25Hz for PAL and 29.97Hz for NTSC.

5.2 Distortion Parameter Estimation

Implementation of the solution of (10) and (11) is rela-
tively straight forward. As discussed in the last section, for
a given motion vector estimation grid, the value of��� can
be precalculated. Most of the time taken by distortion pa-
rameter estimation is in transferring the motion vector data
from the UltraSONIC PIPE to the host computer over the
PCI bus. Computation of ���� ��� �� ��� ��� ��� only requires two
matrix multiplications given in (10) and (11).

5.3 Image Registration

Due to the use of the reverse mapping combined with the
linear interpolation (which uses 4 pixels) and the fact that
there are only two memory ports available, there would be at
least two clock cycles needed before one pixel is calculated.
As the image registration certainly has to run in real-time,
only one clock cycle can be allowed for each pixel. Heavy
parallelism and pipelining combined with buffering of data
are used to achieve this.

Buffering the data for this algorithm is more difficult
than for the motion vector estimation. This is because the
data to be buffered depend on the nature of the distortion
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Figure 7. Simplified Block Diagram of the Image Restoration Engine

and the coordinate of the pixel to be computed. Consider
the case of a rotation, the area to be buffered when work-
ing on the edges is considerably larger than working around
the centre. In order to ensure that real-time performance is
achieved, the implementation is designed to cope with the
following three cases: 1) all required data are in the buffer,
2) required data are not in the buffer, but the output buffer
is still sufficiently filled and, 3) the data are not in the buffer
and the output buffer is almost empty. The first case is nor-
mal operation. In the second case the calculating units are
stalled until the data are read from memory. As this intro-
duces some delay, real-time performance is only possible
by inserting an output buffer which maintains a continuous
video output. In the third case where the output buffer is
almost empty, the four-pixel linear interpolator is replaced
with a two-pixel interpolator. This reduces the amount of
data read and the processing load.

A block diagram of the image registration engine is
shown in Figure 7.

6. Results and Evaluations

In order to determine the accuracy of the image reg-
istration algorithm, the entire algorithm was also imple-
mented in matlab. This implementation was then applied
to distorted watermarked images. The watermarked images
were distorted either by a watermark attack program Stir-
mark [12] [13] [14] or by an affine transform program writ-
ten in matlab. Figures 8 and 9 show results of applying the
algorithm to a typical video frame with rotational distortion.

Figure 8 is a plot of the estimated angle of rotation
against the actual distortion angle used. Perfect restoration
occurs if the solution falls on the �Æ line. The dotted line
shows the results of the algorithm when a search size of
�	� pixels is used. It falls almost exactly on the �Æ line
for rotational angles up to ���Æ. Beyond this a larger search
size of �� pixels provides much better results (shown as
solid line).

Figure 9 is a plot of the distance of the estimated centre
of rotation from the mid-point of the image against the ac-
tual distance for two angles of rotation. Again the estimated
centre lies almost on the perfect solution line at �Æ.

7

Proceedings of the 10 th Annual IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM’02) 
1082-3409/02 $17.00 © 2002 IEEE 



Applied angle of rotation (˚)

D
et

ec
te

d
 a

n
g

le
 o

f 
ro

ta
ti

o
n

 (
˚

)

Difference in detected angle if bigger search size is used.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

0.25

0.5

0.75

1

1.25

1.5

1.75

2

2.25

2.5

2.75

3

3.25

3.5

3.75

4

4.25

4.5

4.75

5

5.25

5.5

Legend:
Detected angle for search size of 20
Detected angle for search size of 40

Figure 8. Angular Accuracy after Registration
for Rotation Distortion

Distance from used centre point to centre of image (pixels).

D
is

ta
n

ce
 f

ro
m

 d
et

ec
te

d
 c

en
tr

e 
p

o
in

t 
to

 c
en

tr
e 

o
f 

im
ag

e 
(p

ix
el

s)
.

Results for centre point of rotation.

-640 -560 -480 -400 -320 -240 -160 -80 0 80 160 240 320 400 480 560 640
-640

-560

-480

-400

-320

-240

-160

-80

0

80

160

240

320

400

480

560

640

Legend:
Rotation of 0.25˚
Rotation of 2˚

Figure 9. Centre Coordinate Accuracy after
Registration for Rotation Distortion

Figure 10 shows the accuracy of the algorithm on shift,
shear and rotation distortions applied to two images. The
only significant inaccuracy is that of 10% shear. This is due
to the small search size used.

Figure 11 shows the effectiveness of the image registra-
tion algorithm in watermark detection on corrupt images.
Whether a watermark is detected or not is based on a figure
of merit known as sim value (or similarity value). A sim
value of 10 or above indicates a watermark has been de-
tected. A sim value below 10 indicates that the registration
algorithm has not managed to restore the corrupted image in
order for the watermark to be detected. As can be seen here,
the sim values after applying our registration algorithm on
all the images tested are well above the threshold of 10.

7. Conclusion and Future Work

An original algorithm, based around motion vectors, for
solving the problem of image registration for watermarked
video is presented. It is shown to be sufficiently general
to handle all global distortions based on affine transforma-
tions. The method of calculating the motion vectors and
performing the registration can also be applied recursively
for improved results.

The hardware implementation of the algorithm allows
real-time restoration of the watermarked video data and en-
ables subsequent watermark detection. The hardware im-
plementation minimizes the dataflo w by careful on-chip
data buffering. Real-time performance is achieved through
extensive pipelining and parallelism.

Currently the algorithm only supports global linear affine
distortions. The next step is to extend the algorithm to han-
dle distortions that are spatial-variant. This should be pos-
sible by dividing the video frame into smaller regions. Pro-
vided that the distortion within each region can be approxi-
mated by an affine transformation, the algorithm described
here should be effective.

Finally the possibility of using this algorithm for appli-
cations other than watermarking will be investigated. There
are many real-time applications, such as video compres-
sion, that involve the calculation of motion vectors, and they
can benefit from this algorithm and its implementation on
SONIC.
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