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Abstract. Hardware compilers for high-level languages are increasingly recognised to be the key to reducing
the productivity gap for advanced circuit development in general, and for reconfigurable designs in particular.
This paper explains how customisable frameworks for hardware compilation can enable rapid design exploration,
and reusable and extensible hardware optimisation. It describes such a framework, based on a parallel imperative
language, which supports multiple levels of design abstraction, transformational development, optimisation by
compiler passes, and metalanguage facilities. Our approach has been used in producing designs for applications
such as signal and image processing, with different trade-offs in performance and resource usage.

Keywords: hardware compilation, pipelining, high-level design

1. Introduction

As hardware designs become increasingly complex, an effective hardware compiler for
high-level descriptions is essential to produce good quality designs on time and within
budget. This paper explains how customisable frameworks for hardware compilation can
enable rapid design exploration, and reusable and extensible hardware optimisation.

The key elements of our approach include:

1. a framework for describing and transforming designs captured as parallel imperative
programs,

2. the automation of design transformations using compiler passes,
3. the use of a metalanguage to facilitate the production of compiler passes and other

customisations.

Related work includes Streams-C, SPARK, ASC, SPC, Handel-C, and Haydn-C.
Streams-C [10], SPARK [11], ASC [15] and SPC [22] take a behavioural description in a
language such as ANSI-C as input, and generate target code in a synthesisable form such
as VHDL or EDIF. Streams-C exploits coarse-grained parallelism in stream-based com-
putations, while low-level optimisations such as pipelining are performed automatically
by the compiler. SPARK is a high-level synthesis framework that applies a list scheduling
algorithm with transformations such as speculative code motion and trailblazing. ASC
adopts annotations to direct optimisations for speed, latency or area. SPC combines
vectorisation, loop transformations and retiming with memory allocation to improve design
performance. These systems usually employ annotations in the source and constraint files
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to control the optimisation process. While they provide good optimisation capabilities
from a high-level description, it may not always be easy to control the optimisation process
to produce the most desirable trade-offs.

A different approach is adopted by Handel-C [5], an extension of ANSI-C, which supports
flexible width variables, signals, parallel blocks, bit-manipulation operations, and channel
communication. It gives application developers the ability to schedule hardware resources
manually, and Handel-C tools generate the resulting designs automatically. Haydn-C [6] is
a framework that automates source-directed transformations in Handel-C.

This paper explains how languages and tools similar to those for Handel-C can be cus-
tomised in various ways. As far as we are aware, our framework is the first that supports
such a variety of customisations, for both application developers and compiler developers.
Several applications in signal processing and computer graphics are used to illustrate the
effectiveness of our approach.

2. Customise compilation: Overview

Recent reconfigurable technology offers many customisation opportunities. For instance,
one can adopt both fixed-point and floating-point number representations [1]. Other useful
transformations include those that enhance parallelism, pipelining or serialisation. The
design flow for a hardware compiler can contain the following stages [15].

– Source analysis and transformation: tasks include domain-specific analysis, precision
analysis, loop transformation, memory management, data structure transformation, and
architecture selection.

– Architecture generation: instantiate, parametrise, and compose hardware modules; con-
trol generation.

– Module generation: facilities for producing hardware modules to support architecture
generation.

In our framework (Figure 1), a compiler is used for the architecture generation stage.
The source analysis and transformation stage can be performed manually or by a compiler
pass. A compiler generator can be used to customise both the compiler and the compiler
pass, given suitable customisation descriptions which can be expressed in a metalanguage.
The hardware compiler produces Pebble modules which can then be used in a hardware
implementation. A more detailed description of the components of this framework is covered
in the following sections.

3. Customisable compilation framework

This section describes Cobble, a customisable framework for hardware compilation.
Section 3.1 gives an overview of the framework and the customisations. Sections 3.2 and
3.3 then present respectively the source and target languages, Cobble and Pebble, for our
compiler.
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Figure 1. Overview of our framework. The design source are supplied by application developers, while the
customisations for the compiler and the associated compiler passes are supplied by compiler developers. The
circles contain algorithms and the boxes contain program representation.

3.1. Overview

In our approach, application programs in Cobble [20], a language similar to Handel-C
[5], are compiled to Pebble, a language similar to structural VHDL. Unlike Handel-C,
Cobble programs can use combinational hardware blocks as expressions. This provides an
alternative to Handel-C’s bit-level operators which extend C with bit selecting and appending
operators; they can be useful for complex bit-twiddling operations, which require the use
of recursive macros in Handel-C: Pebble’s iterative statements, described in Section 3.3,
can provide a more natural description of some operations. Using combinational blocks as
expressions can also be a more natural way to use preplaced combinational operators, for
which Handel-C adopts a special syntax.

Cobble tool developers can customise Cobble and its tools in three ways, by:

– extending Cobble, the source language,
– customising the compile scheme,
– adding custom transformations at source and target.

As explained in Section 1, various methods can be used in analysing and transforming
source programs. The Cobble framework enables compiler developers to experiment with
such methods. Cobble defines a metalanguage to simplify specification and development
of these customisations, which we describe later in Section 6.

Figure 2 gives an overview of the Cobble framework, showing various opportunities
for customisation. The source program, on the left of the figure, may involve the standard
Cobble language; it may optionally involve a source language extended by the Cobble
framework. Source programs may explicitly call hardware blocks, such as Xilinx cores, or
operator implementations—these are shown at the bottom of Figure 2. The source program
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Figure 2. A design tool architecture showing three kinds of customisation: extended input language, custom
compile scheme and custom transformations; AST stands for Abstract Syntax Tree. The circles contain algorithms;
the boxes contain program representation: source, AST, hardware blocks and compiled hardware.

is initially translated into Cobble’s intermediate representation, an AST (Abstract Syntax
Tree) with information about the design. Custom transformations can then be applied to the
AST representation. At this point, the extended AST can be translated into the core AST,
or a custom compile scheme can translate the extended AST into hardware. Note that the
instantiated hardware may also undergo custom transformations. A custom compile scheme
then compiles the core and extended ASTs into hardware, instantiating hardware blocks
called by the user and hardware blocks to implement control flow and operators. Finally,
the compiler output hardware can undergo further custom transformations.

3.2. Compilation source: Cobble

This section contains a short introduction to the Cobble language. Cobble is based on a
subset of C with extensions for synchronous parallel threads and channels for synchronous
communication between them. It has a simple timing semantics: assignment takes one
cycle while expressions take none. The timing for all other constructs follows from this—
if statements take the same number of cycles as the chosen branch, and while loops take
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Figure 3. This code shows a basic Cobble loop for multiplying the corresponding elements of two arrays into a
third.

the sum of the cycles taken by each execution of their body. Section 5.1 describes these
timing semantics in more detail.

The Cobble compiler adopts a simple token-passing scheme [17]. The hardware for each
statement is inactive until it receives the token. It then performs its action before passing
the token to the hardware for the next statement to be executed. The program is started by
an initial token activating the hardware for the first statement of the program.

Cobble allows the programmer to use external hardware blocks such as Xilinx cores [21].
In general, a Cobble program interfaces to these blocks using the same constructs as used
for external hardware such as off-chip memories and busses. If the programmer wishes to
replace Cobble’s built-in multiplication operator with a pipelined preplaced core, they must
alter their program to replace an expression with loops to fill, run and drain the pipeline. Cob-
ble also allows combinational external hardware blocks to be used as Cobble expressions.

The example in Figure 3 shows several Cobble features and idioms:

– Line 1 declares i with a specific bit-width of 4.
– Line 2 declares three 8-bit arrays. Note that i is just wide enough to span the indices of

these arrays.
– Lines 4 to 8 show a common Cobble loop idiom. Rather than using a C-style for-loop,

the loop body (line 6) is run in parallel with the increment of i (Line 7).
– Line 8 saves hardware by testing for non-zero i. Using i < 16, for example, would have

required i to be one bit wider.
– As a result, the loop takes exactly 16 cycles to run.

3.3. Compilation target: Pebble

Given a Cobble program, the Cobble compiler produces a Pebble program. Pebble [13] can
be regarded as a simple variant of Structural VHDL. It provides a means of representing
block diagrams hierarchically and parametrically. Pebble has a simple, block-structured
syntax. As an example, Figure 5 describes the multiplexor array in Figure 4, provided that
the size parameter n is 4.

A Pebble program is a block, defined by its name, parameters, interfaces, local definitions,
and its body. The block interfaces are given by two lists, usually interpreted as the inputs
and outputs. An input or an output can be of type WIRE, or it can be a multi-dimensional
vector of wires. A wire can carry integer, boolean or other primitive data values. Wires w1,
w2, . . . that are connected together are denoted by the expression connect [w1,w2, . . .].
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Figure 4. An array of multiplexors described by the Pebble program in Figure 5.

Figure 5. A description of an array of multiplexors (Figure 4) in Pebble. The external input c is used to provide
a common control input for each multiplexor.

A primitive block has an empty body; a composite block has a body containing the
instantiation of composite or primitive blocks in any order. Blocks connected to each other
share the same wire in the interface instantiation. For hardware designs, the primitive blocks
can be bit-level logic gates and registers, or they can, like an adder, process word-level data
such as integers or fixed-point numbers; the set of primitives depends on the availability of
the corresponding components in the domain targeted by the Pebble compiler.

The GENERATE IF statement enables conditional compilation and recursive definition,
while the GENERATE FOR statement allows the concise description of regular circuits. To
support generic design descriptions, parameters in a Pebble program can include the number
of pipeline stages or the pitch between neighbouring interface connections [13]. Different
network structures, such as tree- or butterfly-shaped circuits, can be described parametrically
by indexing the components and wires.

The semantics of Pebble depends on the behaviour of the primitive blocks and their
composition in the target technology. Currently a synchronous circuit model is used in
our tools, and special control components for modelling run-time reconfiguration are also
supported [13]. However, other models can be used if desired. Indeed Pebble can be used
in modelling any block-structured systems, not just electronic circuits.

4. Framework design and implementation

This section describes the design and implementation of the compilation framework intro-
duced in the preceding section. Section 4.1 shows various customisation opportunities in
this framework. Section 4.2 sketches an implementation using the Visitor design pattern.
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4.1. Customisation opportunities

Compiler developers can customise the Cobble framework in three ways: they can
extend the input language, customise the compile scheme, and add custom trans-
formations. Responsibility comes with opportunity–they must check the correctness
of the proposed customisations. We show below how the framework enables these
customisations.

Extending the source language means that each of the standard compiler phases must
be extended to account for the new constructs. We use the ANTLR parser generator [3];
the parser can be extended by writing new alternatives for productions and generating the
corresponding AST. The AST itself can be extended by creating a new node to represent
the new construct as the sibling or child of the most similar existing node—it is up to
the user to choose that node. Alternatively, if the user decides that no new AST element
is needed for the new construct, the parser can use existing elements—a source-to-source
transformation. The AST is divided into statements and expressions, with in general one
AST node per parser rule. We adopt a steeply hierarchical AST, which gives many points
to attach a new node for an extended source language. It also allows precise customisation
of compile schemes and transformations per kind of AST node.

By a steep hierarchy, we mean that each node has few siblings, and many more ancestors
than in a shallow hierarchy. The additional ancestors group nodes and their siblings, express-
ing the commonality between them better than the case when nodes have few ancestors.

Custom compile schemes map standard and extended ASTs to hardware, to support:

– extensions to the input language, unless the extension does not introduce any new AST
elements,

– custom concrete protocols, for realising control flow in the compiled hardware,
– custom mappings of existing AST elements to hardware blocks and the connections

between them.

Custom compile schemes can be used to implement optimisations. The standard compile
scheme maps one AST element to one hardware block. By mapping larger patterns of AST
blocks to hardware blocks, we can optimise the mapping of specific patterns. This idea has
long been used in software compilers [2].

Consider the following example with two nested loops, the outer one being infinite:
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Figure 6. Example of optimisation with a custom compile scheme: (a) with default Cobble scheme; (b) with
custom scheme that eliminates redundant demultiplexor M1.

Figure 6(a) shows the output of the standard scheme, with a redundant demultiplexor
labelled M1. Figure 6(b) shows the output of a custom scheme to optimise this spe-
cific pattern. We could reasonably expect vendor tools to perform this particular opti-
misation, eliminating useless hardware. They would however be less likely to optimise
more complex patterns, which are easier to recognise from the AST than the generated
hardware.

Custom transformations modify the program at Cobble and Pebble levels. Cobble-level
transformations include conventional compiler transformations such as loop restructuring
and strength reduction. Pebble-level transformations can act on Pebble blocks explicitly
called by the program or on the compiled hardware output. We have previously shown
an example of combined Pebble block and Cobble transformation [21]. Hardware output
transformations can implement peephole optimisations.

4.2. Visitor design pattern

We now sketch our implementation that allows Cobble to be customised. Although our
current implementation is in C++, we do not depend on any unique features of that language;
the same ideas could be implemented in other languages such as Java. We show how
our internal AST representation, our internal hardware representation and our use of the
Visitor design pattern [9] enable extended input languages, custom compile schemes and
transformations.

As we mentioned previously, our AST is steep, which allows it to be extended in many
places. This aids input language extensions, as the user can pick precisely where to place
the nodes for their language extension.

ASTs used by other frameworks are not as steep. For example, the SUIF 2 [19] hierarchy
does not distinguish between logical and arithmetic operators, whereas we do, and we further
distinguish logical operators with short-circuit (lazy) and normal (greedy) semantics.

Our AST is implemented as a C++ class hierarchy. The hierarchy follows several C++
design rules to ensure robustness. These rules make it single-rooted, with all non-leaf classes
being abstract [16]. We have parallel, related hierarchies for representing types and symbols
(symbol table entries), which follow the same design rules.
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In conjunction with the Visitor design pattern, the extra levels allow finer distinctions
between object types without resolving the actual object type. The idea is to avoid users
having to downcast to the actual type wherever possible, simplifying code and providing
opportunities for user extensions to the representation without rewriting existing passes.

The Visitor design pattern ([9], page 331) allows new operations to be added to an existing
class hierarchy without changing it. The key benefit to our framework of using the Visitor
design pattern is in its separation of operations on the AST (custom compile schemes and
custom transformations) from classes defining them.

5. Compiler pass: Automating transforms

This section describes extending the Cobble framework with a compiler pass to support
transformations that can improve designer productivity and design maintainability.

5.1. Motivation

The Cobble language, described in Section 3.2, provides a cycle-accurate description of a
design with its simple timing semantics. It enables application developers to implement an
algorithm with various allocation and scheduling configurations.

The allocation problem concerns assignment of program operations to hardware re-
sources; the scheduling problem involves arranging resources in time order. The tradeoff
between resource usage and execution time can be obtained through sharing resources and
maximising available parallelism, both of which can be expressed manually through the
Cobble language.

Developers can manually optimise their designs through Cobble’s compilation scheme,
which performs a syntax-directed translation from the source program to hardware [17].
This scheme has two important implications. First, application developers can specify which
hardware resources are allocated in their designs and how these resources are placed in
time order. Second, application developers can assert the quality of their implementation
at design time. Even software C programs can be mapped to hardware using this scheme,
since resource-binding and timing information not provided can be inferred by Cobble’s
programming model and semantics. For instance, arithmetic and logical operators are bound
automatically to combinational hardware blocks, and scalars and arrays are mapped to
registers and groups of registers respectively. Furthermore, every assignment statement
runs exactly in one clock cycle, and statements enclosed in a sequential block are only
executed after the previous statement has terminated. Manual optimisations often involve
the par{} construct to specify parallel computations and minimise design execution time.
In addition, cycle time can be reduced by incorporating pipelined operators instead of the
default combinational implementation (Figure 7(a) and (d)). Moreover, resources can be
shared to minimise resource usage, sometimes at the expense of reducing parallelism.

Like Handel-C, the Cobble language and its timing semantics present an advantage over
languages that describe designs exclusively at algorithmic level. Application developers
using such languages have reduced control over scheduling and allocation-related opti-
misations, as the compilation process and tradeoff exploration are guided by compilation
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Figure 7. This figure illustrates how Cobble programs are automatically optimised to meet new design constraints.
(b) and (d) shows two Cobble designs that are synthesised to hardware ((a) and (e) respectively) using a directed-
syntax compilation scheme [17]. Both designs produce the same results given the same inputs, however they have
different scheduling and allocation configurations. This affects execution time and resource usage: the hardware
design in (a) is likely to consume less resources than the design shown in (e), however the latter should run faster.
We combine unscheduling with the scheduling stage to automatically change the configuration of a design in
order to find the best tradeoffs between resource usage and execution time. The unscheduling stage comprises
three steps: sequencing analysis, DFG generation and DFG folding, and generates a data-flow graph (DFG) from
a Cobble program. A DFG represents abstract operations that are partially ordered by dependencies, such as
read-after-write and write-after-write. The scheduling stage has the freedom to map these abstract operations into
existing hardware resources and to place these resources in a new time-order, as long as it does not violate design
constraints and dependencies. For instance, the scheduler maps an abstract multiplier operator shown in (c) into a
combinatorial multiplier (a). However, if the delay of this combinational multiplier is greater than the cycle time
constraint, then the scheduler can use a pipelined multiplier with a shorter delay if available (e).

parameters and source-level annotations. In this case, application developers have to be
content with the number and the quality of implementations that the compiler can generate;
however the tools may not always produce the desired effect.

Cobble designs can be transformed to meet performance or size requirements. However,
performing such transformations entirely by hand has its disadvantages: it can be tedious
and error-prone, thus affecting design productivity. Furthermore, once a design has been
developed and committed to a particular implementation, it is usually difficult to adapt to
new constraints and to change its functionality. Consequently, maintainability is generally
low and application developers may have to start the design cycle from scratch.

This paper proposes an approach that overcomes these drawbacks. The proposed approach
is intended to combine the advantages of both manual and automated optimisations, to
achieve the best implementation in resource usage or execution time, while enhancing both
design productivity and maintainability. In the rest of Section 5, we discuss this automated
approach and outline its implementation.

5.2. Unscheduling and scheduling

We have automated many optimisations, such as minimising resource usage or maximis-
ing execution time. Application developers provide the design constraints, such as cycle
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time and available resources. Our automated approach includes two stages: unscheduling
and scheduling. The unscheduling stage takes a Cobble design and generates a data-flow
graph (DFG). The DFG includes nodes that represent program operations, and edges that
represent dependencies between these operations. A Cobble program defines a total-order
on operations in relation to time, and each operation is mapped to a hardware resource.
A DFG, on the other hand, defines a partial-order on abstract operations in relation to its
dependencies. The aim of the scheduling stage is to define a time-order between DFG
operations (scheduling) and map each node to a hardware resource (allocation), without
violating dependencies and design constraints.

This method supports automatic rescheduling of a hardware design to different constraints
by combining the unscheduling and scheduling stages. This increases design maintainability,
as for instance, a pipeline design can be speeded up if more resources are available, or slowed
down if the design is ported to a smaller reconfigurable device. Unscheduling contains the
following three steps.

– Sequencing Analysis. The first stage of unscheduling computes the starting and ending
times of all statements enclosed in the block being transformed, which can include an
arbitrary number of parallel and sequential computations. Timing is represented by a
set of time-step tags. Each tag, of the form n:gx1, gx2, . . . , gxn, !gy1, !gy2, . . . , !gyn ,

identifies a time step of value n if every conditional guard gx yields true and every
conditional guard gy is false. The sequencing analysis algorithm is described in detail
elsewhere [7].

– DFG Generation. In this stage we generate a dataflow graph (DFG) that captures all
program dependencies. Our DFG generation algorithm works on the timing information
collected in the sequencing analysis stage. Hence, data-flow analysis equations [2] have
been extended to compute the information generated and killed in a basic timing block
(Figure 8), as well as the information consumed and produced in the next block. After
the DFG is generated, the original timing and scheduling is lost, but we preserve the
behavior of the design.

– DFG Folding. The final phase of unscheduling removes all temporary registers and
unnecessary operations from the DFG. This ensures that this DFG can be scheduled and
rescheduled without compromising its size, behavior and the parallelisation effort [6].
An example of DFG folding is shown in Figure 9.

After the unscheduling stage is complete, we proceed to schedule the DFG.
The scheduling algorithms used in our system are based on list scheduling and
solve the minimum-resource latency-constrained and the minimum-latency resource-
constrained problems [8]. Furthermore, application developers can control how re-
sources are shared and scheduled in different pipelined and non-pipelined configurations
(see Section 7). Memory optimisations, such as combining equivalent array accesses
into shift registers, are performed automatically to maximise available parallelism
[22].
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Figure 8. This diagram illustrates the process of generating a dataflow graph (DFG) from a Cobble design.
(a) The original Cobble program. (b) A list of basic timing blocks generated from the Cobble program in (a) using
the timing information collected by the sequencing analysis stage. (c) The DFG generated after processing basic
timing block 1. (d) The final DFG after processing basic timing block 2. To generate a DFG from a Cobble design,
we process in sequence each basic timing block, which can contain assignment, conditional and component call
statements. Each statement contains a time-step tag that indicates when a statement is executed. For instance,

d=a*3 has the time-step tag 1:c1 , which means that this statement is activated when c1 is true in time-order 1.
For each statement we generate a DFG node, and dependence relations between these nodes are found according to
their associated time-step tags. For instance, the shaded adder node and the multiplier, shown in (c), are mutually

exclusive in basic timing block 1, because they respectively contain time-step tags 1:!c1 and 1:c1 . However,
both nodes exhibit a write-before-read relation in basic timing block 2 (d), and thus we include a true-dependence
edge.

5.3. Implementation

We develop a compilation pass that performs automatic transformations at source-level
for incorporation in the Cobble framework (Figure 10). The goal of this compila-
tion pass is to transform an Abstract Syntax Tree (AST) to meet the required design
constraints.

The transforming process starts with the unscheduling stage which, as explained before,
generates a data-flow graph (DFG) representation of the input design. The first step of
unscheduling is sequencing analysis. To implement this algorithm, we use the Cobble
framework’s visitor pattern facility to traverse the AST nodes using depth-first search.
When a node is visited, we calculate its starting and ending time and pass this information
to its ancestors. The sequencing analysis step terminates when all nodes have been visited.
To generate a DFG, we process each AST node in relation to its time-order (calculated in
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Figure 9. This figure illustrates the dataflow graph (DFG) folding transformation, which discards unnecessary
operations from the DFG. (a) The original DFG. (b) The DFG after converting loop-carried dependencies into
true-dependencies. (c) The DFG after performing forward propagation transformation. Candidate operations for
removal include register transfer operations, which are once used to carry data from one pipeline stage to the
other. This is an important step, since successive rescheduling of a DFG would otherwise result in an explosion
of nodes and edges, limiting the applicability of the parallelisation process. The DFG folding process begins
by selecting all operations that can be removed at one time (a) without changing the behavior of a design. The
shaded operations exhibit loop-carried dependencies, which we convert to regular true-dependencies, as shown
in (b). Finally, candidate nodes are eliminated through forward-propagation (c). Similar transformations have been
developed to deal with control edges and propagation of control values across the pipeline.

the previous step), and keep a profile of every symbol used in the program to obtain the
correct dependencies between program operations.

The final stage of this compilation pass is scheduling, which involves the DFG generated
in the previous stage and the design constraints from the input AST. If the scheduler can
meet these constraints, then feedback is given about the tradeoffs between the old and the
new designs, and a new AST is produced (Figure 10(c)). This new AST can be converted
to source-level (Figure 10(d)) or translated directly to hardware (Figure 10(e)). If only part
of the design is selected for optimisation (such as a loop), then the new AST is merged with
the old AST, substituting only the relevant part of the tree.

6. Metalanguage: Customising tools

This section illustrates how a simple metalanguage, CML (Cobble MetaLanguage), can
support transformations of Cobble programs. Suitably extended, CML can also be used to
produce Cobble compiler passes described in the preceding section.

While the Visitor design pattern provides a way for modular development of design tools
for Cobble, in practice it can be complicated to write code using the Visitor design pattern
to match syntax patterns—we shall show an example shortly. We have therefore designed
a metalanguage to allow users to match syntax patterns without the complications imposed
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Figure 10. We extend the Cobble framework, shown in Figure 2, to support automatic transformations at source
level. The source program is annotated with design constraints, which include available resources and their
attributes, and also the allocation and scheduling configuration to be implemented. The source is then translated to
an extended AST (Abstract Syntax Tree), which contains all constraints from the original program (a). Next, the
transformation pass takes this AST (b) and generates a new AST that meets the design constraints and required
configuration (c). This new AST can be converted back to Cobble (d) if the user requires the transformed design
at source-level, or it can be compiled directly to hardware using a custom compilation scheme (e). Note that the
transforming compilation pass is optional, as users can compile their designs directly to hardware, going from the
extended AST (a) to the custom compilation scheme (e).
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by the Visitor design pattern. The metalanguage is based on research [4] on descriptions
for specifying: (a) syntax patterns to match in ANSI C, and (b) transformations to apply
to the matched code, using the SUIF compiler framework [19]. We adapt and extend this
work to enable similar specifications of the three kinds of customisation supported by the
Cobble framework. Throughout the rest of this section, we refer to the metalanguage in [4]
as CML-pre.

As a motivating example, consider a compiler pass that folds additions of zero to an
expression x: 0 + x => x. An implementation using the Visitor design pattern looks like:

In the above code, we replace a “+” by its right hand side operand if its left hand side
operand equals zero. The code works as follows:

– Line 1 declares a class using the Visitor design pattern to visit Cobble’s AST.
– Line 2 starts a method to visit Plus AST nodes, which are the only kind we need to visit

to recognise the pattern 0 + x.
– Lines 3 and 4 recurse to the operands of the Plus node, applying the transformation to

them.
– Lines 5 and 6 use a common C++ idiom to try to cast the left hand side of the + operator

to IntLiteral, the AST type representing literal integer values. If this test succeeds,
then the left hand side must be a constant integer.

– On line 7, we know that the left hand side is a constant integer and find its value using
the getValue method of the IntLiteral class.

– On line 8, the tests on lines 5, 6 and 7 have succeeded and we have matched the pat-
tern 0 + x. We instruct the parent of the Plus node to replace it with the right hand
operand.

CML simplifies the implementation of customisations because it removes the book-
keeping details needed to navigate through the source to transform it. From CML-pre, CML
takes the idea of using syntax patterns to specify the source and the corresponding target
needed for a compilation or transformation. These syntax patterns consist of source program
elements plus metaelements, which can match and label any syntax pattern corresponding
to a particular type of AST node; for example, the metaelement expr(1) would match any
expression and give it the label 1. The labels allow the syntax that matches the metaelement
to be copied to the target pattern for transformations, or to be mapped to specific targets for
extended source languages and custom compile schemes.
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CML-pre maps C language patterns to other C language patterns, corresponding to custom
transformations at the Cobble level, which in CML map Cobble language patterns to other
Cobble language patterns. CML extends CML-pre to support Pebble-level syntax patterns
for custom Pebble-level transformations and custom compile schemes. It also allows new
kinds of statement to be added to extend the source language. Using CML, a shorter and
clearer description of the above optimisation is shown below:

We explain the above CML code as follows:

– Line 1 starts a custom transform block. Metalanguage descriptions consist of a sin-
gle block, which must be one of custom compile scheme, custom transform or
custom hw transform, which respectively correspond to custom compile schemes and
custom transformation at software and hardware levels. Each block contains a list of
pairs of pattern and generate blocks, respectively specifying the input and output
patterns.

– Lines 2–4 specify the input syntax pattern. Syntax patterns are specified using plain
Cobble code plus metaelements; here the metaelement expr(1) matches any expression
appearing on the right-hand side of the + operator and gives it the label 1.

– Similarly, lines 5–7 specify the output syntax pattern which will be substituted for any
part of the AST matching the input pattern. Here, the expression labelled 1 in the input
pattern is copied to become the output pattern, completing the transformation.

The example shows how the CML description removes the book-keeping details needed
in the C++ version of the same transformation. It is clear that the CML description is much
simpler and more readable than the description involving the Visitor design pattern.

To match more complicated patterns, C++ descriptions using the Visitor design pattern
must adopt flags and stacks to record the context of syntax tree elements. This state needs
to be maintained for visiting each type in the syntax tree, which can be error-prone. More
complicated patterns may also require the C++ code to match them to be spread across
several visitmethods, to several kinds of AST node, further complicating the code needed
to match them. CML descriptions hide these complications, and can be systematically
translated to Visitor design pattern code, automatically declaring and using this state [20].

CML can be extended to specify the steps needed by the automated transforms in
Section 5.

– To specify sequencing analysis, CML would need to be able to read and write user-defined
annotations; these annotations would store the time-step tags as lists of conditional guards
which can be expressed using the existing AST. A CML pass could then perform the
sequencing analysis algorithm.

– To specify DFG generation, CML would need to be extended with (a) iteration constructs,
to explicitly iterate over the AST, building the DFG by reading the annotations written
by the sequencing analysis, and (b) constructs for building graphs.

– To specify DFG folding, CML would need to be able to specify input and output patterns
in graphs, analogously to the existing syntax patterns, complete with metaelements.
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– Finally, to specify scheduling algorithms, CML would additionally need primitives to
build and iterate over data structures used by those algorithms: for example, list-directed
scheduling would require support for list operations in CML.

7. Evaluation

We evaluate our hardware compilation framework using six case studies. These include
an 8-tap IIR filter, Julia fractal design, 3 by 3 dilation morphological operator, comb sort
algorithm, skeletonization based on Hilditch’s algorithm, and the RC5 encoder. We use our
automated transformation approach described in Section 5 to automatically schedule each
test design, initially written as a straightforward C implementation, into different designs.
For all tests, we define the following constraints. Each set of input and output data is
assigned to a unique memory bank, and sufficient resources are made available. Hence,
performance is only limited by program dependencies, as well as the scheduling strategy
used and hardware resources allocated to implement these operations.

Figure 11 presents the smallest and the fastest design for each case study. Design names
with the npN suffix are non-pipelined with a latency of N, and designs with names that
terminate with pipN suffix are pipelined with an initiation interval of N. All designs target
the Xilinx Virtex XCV2000E-6 device. Execution time represents the time to process a single
result when running at its maximum clock rate. The initiation interval (II) is the number of
cycles to produce a result, and also corresponds to the latency of a non-pipelined design.
For pipelined designs, latency refers to the number of cycles to produce the first result.

To find the smallest design, we set the scheduler to solve the minimum-resource latency-
constrained problem and generate a non-pipelined design. Resource sharing, in this case,
is set to maximum.

Figure 11. Six case studies to facilitate comparison of the tradeoffs between the smallest and the fastest imple-
mentation. Design names with the seq suffix are sequential, those with the np suffix are non-pipelined and designs
with names that terminate with pipN suffix are pipelined with throughtput of 1/N. All designs target the Xilinx
Virtex XCV2000E-6 device. Execution time represents the time to process a single result when running at its
maximum clock rate. The number of cycles to produce a result corresponds to the initiation interval (II). Latency
is the number of cycles until the first result is output, and only applies to pipelined designs.
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Figure 12. This graph shows how different scheduling and allocation strategies affect the performance and area
of two applications. Designs with the cm suffix contain combinational multipliers, while those with pm contain
pipelined multipliers. Results show that designs can achieve higher frequencies by increasing pipeline throughput
and using pipelined multipliers, at the expense of increased latency and resources.

The fastest design, on the other hand, is obtained by iteratively solving the minimum-
latency resource-constrained problem and generating a pipeline design with the minimum
initiation interval and no resource sharing. Non-pipelined designs usually consume fewer
resources, because there are more opportunities for sharing them. Pipelined designs, on
the other hand, are larger in size, since sharing is restricted and further resources, such as
pipelined FIFOs, are required to carry data across different pipeline stages.

Most of our results follow this trend. For instance, the fully pipelined implementation of
the dilation morphological operator runs 121 times faster than the sequential version, given
3.4 times the resources. Furthermore, for a 512 by 512 bitmap image, the pipelined design
runs 12 times faster than the optimised software version on a dual Pentium III 900 MHz
processor. Much of the speedup is due to the fact that block RAM and shift registers are
used to fetch the 3 by 3 kernel, reducing from nine read accesses in the original design to a
single memory access.

Not all designs can benefit from a pipelined implementation though. For instance, our
non-pipelined fractal design (jlfract np14 pm) runs slightly faster than the pipelined design
(jlfract pip5 pm), while taking up less than half of the resources (Figure 12).

8. Conclusion

This paper describes a customisable framework for hardware compilation that can benefit
both application developers and compiler developers. We have identified a multitude of
opportunities for customising the source, the compile scheme and the design transforma-
tions, for automating source-level transformations by compiler passes, and for facilitating
the production of such compiler passes and other customisations based on a metalanguage.
Current and future work includes incorporating domain-specific customisations [1, 12] into
our framework, verifying the correctness of customisations [14], extending our work to



CUSTOMISABLE HARDWARE COMPILATION 137

cover other compilation schemes such as ASC [15], and investigating support for run-time
design reconfiguration [18].
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