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1. INTRODUCTION

Advances in integrated circuit (IC) technology have made possible the inte-
gration of a large number of functional blocks on a single chip. One of the
challenges in creating such large chips is ensuring that the design is func-
tionally correct. No matter how careful the designer is, some design errors
will not be detected by simulation, and will not become apparent until the
fabricated chip is tested. Debugging an integrated circuit after fabrication is
especially challenging, since there is limited controllability and observability
through the external pins. Tight re-spin schedules make efficient debugging
even more critical. As a result, post-fabrication debug represents a major time
and cost investment for integrated circuit manufacturers.

Recently, designers of large IC’s have started to incorporate extra logic that
is intended to be used exclusively for post-fabrication debugging. Although
some design-for-testability structures, such as scan chains, can be used to en-
hance observability and controllability, these structures may not be suitable
for debugging. Unlike post-fabrication testing, post-fabrication debugging is
not usually an automated process. The tedious loading and unloading of long
scan-chains for functional debug is not feasible for chips with high-speed inter-
nally generated clocks, and in any case will limit the ability to quickly exercise
the integrated circuit to identify the causes of errors.

Another possible approach is to monitor signals and record traces for key
signals in a small RAM block. These signal traces can then be uploaded to
a host PC or analyzed with an on-chip microprocessor. This scheme does not
support some complex debugging operations. As an example, consider a packet
processing integrated circuit. Packets typically contain sequence numbers, and
a receiver can use these sequence numbers to determine whether a packet
arrives out of order. A common debugging operation might be to monitor these
sequence numbers to precisely determine when an error occurs. Storing traces
on-chip for post-analysis may not be an option if the error packet does not
occur until after millions of packets have been processed. In addition, some
debugging operations may involve monitoring a number of buses to determine
when a specific data item arrives on any of them. If there are a large number of
buses, and the run time is large, this may overwhelm any reasonable amount
of on-chip memory. Thus, a method of analyzing packets on-the-fly is required.
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One way of providing this ability is to embed a small amount of program-
mable logic onto the chip [Quinton and Wilton 2005; Abramovici et al. 2006].
After fabrication, an engineer can implement small test circuits using this pro-
grammable logic to help find the source of incorrect behaviour. The program-
mable logic core would be connected to key signals throughout the integrated
circuit using a programmable flexible network as described in Quinton and
Wilton [2005]. As an example, if it is suspected that the system crashes when
a certain pattern appears on a system bus, a small test circuit that monitors
the bus and collects key data when the pattern occurs could be implemented.
More complex test data generators such as a uniform or Gaussian random
number generators and complex error monitoring circuits that pre-process or
compress data before storage are also possible. Normally, this embedded pro-
grammable logic would be disabled after debugging; however, it would also be
possible to use such a core to “patch” design errors [Sarangi et al. 2006, 2007;
Wagner et al. 2006] or enhance post-fabrication testability [Abramovici et al.
2002].

A key part of this embedded debug infrastructure is the programmable logic
fabric. Although it would be possible to create a fabric based on commercial
stand-alone Field-Programmable Gate Array (FPGA) architectures, this may
not be desirable for three reasons. First, commercial architectures are opti-
mized for large applications. Since we intend to implement only small test
circuits, it is likely that such architectures will provide far more routing re-
sources than are required, leading to increased area overhead. Area overhead
is especially important in our application since the embedded debug fabric is
pure overhead that will not be used when the chip is finally operational. Sec-
ond, commercial FPGA architectures are optimized to work for a wide variety
of circuits in different applications. Since much debugging is performed by
monitoring buses, we would expect our applications to be primarily datapath-
oriented. In addition, because the embedded fabric is a fixed part of an in-
tegrated circuit, the context in which it will be used (the buses that will be
monitored, etc) will not change over time. As we will show in Section 6, we can
significantly reduce the area required by our architecture by taking advantage
of this. The third reason commercial FPGA fabrics may not work well is that
they are not easily synthesizable by common commercial synthesis tools. Most
System-on-Chip (SoC) designs are implemented by synthesizing hardware de-
scription language (HDL) specifications into standard cells. The use of embed-
ded cores will be much more palatable to SoC designers if their integration can
be made as seamless as possible [Wilton et al. 2005]. We will further discuss
the concept of synthesizable fabrics in Section 2.

Other embedded fabrics have been described. Both datapath fabrics
[Cherepacha and Lewis 1996; Hauck et al. 2004; Leijten-Nowak and van Meer-
bergen 2003; Ye et al. 2003; Ye and Rose 2005] and coarse-grained architec-
tures [Marshall et al. 1999; Cronquist et al. 1999; Goldstein et al. 2000; Singh
et al. 2000] may provide better density than commercial FPGAs, but still suffer
in that they are not easily synthesizable. Also like commercial FPGAs, these
architectures have been optimized for large stand-alone applications. Synthe-
sizable programmable logic fabrics have been described in Wilton et al. [2005],
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and Yan and Wilton [2006]. These architectures are not datapath oriented,
and hence suffer from a significant density overhead.

In this article we describe a novel architecture for an embedded FPGA fabric
that has been optimized for small datapath applications such as debug circuits.
Such an architecture can also be used to implement other arithmetic-intensive
circuits. We compare this architecture to both a fine-grained synthesizable
architecture, and an Application-Specific Integrated Circuit (ASIC) implemen-
tation of the debug circuitry. Unlike the fine-grained architecture, our fabric
contains support for word-level operations and routing, and contains embed-
ded multipliers. Unlike the ASIC implementation, our fabric is flexible enough
to implement a wide variety of embedded applications. We show that the new
architecture (including embedded multipliers) has a density similar to that of
a standard full-custom fine-grained FPGA (without embedded multipliers).

This article is organized as follows. Section 2 describes the environment in
which our embedded core will be used, and describes the requirements of our
architecture. The architecture itself is then described in Section 3. Section 4
then gives an example of how an application can be mapped to our architecture.
Section 5 reports the efficiency of our architecture as a function of various ar-
chitectural parameters, and Section 6 compares our architecture to a previous
synthesizable programmable logic core, as well as to an ASIC implementation.
Power and delay numbers are given in Section 7. Section 8 shows how our
fabric can be integrated into an ASIC. Section 9 compares our approach to that
taken in stand-alone datapath-oriented FPGAs and coarse-grained architec-
tures. Finally, Section 10 presents concluding remarks and opportunities for
future work.

An early version of this article appears in Wilton et al. [2007]. In this article,
we extend this work by including post-configuration delay and power measure-
ments for our datapath fabric, new benchmark circuits dedicated to on-chip
debugging, and discussion of SoC integration.

2. FRAMEWORK AND ARCHITECTURAL REQUIREMENTS

A programmable logic fabric can either be hard or soft. An ASIC designer using
a hard fabric would obtain a layout and embed it directly into the integrated
circuit. These hard fabrics could either be based on commercial FPGA designs,
or generated automatically using a layout or architecture generator [Padalia
et al. 2003; Compton and Hauck 2007; Holland and Hauck 2007].

One challenge with this approach is that design tools that allow seamless in-
tegration of fixed and programmable logic are still not mature. Timing analy-
sis, power distribution, and verification are difficult when the function to be
implemented in the core is not known.

An alternative technique has been recently described which addresses this
concern by shifting the burden from the ASIC designer to mature standard-cell
synthesis tools [Wilton et al. 2005; Yan and Wilton 2006]. In this technique,
an ASIC designer would obtain a synthesizable version of their programmable
logic fabric (a soft core) written in a hardware description language, and would
synthesize it along with the rest of the ASIC. The primary advantage of this
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technique is that the task of integrating such cores is far easier than the task
of integrating hard cores. The synthesis tools can be the same ones that are
used to synthesize the fixed (ASIC) portions of the chip. No modifications to
the tools are required, and the flow follows a standard integrated circuit design
flow that designers are familiar with.

For a fabric to be synthesizable in this way, it must not contain combina-
tional loops. Standard synthesis tools, timing analysis tools, and power esti-
mation tools are optimized for circuits without combinational loops. Although
circuits with such loops can be synthesized, this usually requires the designer
to manually “break” the loops by identifying some false paths. This requires
considerably more understanding about the internals of the core than a typical
ASIC designer would have. Note that a standard unconfigured FPGA contains
many combinational loops. A designer will rarely configure the FPGA to im-
plement combinational loops, but before configuration, such loops exist. Thus,
the first requirement of our architecture is that it does not contain any combi-
national loops.

The second requirement of our architecture is that it is as small as possible.
The area devoted to on-chip debug will not be used during the normal operation
of the chip (of course, the fabric could be removed from production versions of
a high-volume chip). Existing synthesizable fabrics suffer a 6.4 times area
overhead, compared to a hard programmable logic core [Wilton et al. 2005].
As will be shown in the next section, we address this by taking advantage of
the datapath nature of the anticipated debug circuits. In addition, we take
advantage of the fact that the context in which the core will be used is known
when the SoC is designed. As an example, if buses are connected to the core,
the specific pins on which these buses are mapped, as well as the width of each
bus, are known when the fabric is instantiated, and will not change over the
lifetime of the chip.

The third requirement is that the fabric should be as fast as possible. Ide-
ally, we would like to run our integrated circuit “at speed” during debugging.
The nature of programmable logic means we may not be able to achieve this,
but we would like to be as close as possible to this goal. Power consumption is
a secondary concern, since the fabric will likely only be used “in the lab” during
debugging. If our fabric is to be used to implement other arithmetic-oriented
applications in a production version of an integrated circuit, then power con-
sumption may become important.

Our methodology provides a unique opportunity for optimization. When de-
signing a hard layout for an FPGA, layout effort is reduced by dividing the
design into tiles, where each tile is identical. In our case, the tiles are synthe-
sized and laid out automatically by CAD tools; thus, it is no longer critical that
each tile is identical.

3. ARCHITECTURE

In this section, we describe a family of architectures for our embedded pro-
grammable logic core. Each member of the family is differentiated by various
parameters. An SoC designer would select an architecture from this family
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Fig. 1. Fabric Architecture (configuration elements not shown).

based on the amount of programmable logic required, as well as the number
and nature of the connections to the programmable logic.

Figure 1 shows our architecture. The fabric contains D identical wordblocks,
each containing N identical bitblocks. Unlike a fine-grained FPGA, the bit-
blocks within a wordblock are all controlled by the same set of control bits.
This means all bitblocks within a wordblock perform the same function. We
will consider the impact of this feature on density in Section 5.

As shown in Figure 2, each bitblock contains two lookup-tables, several
multiplexers, and a flip-flop. A single wordblock can implement an N bit
adder/subtracter, an N-bit wide three-input multiplexer, any other three-input
logic function, or some five-input functions. Two control inputs k1 and k2 (from
the control block, to be described below) allow for efficient implementation of
multiplexers and other datapath functions that require a control input. The
same two control lines are driven to all bitblocks in a wordblock. The select
lines of the multiplexers in Figure 2 as well as the function lines of the two
lookup-tables are driven by configuration bits. In total, 35 configuration bits
are required per bitblock; as described above, these bits are shared between all
bitblocks in a wordblock. The wordblock also contains a programmable shifter,
which can pass data through unchanged, or shift the word one bit to the right
(signed or unsigned shift) or one bit to the left; the state of the shift block is
controlled by two configuration bits.

Each wordblock receives up to three inputs from either the M primary bus
inputs, the F feedback paths, the C constant registers, or any of the outputs
of wordblocks to the left. The control lines for the input selection multiplexers
are driven by configuration bits. Note that buses are switched as a unit; this
improves density, since one set of configuration bits can be shared among all
bits. However, it also reduces flexibility, since it is not possible to select part
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Fig. 2. Bitblock (status flags not shown).

of one bus and part of another bus, although this functionality can be imple-
mented within a wordblock by careful use of a “mask” in one of the C constant
registers. The R output buses of the architecture can be selected from the
same set of M + F + C buses or from the output of any of the D wordblocks.
The same signals (except the C constants) can be fed back, through a flip-flop,
to all wordblocks; this provides a mechanism to connect wordblock outputs to
the inputs of wordblocks to the left, and also supports an efficient way to delay
signals by one clock cycle without using a wordblock.

Multipliers are an important part of some target applications. Therefore,
selected wordblocks in the fabric are replaced with embedded multipliers.
Each embedded multiplier has two N-bit inputs which are selected from the
M + C + F + i (where i is the number of wordblocks to the left of the multiplier)
buses using routing multiplexers. The multiplier produces two output buses,
one for the high order result and one for the low order result. These outputs
can be selected by all subsequent routing multiplexers including the output
and feedback multiplexers. We denote the number of multipliers as A, and
assume each multiplier displaces one wordblock (so, the number of wordblocks
is D − A).

Although our architecture is aimed at datapath-oriented applications, a
small amount of control logic is sometimes needed to control the datapath.
Such logic can be implemented in the control block. This block contains fine-
grained product-term based programmable logic resources, and is similar to
the architecture described in Yan and Wilton [2006]. The fabric contains P

product-term blocks, each with 9 inputs, 10 product terms, and 3 outputs
(this was shown to work well in Yan and Wilton [2006]). The control block
also contains registers to support state machines. Inputs to the control block
are selected from a number of status signals generated throughout the data-
path. Each wordblock generates a carry-out, an overflow, an MSB, an LSB,
and a zero flag; each feedback path generates the same flags, with the excep-
tion of the carry-out. This large number of status bits are multiplexed into
a small number of inputs using the status multiplexer, which is controlled by

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article 7, Pub. date: March 2008.



7: 8 · S. J. E. Wilton et al.

Table I. Architectural Parameters.

D Number of wordblocks (including multipliers)
N Bit Width
M Number of input buses
R Number of output buses
F Number of feedback paths
C Number of constant registers
A Number of multipliers
P Number of product-term blocks

Fig. 3. Example mapping.

configuration bits. The exact number of these status bits that can be provided
to the control block depends on the size of the control block. Similarly, the
control block generates a number of outputs. These outputs can be provided to
various control lines in the fabric using the control multiplexer; for each con-
trol line in the fabric, any of the control block outputs or the constants ‘0’ or ‘1’
can be selected.

The parameters used to describe the architecture are summarized in Table I.

4. EXAMPLE MAPPING

To demonstrate how this architecture can be used to implement a circuit, we
focus on a single example. The example is a common debugging operation; the
circuit monitors two buses, and counts the number of times a certain mask
(composed of 1’s, 0’s and “don’t care” bits) matches each bus, as well as the
number of times both buses match the mask at the same time.

Figure 3 illustrates how the application can be implemented. The mask
value is represented by two constants. Each bit in the constant corresponds
to one bit in the incoming data stream. As shown in Table II, the two bits
together determine whether the corresponding bit in the data stream must be
a ‘1’, ‘0’, or is a “don’t care” bit.
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Table II. Meaning of Mask Bits in Example

Bit i from Bit i from
Constant value 1 Constant Value 2 Meaning

0 0 Data bit i must be 0
0 1 Data bit i must be 1
1 0 Data bit i can be 0 or 1

The left-most wordblock in Figure 3 combines the incoming data word on the
first input bus with the two constant values to determine whether the incoming
data word is a match. To do this, each of the bitblocks within the wordblock
performs the following function:

not (ai + b i ⊕ di)

where ai is bit i of the first constant, b i is bit i of the second constant, and di is
bit i of the incoming data word. If the result of this function is 0, a match in
bit i has occured. If all bits produce a result of 0, then a match has occured. As
described in Section 3, each wordblock has a “zero” flag output that is asserted
when the result from all wordblocks are 0; this flag is sent to the control block
to indicate a match has occured. The second wordblock in Figure 3 performs
the same function, but uses the incoming data word on the second input bus.

The control block then uses these two match flags to determine which coun-
ters to increment. If the first flag is set, the first counter is incremented
(implemented using the third wordblock in Figure 3). The second counter is
incremented when the second flag is set, and the final counter is incremented
when both flags are set. Each of the three accumulated counts are stored in
the feedback registers; these counts are fed back to the input signals of the
adders. The reset control lines for the feedback registers are also controlled by
the control block. Finally, the three adder outputs are connected to the outputs
of the fabric.

5. PARAMETER OPTIMIZATION

In this section, we first determine the impact of the parameters in Table I on
the area of the fabric. Delay and power will be considered in Section 7.

Table III shows a breakdown of the area of a fabric with N=16, D=16, M=3,
R=2, F=3, C=2, A=4, and P=4. The various components are synthesized us-
ing Synopsys Design Compiler, and the cell area predicted by the same tool is
reported. All area values are given to three significant digits. Configuration
circuits, clock circuits, and all other essential parts of the core were included
in the synthesizable model. Although it would be more accurate to perform
place and route on the Synopsys-generated netlist and measure the chip area
directly, previous results have shown that the Synopsys area results have a
good correlation to the final chip area results [Wilton et al. 2005]. A 130-nm

process is assumed.
As shown in the table, most of the area is used to implement the datapath

portion of the fabric. Within the datapath, the largest component of the area
is due to the routing multiplexers. The four multipliers and 12 wordblocks

ACM Transactions on Reconfigurable Technology and Systems, Vol. 1, No. 1, Article 7, Pub. date: March 2008.



7: 10 · S. J. E. Wilton et al.

Table III. Area Breakdown

Module Area in µm2 Percentage

D
a

ta
p

a
th

wordblocks 86,300 23.8 %
multipliers 45,200 12.5 %
config. bits 24,300 6.70 %
feedback regs 2,320 0.600 %
routing muxes 86,300 33.2 %

total datapath 120,000 76.7 %

status multiplexer 18,500 5.10%

control multiplexer 14,600 4.00%

control block 51,400 14.2%

Total 363,000 100%

Fig. 4. Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless otherwise specified.

also consume a significant amount of area. The configuration bits within the
datapath consumes 6.7% of the entire fabric.

Figure 4(a) shows the impact of N and D on area. In this experiment, M=3,
R=2, F=3, C=2, A=4, and P=4. As the graph shows, the area is roughly propor-
tional to both D and N; increasing D increases the number of wordblocks and
corresponding routing multiplexers, while increasing N increases the sizes of
these blocks.

The impact on area of the number of multipliers, A, is shown in Figure 4(b).
All other parameters are as before, with N=16 and D=32. Intuitively, as A

increases, the area goes up. This is the case despite the fact that the area
of the 32-bit multiplier is roughly the same as the area of a 32-bit wordblock
(including the associated routing multiplexers and configuration bits). The
reason that the area goes up as A increases is that the multiplier produces two
bus outputs (a wordblock produces one). This increases the size of the routing
multiplexers in all downstream wordblocks, as well as the output multiplexers
and feedback multiplexers. The graph shows that the increase from A = 0 to
A = 1 is larger than the increase from A = 1 to A = 2. This is because if there
is only one multiplier, it is placed in the left-most slot. This increases the size
of all subsequent routing multiplexers. When a second multiplier is added, it
is placed in the middle of the fabric, so only half of the routing multiplexers
are increased (those to the right of the new multiplier).
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Fig. 5. Parameter sweeps, where M=3, R=2, F=3, C=2, A=4, P=4 unless otherwise specified.

Figure 5(a) shows the impact of P on the area of the fabric. As one can see,
the number of product-term blocks in the control block has a significant effect
on the size of the overall architecture.

We also measured the impact of M, R, C, and F. Each of these parameters
has a linear effect on area. Increasing M from 1 to 8 increases the area by
15%, increasing R from 1 to 8 increases the area by 7.8%, increasing F from
0 to 6 increases the area by 25%, and increasing C from 0 to 8 increases the
area by 17%. Parameter R (the number of output buses) has the smallest
effect on area, since an increase in R does not imply an increase in the size of
any of the routing multiplexers. For all other parameters, as the parameter is
increased, additional buses are created; these buses are supplied to all routing
multiplexers, making them larger. Parameter F has the largest impact since
each feedback register is associated with three status bits and one control bit.

In our architecture, the same set of 35 configuration bits are shared among
all bitblocks in a wordblock. To investigate the impact of this feature on den-
sity, we vary the number of configuration bit sets per wordblock from 1 (the
baseline architecture) to N, in which every bitblock is controlled by a separate
set of 35 configuration bits. The impact on area is shown in Figure 5(b) for two
values of N, with all other parameters the same as before. As the graph shows,
more flexible architectures with more configuration sets per wordblock require
more area because of the extra configuration bits. For N = 16, an architec-
ture in which each bitblock has its own configuration set is 60% larger than
an architecture in which all bitblocks within a wordblock share a configura-
tion set.

6. AREA RESULTS

In this section, we use benchmark circuits to compare our architecture to a
fine-grained synthesizable programmable logic core [Yan and Wilton 2006] and
to an ASIC implementation. We first describe our benchmark circuits. We
then present mapping results, first assuming that the architecture is tailored
for each benchmark, and then assuming the more realistic case in which the
fabric is not tuned for each benchmark.
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6.1 Benchmark Circuits

To evaluate our architecture, we use a collection of datapath circuits. Although
the primary motivation for our architecture is to implement debug circuits, the
fabric can actually be used to implement any small datapath-oriented circuit.
Thus, in order to fully exercise the fabric, we have created a suite of benchmark
circuits representative of the types of circuits that would be implemented in
our fabric. These circuits typically contain a single datapath controlled by a
small controller. We focused on these single datapath circuits since circuits
with multiple intersecting datapaths are likely too large to implemented using
a synthesizable core.

We used ten benchmark circuits. Three of these are example debug appli-
cations, and the remainder are circuits that are similar in size and structure
to the type of circuits that would be implemented in our core. The first debug
circuit, debug1 is the circuit described in Section 4. The second debug circuit,
seqchk is a sequence number checking circuit. Many packet based inter-chip
communication schemes (such as PCI Express) use sequence numbers to en-
sure that packets arrive in order and are not lost. The circuit monitors incom-
ing data words, identifies the start of a packet (using a pre-determined mask),
parses through the packet (using a counter) to find the sequence number, and
compares it with the previous sequence number. Any out-of order sequence
number, which would indicate a lost packet on a direct point-to-point link, in-
crements a counter.

The third debug circuit, fletcher, can be used to detect checksum mis-
matches. In many communication applications, when a circuit detects a check-
sum mismatch, it will enter an error state and ask for re-transmission of the
data. Determining that this is happening in a chip can often be an important
step in the debugging process; it can explain low performance/throughput, it
can alert the debugger that a different state of the circuit is being stimulated,
and can potentially point to overall system problems. In its simplest form the
checksum is calculated by simply adding the bytes in the data stream. How-
ever, this allows rearranged words or extra zero bytes to pass undetected. The
Fletcher algorithm contains an additional accumulator to help detect these er-
ror conditions [Fletcher 1982; Nakassis 1988]. The benchmark circuit monitors
an incoming bus, and uses the Fletcher algorithm to compute the checksum of
the incoming stream.

Of the remaining benchmarks, three, bfly, dscg and fir4 are used in Ho et al.
[2006]. The bfly benchmark performs the computation z = y + x ∗ w where
the inputs and output are complex numbers; this is commonly used within
a Fast Fourier Transform computation. The dscg circuit is the datapath of
a digital sine-cosine generator. The fir4 circuit is a 4-tap finite impulse re-
sponse filter. The dotv3, momul, and median circuits were constructed for
this work. The dotv3 benchmark computes the dot product of two input vec-
tors. The egcd circuit implements an extended binary greatest common divisor
algorithm [Menezes et al 1996]. The momul benchmark is a Montgomery Mul-
tiplier [Menezes et al 1996]. Finally, the median circuit is a median filter that
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Table IV. Parameters Used for Each Benchmark Circuit

Fabric Parameters
Benchmark D N M R C F A P

debug1 5 16 2 3 2 3 0 1
seqchk 5 16 1 1 3 3 0 2
fletcher 8 16 1 2 2 3 0 2
bfly 8 8 6 1 0 5 4 0
dotv3 5 8 6 1 0 2 3 0
dscg 8 8 3 2 0 2 4 1
egcd 27 8 2 4 1 9 0 15
fir4 11 8 1 1 4 0 0 0
median 8 16 1 1 0 4 0 2
momul 13 8 7 2 0 6 1 8

accepts streaming data and returns the median (actually second-largest) of the
last four entries.

All benchmarks assume 8 bit operands, except median, debug1, fletcher, and
seqchk which assume 16 bit operands. We have specifically chosen these cir-
cuits since they are small, and support the type of application we would expect
to implement on a synthesizable programmable logic core. Large user circuits
would be typically implemented using a hard programmable logic core.

6.2 Optimized Parameters

We first compare our architecture to a previous synthesizable architecture [Yan
and Wilton 2006] and to a nonprogrammable ASIC implementation of each
circuit. This will give an upper-bound of the efficiency of our architecture if
tuned properly.

To map each benchmark to our architecture, the benchmark was first split
into datapath and control sections. The datapath portion of the circuit was
mapped (by hand) to wordblocks, and appropriate values of D, N, M, R, D,
A, F, and C were chosen. The control section was mapped to product-term
blocks, using PLAmap [Chen et al. 2001]. Using the number of product-term
blocks required by PLAmap to implement the circuit, as well as the data-
path parameters described above, a custom-built tool was used to generate
an appropriately-sized fabric. The parameters used to construct the datapath
for each benchmark circuit is shown in Table IV. Each fabric is then synthe-
sized using Synopsys Design Compiler, and the cell area predicted by the same
tool is reported. Again, a 130-nm CMOS process was assumed. The results
are shown in Column 2 of Table V (note that these results are slightly differ-
ent than those from Wilton et al. [2007] since here we assume all inputs and
outputs are registered). All results are shown to three significant digits.

For comparison, we also show the area that would be required to imple-
ment the same circuit using the fine-grained synthesizable fabric from Yan
and Wilton [2006] in Column 3. These measurements were obtained using the
architectures and tools described in Yan and Wilton [2006]. We were unable to
compare our architecture to the architecture described in Wilton et al. [2005],
since that architecture only supports combinational circuits, and most of our
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Table V. Area Results when the Fabric is Optimized for Each Benchmark Circuit

Datapath Fined-Grain
(ours) [Yan and Wilton 2006] ASIC Fine-Grain/ Datapath/

Benchmark (µm2) (µm2) (µm2) Datapath ASIC

debug1 87,300 1,300,000 3,640 14.9 24.0
seqchk 92,500 1,200,000 3,600 13.0 25.7
fletcher 133,000 2,580,000 4,660 20.0 28.5
bfly 68,200 132,000,000 17,800 1,940 3.83
dotv3 34,100 65,500,000 8,350 1,920 4.08
dscg 72,200 116,000,000 11,600 1,610 6.22
egcd 1,230,000 22,800,000 9,880 18.5 124
fir4 76,200 131,000,000 12,100 1,720 6.30
median 142,000 10,700,000 5,270 75.4 26.9
momul 294,000 11,400,000 7,100 38.8 41.4

benchmarks are sequential. Column 4 shows the area required by the bench-
mark circuit if synthesized directly in standard cells, in which case there is no
programmability.

Column 5 shows the ratio of the area required to implement each bench-
mark using the fine-grained fabric to the area required to implement the same
benchmark in our architecture. As the table shows, there are two categories
of circuits. Circuits bfly, dotv3, dscg and fir4 all show ratios of between 1611
and 1940. In other words, our architecture is 1611 times to 1940 times more
area-efficient than the fine-grained fabric. The remaining circuits show more
modest ratios between 13.0 and 75.4.

These results are dramatic. First consider those benchmarks with ratios
between 13.0 and 75.4. Given that, for each circuit, we are creating a fab-
ric in which configuration bits are shared between either 8 or 16 bits, we
would expect to see a ratio of no larger than 8 or 16. The reason our ratios
are larger than these has to do with the inefficiencies of the fine-grained ar-
chitecture when implementing very large circuits. The architecture in Yan
and Wilton [2006] was optimized for somewhat smaller circuits (between 10
and 300 equivalent 4-input lookup tables). As the fine-grained architecture is
scaled to implement larger circuits, the size of the routing multiplexers grows.
Each multiplexer has an input for every primary input and every output in the
previous levels within the fabric. In Yan and Wilton [2006], depopulating these
multiplexers was not considered, since the circuits were small enough that the
multiplexer area did not become unwieldy. In addition, the number of these
multiplexers is proportional to the amount of logic in the fabric, since there is
one multiplexer per product-term block input. This means that the overall size
of the fabric grows quadratically with circuit size.

This quadratic increase in size suggests that the previous architecture is not
efficient at implementing these sorts of large circuits. In addition, the archi-
tecture in Yan and Wilton [2006] was optimized for control circuits rather than
datapath circuits. Thus, the comparison to the fine-grained architecture must
be made with caution. However, even if the fine-grained architecture was op-
timized for our benchmark circuits, we would still expect that our architecture
would be significantly smaller than the fine-grained architecture.
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The above explanation does not cover the four benchmarks that have ra-
tios greater than 1600. These benchmarks all contain a significant number
of multipliers. In our architecture, these multipliers are implemented as a
hard embedded block (as in many commercial stand-alone FPGAs). However,
the fine-grained architecture does not contain these embedded blocks, so the
multipliers must be implemented using the normal logic resources. This is ag-
gravated by the fact that product-term based architectures, such as Yan and
Wilton [2006] are notoriously bad at implementing XOR functions, which are
common in multipliers.

Column 6 shows the ratio of the area required to implement each bench-
mark circuit in our fabric to the area required to implement the same bench-
mark circuit using fixed ASIC cells (with no programmability). This measure
is the overhead resulting from configurability using our architecture. As the
table shows, for the circuits with a significant number of embedded multipli-
ers, this ratio is between 3.8 and 6.3. For circuits without a significant number
of embedded multipliers, this number is between 24 and 124. It is interesting
that these larger numbers are of the same order of magnitude as the ratio of an
FPGA implementation to an ASIC implementation [Kuon and Rose 2007]. In
other words, the overhead due to configurability in our architecture is similar
to the overhead inherent in a hand-designed stand-alone FPGA. This is a sur-
prising result; it shows that synthesizable cores can provide the density that
designers currently accept from non-synthesized programmable logic devices.

6.3 Derived Parameters

When gathering the results in Section 6.2 we chose all fabric parameters inde-
pendently for each circuit. This unfairly biases the results in our favour. One
of the drawbacks of partitioning the fabric between control and datapath is
that different user circuits require different amounts of control and datapath;
since we do not know what will be implemented in the fabric when the ASIC is
designed, choosing the amount of each type of fabric is difficult. If the partition
is not chosen carefully, either control resources or datapath resources will be
wasted. This is not a problem with fine-grained architectures, since the fine-
grained fabric can be used to build either control or datapath structures. In
this section, we address this issue by fixing this parameter (as well as other
parameters) as a function of the fabric size.

We repeat the experiments in Section 6.2. We choose values of D, N, M,
and R independently for each benchmark circuit. This is reasonable; when
including a fabric in an ASIC, the bit-width, the number of input and output
buses, and the desired fabric size are known. Unlike the previous experiments,
however, we calculate the remaining parameters as a function of D. If the re-
sulting architecture has more constant registers, feedback paths, multipliers,
or product term blocks than are needed by the benchmark circuit, then the ex-
tra resources are wasted. If the fabric does not contain enough of any of these
resources, the fabric size (D) is increased until the benchmark circuit can be
implemented. The parameters used for each benchmark circuit are shown in
Table VI. In all cases, we compute C = ⌈ D

4
⌉, F = ⌈ D

2
⌉, A = ⌈ D

4
⌉, and P = ⌈ D

3
⌉.
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Table VI. Parameters Used for Each Benchmark Circuit
when Low-Level Parameters are Computed

Fabric Parameters Computed

Benchmark D N M R C F A P

debug1 7 16 2 3 2 4 2 3
seqchk 9 16 1 1 3 5 3 3
fletcher 11 16 1 1 3 6 3 4
bfly 16 8 6 1 4 8 4 6
dotv3 9 8 6 1 3 5 3 3
dscg 16 8 3 2 4 8 4 6
egcd 70 8 2 4 18 35 18 24
fir4 16 8 1 1 4 8 4 6
median 11 16 1 1 3 6 3 4
momul 24 8 7 2 6 12 6 8

Table VII. Area Results when Low-Level Parameters are Computed

Datapath Fine-Grain
(ours) [Yan and Wilton 2006] ASIC Fine-Grain/ Datapath/

Benchmark (µm2) (µm2) (µm2) Datapath ASIC

debug1 178,000 1,300,000 3,640 7.30 48.9
seqchk 220,000 1,200,000 3,600 5.45 61.1
fletcher 196,000 2,580,000 4,660 13.2 42.1
bfly 335,000 132,000,000 17,800 394 18.8
dotv3 226,000 65,500,000 8,350 290 27.1
dscg 325,000 116,000,000 11,600 357 28.0
egcd 3,190,000 22,800,000 9,880 7.15 323
fir4 307,000 131,000,000 12,100 427 25.4
median 272,000 10,700,000 5,270 39.3 51.6
momul 542,000 11,400,000 7,100 21.0 76.3

Although these may not be the optimum ratios, we do not have enough bench-
mark circuits to determine optimum ratios for each parameter. These ratios
are selected because they appear “reasonable” based on our experience (for ex-
ample, since each product term block has three outputs, setting P = ⌈ D

3
⌉ means

that, on average, one select line per wordblock can be generated). If additional
experiments were conducted, and the optimum ratios found, they would tend
to improve the results in this section.

Table VII shows the results, using the same columns as in Table V. Again,
all results are shown to three significant digits. The size of the fine-grained
fabric and the ASIC implementation are copied into Table VII for convenience.
In general, the area required to implement each benchmark circuit on our fab-
ric has increased, due to the benchmark circuits not exactly matching the gen-
erated architecture. The ratio of the area required to implement each circuit
in the fine-grained architecture of Yan and Wilton [2006] to the area required
to implement the same benchmark in our fabric now ranges from 7.1 to 427,
while the ratio of the area required to implement each circuit in our fabric to
the area required to implement the same circuit in an ASIC ranges from 18.8
to 323.
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Table VIII. Delay Estimates of Paths within Fabric

Delay through one wordblock 3.25ns

Delay through one multiplier (8 bits) 5.39ns

Delay through one multiplier (16 bits) 8.50ns

Delay through carry chain (8 bits) 8.71ns

Delay through carry chain (16 bits) 14.9ns

Delay through 24 wordblocks and 8 multipliers 178ns

7. DELAY AND POWER RESULTS

The maximum clock frequency at which the fabric can run depends on the
configuration implemented in the fabric. We first consider the delay of various
paths within the fabric, and then consider the delay and power of the fabric
when implementing our benchmark circuits.

7.1 Path Delays

Table VIII shows post-synthesis, pre-place and route delay estimates for vari-
ous paths within the fabric. The delay through the wordblock is the delay from
the output of the register in one wordblock to the input of the register in the
next wordblock. This quantity is independent of N, and depends very slightly
on M, C, and F, as well as the position of the wordblock in the array (since
these parameters determine the size of the routing multiplexer used to select
inputs for the second wordblock). The delay of the multiplier goes up as N

increases. Measurements of the maximum carry chain delay within one word-
block are also given in the table (from the carry-in of the least significant bit to
the carry-out of the most significant bit). The last entry in the table shows the
delay of a combinational path that passes through all wordblocks in a fabric
with D=32 and A=8; clearly, most applications would not configure the fabric
to have such a long critical path.

7.2 Mapping Results

The delay and power dissipation of our architecture depend on the circuit im-
plemented in the fabric. To estimate the delay and power overhead of our
architecture, we mapped each of our benchmark circuits to a datapath con-
structed using the derived parameters from Table VI. For each mapping, we
determined appropriate values for all configuration bits, and used Synopsys
Design Compiler to estimate the critical path and dynamic power dissipated
by the fabric with these configuration bits set properly. Again, a 130nm tech-
nology was assumed.

The results in this section are for the datapath portion of the fabric only.
Measuring the delay paths through the control block is difficult. Determining
the state of every programming bit in the datapath portion of the architec-
ture is not difficult since there are only a small number of programming bits.
However, since in the fine-grained control fabric, there are so many more pro-
gramming bits, manually determining and setting the state of each bit would
be infeasible.

Table IX shows the results. Column 2 shows the critical path delay of each
circuit implemented on our architecture, Column 3 shows the same quantity
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Table IX. Datapath Delay and Power Estimates for Configured Fabric

Datapath ASIC Datapath ASIC
Benchmark (ns) (ns) Ratio (mW) (mW) Ratio

debug1 14.6 2.02 7.23 2.7 0.13 21
seqchk 15.4 2.27 6.78 4.0 0.12 33
fletcher 16.5 8.37 1.97 5.8 0.23 25
bfly 11.1 2.81 3.95 3.0 1.19 2.5
dotv3 9.94 3.75 2.65 1.7 0.52 3.3
dscg 7.64 4.72 1.62 2.6 0.70 3.7
egcd 14.3 6.65 2.15 26 0.40 65
fir4 10.5 4.21 2.49 2.3 0.62 3.7
median 16.5 2.33 7.08 4.6 0.44 10
momul 7.53 5.34 1.41 4.2 0.41 10

for each circuit implemented as an ASIC, and Column 4 shows the ratio be-
tween these two estimates. This ratio, which is the delay overhead imposed
by reconfigurability, varies from 1.4 to 7.2. The larger ratios correspond to
circuits that do not use the embedded multipliers. In our architecture, the
embedded multipliers are implemented using ASIC circuitry, thus we would
expect that circuits that make heavy use of the multipliers run closer to the
speed of the corresponding ASIC implementation. As with the area results,
these delay ratios are of the same order of magnitude as the ratio of the delay
of a standard FPGA implementation to that of an ASIC implementation [Kuon
and Rose 2007]. This means that the delay overhead due to configurability in
our architecture is similar to the delay overhead inherent in a hand-designed
stand-alone FPGA. Unlike our results, however, [Kuon and Rose 2007] found
that the ratio did not depend strongly on the number of embedded multipliers
used. This is likely because, in a standard FPGA, the delay of a net is pri-
marily due to the routing connections between logic blocks, while in our fabric,
the delay depends more on the gates and connections within each wordblock
and multiplier.

The final three columns in Table IX show power measurements for our ar-
chitecture and an ASIC. The ratios vary from 2.5 to 65. In general, the circuits
that do not use embedded multipliers show a larger ratio, as expected. The
ratio for egcd is significantly larger than the others. As shown in Table IV,
this circuit requires more control logic than the other circuits. Because we
are fixing the ratio of control resources (P) to wordblocks (D), a fabric large
enough to implement the control part of the circuit has many more wordblocks
than are needed. In our architecture, these unused wordblocks consume power
(this suggests that we should “turn off” unused wordblocks, however we do not
consider this in this article). In Kuon and Rose [2007], it is reported that a
standard FPGA dissipated 14 times more power than an ASIC; once again,
this is in-line with our results.

8. INTEGRATION OF FABRIC INTO AN SOC

Although the primary contribution of this article is the architecture of the
embedded fabric, it is instructive to consider how this fabric could be embed-
ded into an SoC. In this section, we focus on three aspects of this integration:
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selecting the size of the fabric, connecting the fabric to the SoC, and matching
the speed of the programmable logic core to that of the SoC.

8.1 Fabric Size

Although the fabric is flexible enough to implement many different debug cir-
cuits after fabrication, the size of the fabric itself must be determined before
fabrication. This is difficult, since it is impossible to predict exactly what sorts
of debugging circuits will be required.

However, there are several considerations that can guide a designer when
choosing a fabric size. The first consideration is the nature of the integrated
circuit itself. In a communication circuit, for example, the packet size and
packet structure will not change. Based on these quantities, it may be possi-
ble to determine a “reasonable” amount of logic that would support operations
that count through packets and perform operations on individual words. If
a particular encoding scheme is used in the fixed part of the chip, it may be
valuable to include enough programmable logic to be able to decode data en-
coded using this scheme. Although a designer can never know exactly what
debug circuits would be required, his or her experience may help determine
how much debugging logic is reasonable.

A second consideration is the amount of silicon area available for debug.
Chip area is often partitioned early in the design process, and the amount of
area devoted to debug logic is set based on detailed analysis of yield versus ease
of debugging. In this case, the strategy would simply be to fill the allocated chip
area with programmable logic.

Even if the amount of programmable logic is not sufficient to implement
a desired debug function, the fabric may still be useful. During the debug
process, the fabric would likely be used in conjunction with an on-chip proces-
sor or off-chip equipment. A resourceful engineer may find ways of partitioning
the debugging functionality across these resources, given the fixed, predeter-
mined amount of programmable logic.

8.2 Access Network

Our methodology assumes one or a small number of embedded programmable
logic cores. Thus, it is necessary to collect key signals from across the chip
and connect them to the programmable logic core. This is important; the
architecture will only be useful if many signals can be routed to the core
simultaneously.

We propose that the core be connected to the rest of the integrated circuit
using several access networks, as described in Quinton and Wilton [2005]. The
network in Quinton and Wilton [2005] contains two levels; the first level con-
sists of a hyper-concentrator and would normally be local to one core in the
SoC. The second level combines the signals from each hyper-concentrator and
provides them to the programmable logic. The network itself is a concentrator
with n inputs and m outputs, and has the property that any subset of size ≤ m

of the n input signals can be connected to the outputs, but without regard for
the order of the output signals. In Quinton and Wilton [2005], it is shown that
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this technique can support up to 8000 observable signals in a 20 million gate
chip with approximately 2% area overhead.

For our architecture, we extend this technique to two concentrators: one
for the bus signals (a bi-directional network can be used to connect both input
and output buses) and one network for the fine-grained bit signals that are
inputs and outputs of the control block. The bus-based concentrator would
route entire buses, as is done inside our architecture. This would reduce the
overhead of the network even further.

8.3 Speed Mismatch

Even though we use a datapath-oriented architecture, the maximum speed of
the programmable logic will be slower than that of the fixed function ASIC.
During debugging, this may mean slowing down the system clock somewhat.
After debugging, during normal operation, the clock can run at ASICs speeds,
since the embedded fabric would no longer be needed.

In some cases, it may not be desirable to slow down the clock. For example,
it is possible that a certain bug may not show itself until the chip is run at full
speed. For those sorts of applications, we propose using the interface buffer
from Quinton and Wilton [2005]. The interface buffer is a serial-to-parallel
converter that can be used to split a single incoming bus into multiple buses
within the programmable logic core. Since our architecture is parameterized in
the number of input buses, it is straightforward to have wordblocks operating
in parallel, doing the same operations on different data words.

9. COMPARISON TO PREVIOUS WORK

Our architecture inherits ideas from previous work on fine-grained synthesiz-
able fabric, datapath-oriented FPGAs and coarse-grained reconfigurable ar-
chitectures, such as RaPiD [Cronquist et al. 1999]. This section compares our
architecture to several previous studies, as well as to architectures that have
been previously proposed for debugging.

9.1 Alternative Debugging Architectures

Several other embedded debugging architectures have been proposed.
Abramovici et al. [2006] have described their reconfigurable design-for-debug
infrastructure for SoCs. Like our proposal, this infrastructure is targeted at
general-purpose digital logic in a SoC design. Their architecture, however, is
based on a distributed heterogeneous reconfigurable fabric. Distributing de-
bug circuitry across the chip has the advantage that the debug logic is likely
to be positioned closer to the source of the monitored signals, and eliminates
the need for a signal collection network as described in Section 8.2. How-
ever, distributed circuitry makes it more difficult to combine the debugging
resources to implement larger debugging functions. A centralized scheme like
ours can likely support more complex debugging operations, and perhaps can
better amortize the cost of the debugging circuitry across different parts of the
SoC. Another difference between our architecture and that in Abramovici et al.
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[2006] is that ours does not require the identification of specific trigger signals
when the debugging circuity is instantiated and connected to the SoC.

Sarangi et al. [2007] have described a proposal for using programmable
hardware to help patch design errors in processors. As part of their patch-
ing process they make use of programmable logic to detect specific conditions
in the processor. In some cases, after the detection of these specific problem
conditions, they can make use of existing processor features, such as pipeline
flushes, cache refills, or instruction editing to correct the error; in other cases
they can cause an exception to be serviced by the operating system or hyper-
visor. The primary motivation of their proposal is the in-field correction of
processor design errors, and not post-silicon debug, however it is clear that
their proposal could also be used for post-silicon debug. Because their archi-
tecture has been designed with one application in mind, it may not be gen-
eral enough for implementing debugging circuits useful in other types of inte-
grated circuits.

A similar proposal is described in Wagner et al. [2006]. The focus in that
work is on providing a configurable state machine that matches error states in
a processor and takes corrective action when these error states occur during
system operation. Although this was not designed specifically for post-silicon
debugging, it may be helpful in uncovering some types of design errors in a
processor. Again, however, it is not as flexible as our architecture in which
more general debug circuits can be implemented.

Our previous work [Quinton and Wilton 2005] describes another design-
for-debug proposal. In that work, we employ a fine-grained programmable
logic core based on a standard FPGA architecture. This previous work leads
to perhaps the most general implementation of programmable debug circuitry,
but it suffers from the overhead implicit in a fine-grained architecture. In
addition, this previous core was not synthesizable, which is a key attribute of
the architecture described in this article.

9.2 Fine-Grained Synthesizable Fabric

Although previous fine-grained synthesizable fabrics were not designed with
debugging in mind, they could be used for this purpose. We have compared our
architecture to a previous synthesizable architecture in Section 6.2 using a set
of benchmark circuits. The architecture proposed in [Yan and Wilton 2006] is
fine-grained and the configurability is provided by programmable logic arrays
(PLA). For the circuits which contain significant number of multipliers, our ar-
chitecture is 1610 times to 1940 times more area-efficient than the fine-grained
fabric. This is because the multiplier in our architecture is implemented as
a hard embedded block while the fine-grained architecture does not contain
these blocks. It means the multipliers must be implemented using normal
logic resources which contribute to large area consumption.

For some other circuits which do not have a large number of multipliers, the
area ratio is between 13 and 75. We observe that the architecture in Yan and
Wilton [2006] is not efficient when implementing large circuits. The architec-
ture in Yan and Wilton [2006] contains many routing multiplexers. Both the
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size of these multiplexers and the number of multiplexers grow linearly with
the size of fabric. When the fabric is scaled sufficiently large to implement the
given benchmark circuits, these multiplexers become unwieldy and cause the
area to grow significantly.

9.3 Datapath-Oriented FPGAs

Several previous studies have considered datapath-oriented FPGAs
[Cherepacha and Lewis 1996; Hauck et al. 2004; Leijten-Nowak and van
Meerbergen 2003; Ye and Rose 2005; Ye et al. 2003]. In these architectures,
configuration bits are shared among multiple lookup-tables and multiple
routing switches. Again, these could also be used for debugging.

In these previous works, it is assumed that the FPGA is to be laid out by
hand or using a custom layout tool, and thus, no attempt is made to remove
combinational loops in the unprogrammed fabric. The absence of combina-
tional loops is a key requirement of a synthesizable architecture. Although
these architectures can be synthesized (as in Leijten-Nowak and van Meer-
bergen [2003]), the combinational loops will require designers to “break” these
loops by declaring false paths; this increases the difficulty of including these
fabrics in a large SoC.

A second difference between these datapath FPGAs and our architecture is
that these previous architectures have been optimized assuming that the bus
width of the target application and the pin assignments of the buses are not
known when the fabric is designed. This limits the amount of optimization
possible; for example, in Ye and Rose [2005], it is found that the number of
blocks sharing a set of configuration bits should be no more than four. In our
context, the bus width and pin assignments are determined when the ASIC is
designed, and will not change over the lifetime of the chip. This allows us to
share a set of configuration bits across all datapath bits in a word.

9.4 Coarse-Grained Fabrics

Coarse-grained architectures, in which lookup-tables are replaced by ALUs,
have also been described in Cronquist et al. [1999], Goldstein et al. [2000],
Marshall et al. [1999], and Singh et al. [2000]. Of these, the RaPiD architecture
[Singh et al. 2000] was specifically designed for use in an SoC. RaPid contains
a linear array of dedicated functional units connected using dedicated buses.
Control logic is implemented using a separate module that provides control
signals to the functional units.

RaPiD is intended to support fairly large applications such as image and
signal processing, and may be best implemented as a hard programmable logic
core. It would be possible to “scale down” RaPiD and use it as a synthesizable
core. However, like the datapath FPGAs described in the previous section, the
unprogrammed RaPiD fabric contains combinational loops. Our architecture
eliminates these using a directional routing network.

Another difference between RaPiD and our architecture is that RaPiD (as
well as many coarse-grained architectures) contains a heterogeneous mix of
fixed-function datapath elements rather than configurable wordblocks. When
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creating a RaPiD fabric, one must choose the number of each type of functional
unit to be included in the fabric. However, once that decision is made, the
location of each functional unit does not matter, since buses can be routed from
any functional unit to any other functional unit. In our architecture, however,
the routing network requires less area but is less flexible, so it is less likely that
a pre-positioned set of fixed functional units could be connected to implement
a target application. Thus, we provide a general-purpose wordblock that can
be used to implement many functions. The only exceptions to this rule are
the embedded multiplier blocks; we distribute these evenly across the fabric to
maximize the likelihood that applications can be mapped successfully.

10. CONCLUSION

We have presented an architecture for a datapath-oriented synthesizable
FPGA core which can be used to provide post-fabrication flexibility to an SoC.
The primary application of such a core is to enable efficient on-chip debugging,
but it can also be used to implement small datapath circuits. The proposed ar-
chitecture features sharing configuration bits, carry chains, directional routing
architecture and embedded multipliers. Compared to a previous synthesizable
embedded programmable logic core, our architecture is between 7 times and
427 times more area efficient, depending on the number of embedded multipli-
ers in the fabric. This opens the use of synthesizable embedded programmable
logic cores to significantly larger applications, and provides a configuration
overhead similar to that of standard hand-designed FPGAs. We have shown
that the delay and power overhead of our architecture is also similar to that of
standard FPGAs. A proof-of-concept layout of the core is described in Wilton
et al. [2007].

There are two important limitations of these comparisons. First, the fine-
grained archtecture was optimized for smaller control-type circuits, and thus is
inefficient at implementing larger datapath circuits. If the fine-grained archi-
tecture was optimized for our benchmark circuits, the difference between the
fine-grained and datapath architecture would be reduced significantly. Second,
the fine-grained architecture does not contain embedded multipliers, while the
datapath architecture does. If multipliers were added to the fine-grained ar-
chitecture, the fine-grained architecture would perform better on those circuits
that contain multiplication (four of our ten benchmark circuits).

Current and future work includes automating the design and optimization
of synthesizable embedded FPGA fabrics and the associated design mapping
tools, and the support of complex hardwired elements such as floating-point
operators in such fabrics.
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