
FPGA accelerated low-latency
market data feed processing

Gareth W. Morris
Celoxica Inc.

Email: gareth.morris@celoxica.com

David B. Thomas and Wayne Luk
Imperial College London

Email: {dt10,wl}@doc.ic.ac.uk

Abstract—Modern financial exchanges provide updates to their
members on the changing status of the market place, by providing
streams of messages about events, called a market data feed.
Markets are growing busier, and the data-rates of these feeds are
already in the gigabit range, from which customers must extract
and process messages with sub-millisecond latency. This paper
presents an FPGA accelerated approach to market data feed
processing, using an FPGA connected directly to the network
to parse, optionally decompress, and filter the feed, and then
to push the decoded messages directly into the memory of a
general purpose processor. Such a solution offers flexibility, as
the FPGA can be reconfigured for new data feed formats, and
high throughput with low latency by eliminating the operating
system’s network stack. This approach is demonstrated using the
Celoxica AMDC board, which accepts a pair of redundant data
feeds over two gigabit Ethernet ports, parses and filters the data,
then pushes relevant messages directly into system memory over
the PCIe bus. Tests with an ORPA FAST data feed redistribution
system show that the AMDC is able to process up to 3.5M
messages per second, 12 times the current real-world rate, while
the complete system rebroadcasts at least 99% of packets with
a latency of less than 26us. The hardware portion of the design
has a constant latency, irrespective of throughput, of 4us.

I. INTRODUCTION

Modern financial instrument exchanges provide updates

on the current state of the market place to their members.

This is performed by transmitting messages describing change

events on a dedicated ‘market data feed’. These events include

changes such as completed trades, bid/ask prices, and other

status information. The event messages are typically aggre-

gated into one large market data feed, containing information

about all activities within an exchange or market. Automated

trading systems can examine this feed in order to reconstruct

the current market state for financial instruments of interest.

This can then be used, for example, to perform algorithmic

trading, detect instrument arbitrage opportunities, or to re-

hedge portfolios. However, this feed is already in the gigabit

range, and members face the problem of parsing this huge vol-

ume of data, while also supporting a sub-millisecond response

to messages of interest.
Existing pure software solutions are no longer able to

provide low latency solutions, so there is a need for hard-

ware acceleration of market feed data processing. Field Pro-

grammable Gate Arrays (FPGAs) provide a very attractive

means of acceleration, as they are a mature technology, with

low power and space requirements [1]. However, FPGAs

have traditionally been seen as difficult to program, requiring

applications to be written in hardware-design languages, and

needing specialised engineers to develop, maintain, and extend

any FPGA-based solutions.

Application Specific Integrated Circuits (ASICs) may pro-

vide similar advantages to FPGA technology with respect to

power and space. However ASICs have a far longer design

cycle when compared to FPGA based solutions, and don’t have

the advantage of reconfigurability for resistance to updates in

market data feed specifications. Furthermore the cost of an

ASIC-based design would be considerably higher for the small

to medium production runs needed to address the financial

industry.

This paper proposes an FPGA-based hardware acceleration

architecture for the processing of high-throughput market data

feeds, providing a solution able to operate up to the maximum

data-rate of the network connection, while offering a very

low latency path from the network interface to the consuming

process, irrespective of network load. Our key contributions

are:

• A model for the division of market data feed processing,

placing line-rate A-B line arbitrage, filtering, and routing

in reconfigurable hardware, while keeping non-line-rate

consuming processes in software for ease-of-use, and

processing ability appropriate for trading algorithms.

• An implementation of this model using the Celoxica

AMDC accelerator card, which is able to filter and

process a redundant pair of market data feeds at gigabit

line rates.

• An evaluation of the AMDC card using the FAST-

compressed OPRA market data feed, demonstrating an

average latency from packet arrival to message delivery

of 4us, at throughputs limited only by the gigabit Ethernet

connection.

We first explain the motivation and needs of market data

feed processing, in particular the requirements for high mes-

sage rates, and low-latency. Our high-level approach to FPGA

acceleration of feed processing is then described, followed by

a description of a concrete implementation of this approach

on the AMDC board and its achieved performance.

II. MOTIVATION

Financial market data feeds are used by exchanges to com-

municate changes in prices and market conditions to traders.

For example, an option exchange will facilitate trades in a large

2009 17th IEEE Symposium on High Performance Interconnects

1550-4794/09 $26.00 © 2009 IEEE
DOI 10.1109/HOTI.2009.17

91

17th IEEE Symposium on High Performance Interconnects

1550-4794/09 $26.00 © 2009 IEEE
DOI 10.1109/HOTI.2009.17

83

17th IEEE Symposium on High Performance Interconnects

1550-4794/09 $26.00 © 2009 IEEE
DOI 10.1109/HOTI.2009.17

83

Authorized licensed use limited to: Imperial College London. Downloaded on October 12, 2009 at 14:27 from IEEE Xplore. Restrictions apply.

number of quoted options, each of which will have different

properties, such as the underlying asset on which the option

relies, the strike price of the option, and the expiry date of the

option. For each instrument there will be a set of bid orders

from traders wishing to buy at a certain price, and ask orders

from traders who are willing to sell at a certain price. The job

of the exchange is to collect and monitor these bid/ask prices,

and match trades when the bid on a particular instrument meets

or exceeds the ask price.

Information about changes in bid/ask levels and trades

that have been completed is broadcast by the exchanges in

real-time, allowing traders to reconstruct the market place,

monitor market conditions, and respond when necessary. These

automated trading systems may execute a number of strategies:

Algorithmic Trading: Many trading strategies can be ex-

pressed algorithmically, from the very simple “stop-loss”

approach, up to complex heuristics to detect patterns in the

market.

Instrument Arbitrage Detection: When an asset (or two

similar assets) are priced differently in two markets, and this

difference can be detected in time, a profit can be made by

buying in the cheaper market and selling in the more expensive

one.

Portfolio Hedging: It is possible to construct a portfolio

with a known level of risk, by including specific sets of

assets and derivatives. However, as market conditions change

the composition of the portfolio must be adjusted to reflect

changes in prices.

In almost all such applications, a key requirement is low

latency processing, as the market is continually changing, so

decisions should be made based on the most up to date data.

For example, an opportunity for instrument arbitrage only

exists until the first trader is able to exploit it, so it is critical to

minimise the time between the information becoming available

and the execution of the appropriate response.

Market data feeds intended for low latency trading are

made available via UDP multicast IP networks, allowing many

users to subscribe to a shared source. These feeds are often

duplicated, with two streams (A and B) providing the same

information, giving redundancy in the case of packet-losses

between the exchange and trader. However, exchange members

who wish to use the redundancy feature provided by the A-B

feeds must process twice as much data. If the redundancy of

the A-B feeds cannot be used, messages can be re-requested

from the exchange, which then gives a significant latency

disadvantage whilst waiting for the re-requested messages.

Over time the number of messages produced has drastically

increased. Figure 1 shows the increase in messages rate for

the OPRA data feed. This increase has a number of causes,

such as:

Increased range of products: The number and scope of

traded instruments have continually increased. For example,

options are now quoted at strike price increments of one dollar,

rather than five dollars, increasing the number of listed options

1.E+00

1.E+01

1.E+02

1.E+03

1.E+04

1.E+05

1.E+06

1

10

100

1000

1992 1995 1998 2001 2004 2007

M
es

sa
g

es
/s

ec
o

n
d

D
at

a
ra

te
 (M

b
/s

)

Date

Mb/s (ASCII)

Mb/s (FAST)

Messages/Second

Fig. 1. Increase in the message and data rate for the OPRA data feed.

by five times.

High resolution monitoring: Changes in prices are now

reported to a resolution of one penny ($0.01), rather than a

nickel ($0.05), resulting in much more frequent updates due

to small price movements.

Algorithmic trading: Algorithms generate and cancel trades

at a much higher rate than human traders, leading to an

increased message rate from the exchange.

The result is a message rate approaching 1M messages/sec,

a huge computational load for any potential data-stream client.

The growth in message rate has also caused the raw data-

rate of feeds to increase in proportion. The data-rate required

for the ASCII encoded OPRA stream has risen from less than

1 Mb/s to almost 600 Mb/s over the last ten years. Such

data-rates place enormous strain on the networks between

exchanges and traders, so data-streams are increasingly com-

pressed, using domain-specific encoding schemes.

One such scheme, used on the OPRA feed amongst others,

is FAST [2], a binary protocol which replaces the ASCII FIX

format. To reduce message length, the format is no longer self-

describing, so clients must already know the structure of the

messages. A number of compression strategies are also used,

such as:

• Variable-length encoding of integers.

• Delta-encoding of values against values transmitted in

previous packets.

• Packing of data into seven bit atoms, using the eighth bit

to indicate end-of-field.

This compression reduces the data-size by around two-

thirds, significantly reducing pressure on networks. How-

ever, clients must now decompress the stream, increasing the

amount of processing that must be performed before messages

can be delivered to the applications that will consume them.

III. APPROACH

The combination of increased message rate and more

complex market data feed formats mean that pure software

solutions are often unable to keep up. Even when software

solutions can deal with average message rates, they may

928484

Authorized licensed use limited to: Imperial College London. Downloaded on October 12, 2009 at 14:27 from IEEE Xplore. Restrictions apply.

start to develop a backlog during large bursts of trading

activity, increasing latency in the situations where it is most

important to stay up to date. Our proposal is to use a hardware

accelerated stream processor, while still supporting software

trading applications. Our key requirements are:

• High-bandwidth message processing, limited only by

incoming network bandwidth.

• Minimal latency between arrival of packets at network

interface and delivery of the contained packets to soft-

ware.

• Support for redundant A-B input streams, with automatic

recovery of missing messages.

A. Overview

Figure 2 gives a high-level overview of the problem to be

solved. On the left is shown the market data source, within

the exchange. This takes a stream of messages, which may be

aggregated from sources within the exchange, and produces a

single master stream. This stream may then be compressed,

and sent to two network ports which multicast the streams

out, via standard network infrastructure such as bridges and

switches, to any interested parties. Eventually the two feeds

arrive at the user’s market data processor server, which con-

tains the applications wishing to consume a particular subset

of the messages contained in the feed.

The first step that must be taken in the data processor

machine is to reconstruct the original feed - all networking

equipment will occasionally lose packets, so the two redundant

feeds are designed to minimise the effect of this. A-B line

arbitrage requires any missing data from one stream to be

replaced with correct data from the other stream. This is a

non-trivial job, as even though the two streams left the data

source machine at the same time, the intervening network

infrastructure is likely to introduce skew. The line arbitrage

should also make sure to select the earliest packet to arrive at

the two interfaces, to minimise latency.

The second step is to decompress the reconstructed com-

pressed stream, if necessary. This turns the packets into

messages that can be consumed in software. Decompression

requires intimate knowledge of the stream compression format

and the stream payload, and must be updated as standards

evolve. The final stage is to filter the stream, identifying which

messages are of interest to which applications.

One approach is to use a multi-core processor for this task,

assigning parallel threads to the jobs of A-B line arbitrage,

decompression, and routing, but it has a number of drawbacks:

1) Software processing is reliant on OS calls to receive

packets from network ports, but this introduces signifi-

cant latency, due to the inefficiency of the OS network-

ing stack, and because of the cost of context-switching

between user- and kernel-space.

2) Co-operating threads must pass messages around either

using OS level synchronisation primitives which require

expensive context switches, or using spin-locks which

lock up processors.

3) Many aspects of stream decompression are essentially

sequential, so it is difficult to evenly schedule the

processing load over multiple cores.

These factors combine to make a pure software solution

unacceptable, in particular because there are so many sources

of latency, and because the overall latency will vary randomly.

In contrast, we propose placing almost all stages of stream

processing directly into hardware. All stages of data-stream

handling, right up until the packet is delivered to the ap-

plication code, is mapped into an FPGA accelerator. This is

achieved by connecting the market data ingress ports directly

to the FPGA, and by providing the FPGA with direct access to

system RAM, allowing the accelerator to push data structures

directly into the memory space of threads executing applica-

tion code. Pushing data directly into RAM removes the need

for any calls to OS routines, allowing application threads to

detect new messages without any context switching, and so

minimising latency.

The use of an FPGA as the main processing element means

that incoming Ethernet traffic can be processed at line rate, at

every tick of its mother clock. As data is processed at line rate,

an FPGA solution can guarantee that no packets are dropped,

irrespective of the link saturation.

B. Stream Processing

Each data feed arrives over the network as a sequence

of distinct packets, with each packet prefixed with layers of

headers providing information for different abstraction layers

in the network. In the case of a market data feed, these

headers start at the standard network layers, from Ethernet up

to UDP, but also then extend into the financial protocol itself,

where there are encapsulation formats, such as FAST, wrapped

around specific payload formats such as different types of FIX

packets.

Figure 3 provides an overview of the processing stack, from

the lowest level (Ethernet) through to the feed specific payload

messages. Because there are two data streams, A and B, the

entire processing stack must be replicated, up until the point

that the two streams are merged.

Our packet processing approach uses a set of composable

packet processing components, which allows packet processors

for new types of stream to be rapidly constructed. Packets are

initially buffered as byte wide streams, which are transferred

at one byte per cycle (shown in Figure 4). Header extraction

components then use a shift register to extract the header

for a given type of packet, producing a new stream with the

same width as the header. This wide stream contains the entire

parsed header in the first cycle, followed by the packet payload

in successive cycles.

This method may appear inefficient, because headers are

typically many bytes wide, but in practice, the header extrac-

tion components are connected directly to other components

that will filter or route packets based on the header, so the

wide stream only travels a short distance. Furthermore, unused

fields will be optimised away from the design by the FPGA

compilation tool. After filtering, only the payload is retained,

938585

Authorized licensed use limited to: Imperial College London. Downloaded on October 12, 2009 at 14:27 from IEEE Xplore. Restrictions apply.

Data Processor MachineData Source Machine

C
o
m

p
re

s
s
o
r

A
-B

 A
rb

it
ra

g
e
 &

D
e
c
o
m

p
re

s
se

N
e
t

e
N

e
t

e
N

e
t

e
N

e
t

F
ilt

e
r

&
R

o
u
te

S
in

k
P

ro
c
e
s
s
 1

S
in

k
P

ro
c
e
s
s
 2A

B

C

A

C

D

A

B

C

D

A

B

C

D

A

B

C

D

B

D

A

B

S
o
u
rc

e
P

ro
c
e
s
s

Uncompressed

data stream

Compressed

data stream

Compressed data streams

with missing packets

Reconstructed

uncompressed data stream

Process-specific

subsets of data stream

Fig. 2. Overview of stream processing problem

Extract

header

dstsrclenpayload

d
s
t

s
rc

le
n

t
0

t
1

t
2

t
3

t
4

t
5

t
6

t
7

t
8

t
0

t
1

t
2

t
3

t
4

payload
8 bits

5 bytes

8 bits

5 bytes

h
0

h
1

h
2

h
3

h
4

filter

payload

t
0

t
1

t
2

t
3

8 bits

Fig. 4. Expansion of packet headers

IP

UDP

Feed

A-B Arbitrage

IP

UDP

Feed

Ethernet-A Enet-B

enetipudpfeed

ipudpfeed

udpfeed

feed

msg:0msg:1msg:3 msg:2

msg:0msg:1msg:3 msg:2

DMA

Fig. 3. Progressive filtering of packet headers

resulting in a byte wide stream that can then be efficiently

buffered. Using separate header extraction components also

has the advantage that multiple processing components can

be connected directly to the header extractor, rather than

each processing component extracting the header itself; it also

promotes modular design and component reuse.

C. A-B Line Arbitrage

Since there is a possibility of packet loss between the ex-

change producing the market feed, and the member consuming

the feed, two identical feeds of data are transmitted. The two

streams, known as A and B, use the same message sequence

identifiers, so it is possible to identify the same message as it

arrives on each stream. In the case of a network error, a given

message may never arrive on one of the feeds, but most likely

it will still be delivered by the other stream. In very rare cases

a message may not arrive on either stream, in which case the

loss of the message must be indicated to the application.

In the majority of cases, the message will arrive on both

the A and B stream, so in this case the message must be

delivered as soon as it arrives on either stream, in order

to minimise latency. However, the same message must not

be delivered twice, as this would double the message rate

seen by applications, and require them to use resources on

book-keeping to check whether messages have been seen.

This means that A-B line arbitrage (stream merging) must

occur in hardware, after the raw stream has been parsed into

distinct messages, but before they are filtered and routed to

948686

Authorized licensed use limited to: Imperial College London. Downloaded on October 12, 2009 at 14:27 from IEEE Xplore. Restrictions apply.

the applications via memory.

At the exchange, the messages sent over the A and B feed

are sent at exactly the same time. However, the intervening

network infrastructure between exchange and member will in-

troduce delays of variable length, for example due to buffering

in the internal buses of switches. For the same reason packets

may also arrive out of sequence, either due to switching

algorithms, or due to different packets taking different routes.

The result is that the relationship between the A and B feeds

will change over time, possibly on a per-packet basis, with

sometimes one feed ahead, and sometimes the other.

To reconstruct the stream we maintain a window of mes-

sage identifiers, which extends from the most recent message

identifier we have seen, r, down to the bottom of the window

r−w +1. The parameter w is chosen to reflect the maximum

observed transmission delay. Within this window we maintain

a flag associated with each message identifier, indicating

whether that message has been forwarded to the application

yet. As each message arrives from the A or B channel, the

associated flag is checked, and the message is forwarded

or dropped depending on whether it has already been seen.

When a message identifier i greater than r is encountered,

the window is moved forwards – any non-zero flags in range

removed from the window indicate completely lost messages,

which are reported to the application.

D. Filtering and Delivery

The eventual consumers of messages are implemented as

conventional software threads, executing on multi-processor

host containing the FPGA board. This allows threads to be

developed in conventional languages, such as C, rather than

requiring esoteric hardware design languages. Threads interact

with the hardware accelerator by first using a software API to

specify a message filter, indicating which specific assets in

the market they are interested in, and what types of messages

about those assets they wish to receive. Once the message filter

has been set, the threads continuously poll a message queue,

waiting for any messages meeting the filter to be delivered.

Polling is traditionally seen as inefficient, but in this situ-

ation it is the best way of minimising latency. A traditional

notification mechanism, such as an OS level mutex or event,

incurs a context switch on the part of both notifier and

notifyee, adding a potentially large and variable amount of

latency. However, because messages are pushed directly into

the memory space of the thread, a thread polling memory will

receive the new packet with a latency determined only by the

speed of the memory and cache-coherency protocol.

To further minimise the latency, it is necessary to lock each

stream client thread to a specific CPU, and to make sure that it

is the only thread on that CPU. This means that the OS never

moves threads between processors, nor that a thread will be

pre-empted by another thread. Modern multi-core processors

offer many individual CPU cores, so it is an efficient trade-

off. All non-feed processing threads, such as OS processes,

are locked onto a single dedicated CPU.

FPGA

RAM

API

Core

User

Core

User

Core

User

Core

User

Core

User

Core

User

Core

OS

Core

DMA

A

B
MSG

MSG

1

3

2

Fig. 5. Broadcast of packets to threads

As well as the stream client and OS cores, another core is

dedicated to run-time management of the hardware accelerator.

This is responsible for some aspects of routing, such as multi-

casting packets out to individual threads. Note that the run-

time distributor only delivers pointers to structures that have

already been placed in memory: messages do not need to be

moved around once they have entered system memory.

Figure 4 gives an overview of the software processing of

messages: first, the FPGA accelerator DMAs a copy of the

entire message into shared memory; second, the run-time

management thread detects the new message, and broadcasts a

pointer to the message to all interested processing threads; and

finally, each thread receives a pointer to the shared message,

and can immediately start processing. Since user threads

operate on lists of trading symbols, it is simple to process

core usage, and balance them symmetrically.

IV. IMPLEMENTATION AND RESULTS

In order to verify the architecture, an implementation of the

scheme proposed in Section III was carried out. The platform

used for this implementation was the Celoxica AMDC acceler-

ator card, which uses a Xilinx Virtex 5 LX110T FPGA device

as the main processing element. The FPGA packet processing

engine was written in Handel-C [3], using the Hyper-Streams

programming model [4]. The AMDC card has been measured

to draw less than 15watts of power from its host server.

The Celoxica AMDC card was inserted in a quad core

2.4GHz AMD Opteron server, running Redhat Enterprise

Linux 5. The server was configured such that one CPU core

was locked to polling the FPGA card for incoming messages,

with another locked running a user packet redistribution ap-

plication. The remaining cores were left unlocked for running

OS related processes.

Figure 6 shows the harness used for these tests. Pre-recorded

OPRA FAST v2 data is inserted into the system with the same

inter-packet gaps as the original data. Further tests artificially

accelerate the data transmission rate by reducing the inter-

packet gaps by a constant factor. The original capture had an

average of 296,177 messages per second over 60 seconds.

Data is streamed into the AMDC card inside the test server,

as well as a separate packet sniffer. The Celoxica AMDC card

processes the incoming feed, as discussed in Section III, and

the data is made available to the user application. The user

application repackages the data and broadcasts it out of the

server’s internal NIC card, using a standard OS socket call.

958787

Authorized licensed use limited to: Imperial College London. Downloaded on October 12, 2009 at 14:27 from IEEE Xplore. Restrictions apply.

Feed Source

Celoxica AMDC

Accelerator

User Application

OS TCP/IP Stack

Network Interface

Packet Sniffer

Fig. 6. Test harness for measuring overall system latency

0

50

100

150

200

250

300

350

400

450

0 200 400 600 800P
ac

ke
ts

 d
ro

p
p

ed
 (

K
P

ac
ke

ts
/s

ec
)

OPRA feed rate (Mbps)

Fig. 7. Graph showing numbers of packets dropped in the software portion
of the test environment with increasing throughput

On the output of the system, the packet sniffer also records

data leaving the test server’s NIC card. Comparing the differ-

ence in arrival time between packets from the feed source and

test server allows latency across the entire test server to be

measured. It also allows packets dropped in the test server to

be recorded. In order to determine if these packets are dropped

by the AMDC card, or software processes, the user application

records packets dropped by the AMDC card.

As expected, AMDC did not drop packets until the point

where line saturation is reached at around 450Mbps (3,554,119

messages per second, 12 times the original OPRA rate).

However, the combination of user application and OS net-

work stack began to drop packets after six times the original

data rate, at 1,777,059 messages per second. This is illustrated

in Figure 7, as the throughput increases above six times

the original data rate, an increasing number of packets are

dropped.

Use of operating system networking stack routines on the

output of the system skewed the latency tests. It is estimated

that these routines add between 15 to 20us of extra latency,

depending on load. Figure 8 shows 99% of packets have less

than 26us of latency passing through the test server.

The results so far have concentrated on a complete re-

distribution system. Here we will consider the latency of the

hardware portion of the design residing on the AMDC card,

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100

L
at

en
cy

 (u
s)

Percentile

Fig. 8. Graph showing percentiles of packet processing latency

Test server

AMDC

Feed Source

125MHz

Counter

Append to

incoming packets

Standard

processing
-

ADMC

Run-time

User

application

Collect

statistics

Fig. 9. Test-bench for measuring AMDC latency

from the time a packet enters the FPGA on the AMDC card,

until it becomes available in the memory space of the user

application.

To gather these results, the test illustrated in Figure 9 was

conducted. A counter running at the gigabit Ethernet mother

clock of 125GHz (8ns resolution) runs on the FPGA in parallel

with the packet processor. The tail of each packet entering

the FPGA is appended with the current state of the 125MHz

counter. The packet then passes through normal processing on

the FPGA and is then handed over to the API running on

one of the test server’s CPU cores over the PCIe bus. When

the API hands over a packet to the user application, it strips

the packet’s counter value and returns it to the FPGA over

the PCIe bus. A separate module inside the FPGA subtracts

this from the current counter value to calculate the latency,

and accumulates the mean latency, which is reported at the

end of the test. Notice that the latency of the PCIe bus is

included twice in the measurement, one more than necessary.

This latency has not been taken account of in the results,

though doing so would obviously improve these results further.

The results of this test are reproduced in Figure 10. With

increasing throughput, the latency of the hardware portion of

the design remains roughly constant at around 4us.

968888

Authorized licensed use limited to: Imperial College London. Downloaded on October 12, 2009 at 14:27 from IEEE Xplore. Restrictions apply.

3.5

3.6

3.7

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

0 200 400 600

A
ve

ra
g

e
A

M
D

C
 l

at
en

cy
 (

u
s)

OPRA feed rate (Mbps)

Fig. 10. Graph showing latency of the AMDC portion of the overall system
latency with increasing throughput

V. RELATED WORK

An alternative hardware-accelerated market data architec-

ture is the Exegy Ticker Plant [5]. In this approach, incoming

market data enters the system via a conventional Ethernet card.

Processing is then augmented with an FPGA accelerator on the

processor bus. This has the advantage of a higher throughput

bus, although this isn’t needed even for a saturated gigabit

Ethernet link.

Another accelerated feed processing approach is provided

by the ActivFeed MPU [6]. This uses an XtremeData FPGA

accelerator which is placed in a processor socket of the host

system, and communicates using HyperTransport. However,

network integration is via an Infiniband bridge, rather than by

direct connection to the Ethernet, and processing latencies are

quoted as “end-to-end latency surpass[es] 100 us”, compared

to the 20 us latencies reported here.

The idea of packet processing using graphs of composable

nodes has been used in a number of previous systems. In

the Click system [7] a graph of processing nodes is defined

using a C++ interface in software, which is then compiled

into an FPGA design. The Net FPGA project (http://www.

netfpga.org/) offers a library of packet processing components,

which communicate using a common protocol, but requires

the use to manually connect together each of the protocol

wires between them. In contrast, the approach developed here

allows the graph to be described directly in Handel-C [3],

so no extra compiler passes are required. The connections

between components are also specified as abstract data-paths –

all protocol-specific details of the connection are hidden from

the programmer.

VI. CONCLUSION

This paper presents a method that allows processing of mar-

ket data feeds using FPGAs, providing the ability to process

extremely large numbers of messages per second, while also

minimising the latency between arrival of network packets

and their delivery to their intended target in software. This

is achieved by eliminating the operating system networking

stack: all message processing and filtering is applied in an

FPGA, which is then able to push messages directly into

the memory space of software threads via FPGA-initiated

DMA. As well as reducing latency due to the OS stack, this

also reduces both the programming burden and performance

over-head for software components, as messages are provided

as fully decoded memory structures, rather than serialised

messages which must be parsed.

This approach has been implemented in the Celoxica

AMDC accelerator card, which incorporates two gigabit Eth-

ernet ports and a Xilinx Virtex-5 LX110T FPGA, connected to

a host computer over the PCIe bus. Tests performed using the

OPRA-FAST compressed data feed format have shown that an

AMDC accelerated system can support a message throughput

of 5.5 million messages per second, 12 times the current real-

world rate, while the complete system rebroadcasts at least

99% of packets with a latency of less than 26us. The hardware

portion of the design has a constant latency, irrespective of

throughput, of 4us.

Currently the proposed architecture only accelerates incom-

ing market data. In the future accelerated Ethernet transmission

will be examined. This will include Uni- and Multi-cast UDP

offload, TCP/IP offload, and market order execution.

REFERENCES

[1] T. J. Todman, G. A. Constantinides, S. J. E. Wilton, O. Mencer, W. Luk,
and P. Y. K. Cheung, “Reconfigurable computing: architectures and design
methods,” IEE Proc. Computing and Digital Techniques, vol. 152, no. 2,
pp. 193–207, 2004.

[2] K. Houstoun, FIX Adapted for STreaming - FAST Protocol Technical

Overview, 2006.
[3] Handel-C Language Reference, http://www.celoxica.com, Celoxica Ltd.,

1999.
[4] G. W. Morris and M. Aubury, “Design space exploration of the European

option benchmark using Hyperstreams,” in FPL, 2007, pp. 5–10.
[5] S. T. A. Center, “Exegy ticker plant with infiniband,” STAC Report, July

2007.
[6] “Activefeed MPU: Accelerate your market data,” http://www.

activfinancial.com/docs/ActivFeedMPU.pdf, 2007.
[7] K. C, G. Brebner, and G. Schelle, “Mapping a domain specific language to

a platform FPGA,” in Proc. IEEE Design Automation Conference, 2004,
pp. 924–927.

978989

Authorized licensed use limited to: Imperial College London. Downloaded on October 12, 2009 at 14:27 from IEEE Xplore. Restrictions apply.

