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ABSTRACT
This paper introduces a novel mixed precision methodology
applicable to any Monte Carlo (MC) simulation. It involves
the use of data-paths with reduced precision, and the re-
sulting errors are corrected by auxiliary sampling. An an-
alytical model is developed for a reconfigurable accelerator
system with a field-programmable gate array (FPGA) and
a general purpose processor (GPP). Optimisation based on
mixed integer geometric programming is employed for deter-
mining the optimal reduced precision and optimal resource
allocation among the MC data-paths and correction data-
paths. Experiments show that the proposed mixed preci-
sion methodology requires up to 11 % additional evaluations
while less than 4 % of all the evaluations are computed in the
reference precision; the resulting designs are up to 7.1 times
faster and 3.1 times more energy efficient than baseline dou-
ble precision FPGA designs, and up to 163 times faster and
170 times more energy efficient than quad-core software de-
signs optimised with the Intel compiler and Math Kernel
Library. Our methodology also produces designs for pricing
Asian options which are 4.6 times faster and 5.5 times more
energy efficient than NVIDIA Tesla C2070 GPU implemen-
tations.

Categories and Subject Descriptors
C.0 [Computer System Organization]: System archi-
tecture; G.1.0 [Numerical analysis]: Multiple precision
arithmetic

General Terms
Design, algorithms, performance
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1. INTRODUCTION
Monte Carlo (MC) simulations are a class of algorithms

based on randomisation which are extensively used in many
high performance computing applications in science, engi-
neering and finance. High performance computing is often
needed to solve these problems since they are computation-
ally expensive. MC simulations are well suited to Field Pro-
grammable Gate Arrays (FPGAs), due to the parallel na-
ture of MC algorithms and the availability of cost-effective
random number generators for FPGAs. It has been shown
that FPGA-based Monte Carlo applications can offer 1-2 or-
ders of speedup over their software counterparts running on
high-end CPUs [12, 21].

The ability to support customizable data-paths of differ-
ent precisions is an important advantage of reconfigurable
hardware. Reduced-precision data-paths usually have higher
clock frequencies, consume fewer resources and offer a higher
degree of parallelism for a given amount of resources com-
pared with full precision data-paths. Although the use of
reduced precision can lead to higher performance, it also af-
fects the accuracy of the results. Most FPGA Monte Carlo
designs exploit this trade-off and use data-paths that are suf-
ficiently accurate to produce outputs within the required er-
ror tolerance [11, 17, 21]. However, when very accurate out-
puts are required, high precision data-paths with lower per-
formance are unavoidable. This makes FPGAs less attrac-
tive in MC applications with high accuracy requirements.

This paper introduces a novel mixed precision method-
ology for accurate Monte Carlo simulations. The key dif-
ference between the proposed methodology and previous
FPGA Monte Carlo designs lies in the way finite precision er-
rors are handled. Instead of keeping the output error within
a certain tolerance, the FPGA data-path is initially con-
structed with an aggressively reduced precision. This pro-
duces a result with finite precision error exceeding the error
tolerance. An auxiliary sampling process using both a high
precision reference and the reduced precision is then used to
correct the error. The output accuracy of the proposed tech-
nique is not limited by the precision of the data-paths. The



proposed methodology can also exploit the synergy between
different processors in a reconfigurable accelerator system.
Reference precision computations required in the auxiliary
sampling can be carried out by a general purpose processor
(GPP) in a host PC, while reduced precision computations
target customized data-paths on the FPGA. This allows dif-
ferent processors to work in precisions for which they are
specialised, leading to higher overall performance.

The major contributions of this paper are:

• an error analysis that separates finite precision error
and sampling error for reduced precision Monte Carlo
simulations, and a novel mixed precision methodology
to correct finite precision errors through auxiliary sam-
pling (Section 2 and Section 3).

• techniques for partitioning workloads of different pre-
cisions for auxiliary sampling to a reconfigurable accel-
erator system consisting of FPGA(s) and GPP(s) (Sec-
tion 4).

• an optimisation method based on an analytical model
for the execution time of a Monte Carlo simulation on
a reconfigurable accelerator system, and Mixed Integer
Geometric Programming to find optimal precision for
the FPGA’s data-paths and optimal resource alloca-
tion (Section 5).

• evaluation of the proposed methodology using four case
studies, with performance gains of 2.9 to 7.1 times
speedup over FPGA only designs using double preci-
sion arithmetic. The mixed precision designs are also
44 to 163 times faster and 41 to 170 times more energy
efficient compared with software design on a quad-core
GPP (Section 6 and 7).

2. BACKGROUND
This section provides an error analysis for Monte Carlo

simulations. The total error εtotal of a Monte Carlo simula-
tion can be divided into two components. Sampling error εS
is the error due to having a finite number of samplings and
finite precision error εfin is due to non-exact arithmetic. It is
assumed that when a sufficiently accurate precision, such as
IEEE-754 double precision, is used, the finite precision error
is negligible. We call this value the reference precision.
We also review how finite precision error is handled in re-
lated work. Let us begin with sampling error. Monte Carlo
methods are used to simulate random processes and esti-
mate the distribution of the results. Consider a sequence of
mutually independent, identically distributed random vari-
ables, Xi from a MC simulation. If, SN =

PN
i=1 Xi, and

the expected value, I, exists, the Weak Law of Large Num-
bers states that if p(x) is the probability of x, for ε > 0, the
approximation approaches the mean for large N [8],

lim
N→∞

p

„
|SN
N
− I| > ε

«
= 0 (1)

Moreover, if the variance σ2 exists, the Central Limit The-
orem states that for every fixed a,

lim
N→∞

p

„
SN −NI
σ
√
N

< a

«
=

1√
2π

Z a

−∞
e−z

2/2dz (2)

that is, the distribution of the standard error is normal.
In practice, we must deal with finite N . If the sampling

function f represents a mathematical expression defining the

quantity being sampled, ~xi is the input vector of length s
from a uniform distribution 1 [0, 1)s, N is the number of
sample points and 〈fH〉N is the sampled mean value of the
quantity, the conventional MC sampling process2 can form
an approximation to I,

I ≈ 〈fH〉N =
1

N

NX
i=1

fH(~xi) (3)

Thus a sampling error εS(〈fH〉N ) = I − 〈fH〉N with ap-
proximately normal distribution is introduced:

εS(〈fH〉N ) ∼ N (0, σ2
fH/N) (4)

Equation 4 shows that the bound of the sampling error can
be constructed as a confidence interval. Given the same
confidence level, the interval is proportional to the standard
deviation of the sampling function, σfH , and inversely pro-
portional to the square root of the number of sample points,
N . Hence quadrupling the number of sample points halves
the confidence interval of the sampling error εS(〈fH〉N ). We
assume there is no precision error associated with the sam-
pling error. In FPGA designs, the sampling function f is
usually evaluated using a low reduced precision, fL, com-
pared to the high reference precision, fH . The reduced pre-
cision design is smaller and faster, at the expense of higher
error. However, reduced precision increases the error. We
call the difference between a reference precision computa-
tion and a reduced precision computation, fH(x) − fL(x),
the finite precision error.

Methods for dealing with finite precision error in FPGA-
based MC simulations can be classified into two categories.
In the first category, only standard precisions such as the
IEEE single/double precision are used in sampling data-
paths [10, 12]. Users are responsible for determining whether
the finite precision error is acceptable, because the FPGA
MC engines will follow the result of software exactly.

In the second category, error bounds of the finite precision
error are constructed and the precision of the sampling data-
path is adjusted such that the error bounds are smaller than
the error tolerance. In [11], the maximum relative error of
the sampling data-path is used to construct the error bound.
The maximum relative error can be characterised using ana-
lytical methods such as interval [14] or affine arithmetic [7].
However, these approaches do not take into account that
finite precision errors from different sample points might
have different signs and would cancel out each other. Hence
there is usually an over-estimation of finite precision error
in Monte Carlo simulation.

In [17], test runs with a pre-defined number of sample
points are used to empirically estimate the maximum per-
centage error due to finite precision effect empirically. The
finite precision error of MC simulations using the same data-
path and the same number of sample point are then assumed
to share the same error bound. This assumption is not al-

1Some MC simulations require non-uniformly distributed ~x
values, for example in many option pricing simulations nor-
mally distributed ~xi are required.
2Throughout the paper, we use the subscript H and L to de-
note quantities evaluated with the reference precision arith-
metic and the reduced precision arithmetic respectively. We
use 〈X〉 to denote the sampled mean value of a random vari-
able X and 〈X〉N to denote the sampled mean value of X
calculated by N samples.
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Figure 1: Distribution of 10k runs of a reduced pre-
cision and a double precision Monte Carlo.

ways valid and thus the empirical error bound can only be
used as a reference rather than a rigorous bound.

In [18], a design is proposed with both high precision
and reduced precision data-paths for computing cumulative
distribution functions (CDFs). The two CDFs are com-
pared using a Kolmogorov-Smirnov test, the distance score
of which is then used to control the precision of the reduced
precision data-path adaptively such that finite precision er-
ror is within the range of error tolerance.

In [4] a mixed-precision approach for comparison is pre-
sented. It is different from this work since it does not involve
MC simulation.

The benefits for reduced precision designs are well-known.
For instance, it has been shown [5] that appropriate word-
length optimisation can improve the area of adaptive filters
and polynomial evaluation circuits by up to 80%, power re-
duction of up to 98%, and speed of up to 36% over common
alternative design strategies. This research shows that im-
pressive gains can also be obtained by exploiting reduced
precision for complex designs supporting Monte Carlo sim-
ulation.

3. MIXED PRECISION METHODOLOGY
Our novel mixed precision methodology is motivated by

two ideas. First, we can correct the finite precision error
when both its magnitude and sign are known. Second, in
Monte Carlo simulations, we are only interested in the finite
precision error in the final result but not the finite precision
errors of individual sample points.

When a reduced precision data-path is used in a Monte
Carlo simulation, the reduced precision expected value Ir is
approximated by the following equation, where NL is the
number of sample points:

Ir ≈ 〈fL〉NL =
1

NL

NLX
i=1

fL(~xi) (5)

Due to the effect of finite precision error, the reduced pre-
cision sample mean 〈fL〉N cannot be used to approximate
the expected value I directly as I might not equal to Ir. We
define the difference of the two expected means as the mean
finite precision error, µεfin , where

µεfin = I − Ir (6)

Figure 1 shows the distributions of Monte Carlo simu-
lations using a reduced precision (s12e8)3 data-path and a
double precision data-path of for pricing Asian options. In
each MC simulation, N = 32,768 sample points are used and
each of the reduced and double precision MC simulation is

3In this paper, we use the notation sAeB to denote a floating
point representation, where A is the number of significand
bits and B is the number of exponent bits.

repeated for 10,000 times with different random seeds. As
shown in the figure, the magnitude of the mean finite pre-
cision error µεfin between the expected value of I and Ir
is significant. When reduced precision data-paths are used
for the Monte Carlo simulation without the correction by
the auxiliary sampling, the true value of the simulation will
lie within ±µεfin of the sampled value. Moreover, this un-
certainty cannot be reduced by increasing the number of
sample points and is a fundamental limit of conventional
reduced precision MC simulations.

To find both the magnitude and the signs of the mean
finite precision error µεfin , we define an auxiliary sampling
function fa(~x):

fa(~x) = fH(~x)− fL(~x) = εfin(~x) (7)

where εfin is the finite precision error for each ~x. With
a sufficient large sample size Na, we can approximate the
mean finite precision error µεfin :

µεfin ≈ 〈fa〉Na =
1

Na

NaX
i=1

fa(~xi) (8)

The sampling error of this auxiliary sampling εS(〈fa〉Na) =
µεfin − 〈fa〉Na is approximately normal distributed:

εS(〈fa〉Na) ∼ N (0, σ2
fa/Na) (9)

Finally, we can approximate the true mean I by two sets of
sampling:

Imixed = 〈fL〉NL + 〈fa〉Na (10)

E(Imixed) = E(〈fL〉NL) + E(〈fa〉Na)

= Ir + (I − Ir) = I (11)

As shown in Equation 11, the expected value of the aux-
iliary sampling is I − Ir. Hence the expected mean of the
mixed precision approximation Imixed is exactly the same
as the expected mean I computed in the reference precision.
Equation 10 can thus be viewed as the reduced precision
sample mean plus a correction for the mean finite precision
error.

Since two samplings are used in the proposed mixed pre-
cision methodology, there are two sampling errors in the
result and they can be found using Equation 13 and 14.
As both sampling errors are approximately normally dis-
tributed, their sum is also approximately normally distributed
and has a variance equal to the sum of their individual
variances as shown in Equation 15 if uncorrelated random
numbers are used. By using the proposed mixed precision
methodology, we effectively replace the finite precision er-
ror of reduced precision data-paths by the sampling error
of the auxiliary sampling. A confidence interval can also be
constructed using the combined variance.

εS(Imixed) = εS(〈fL〉NL) + εS(〈fa〉Na) (12)

εS(〈fL〉NL) ∼ N (0, σ2
fL/NL) (13)

εS(〈fa〉Na) ∼ N (0, σ2
fa/Na) (14)

εS(Imixed) ∼ N (0, σ2
fL/NL + σ2

fa/Na) (15)

Although the proposed mixed precision methodology is anal-
ysed mathematically, we also show its desired effect through
experiments. Using Equation 15, we find that a mixed preci-
sion MC run using a precision of s12e8 with Na = 1078 and
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Figure 2: Distribution of 10k runs of a mixed preci-
sion and a double precision Mont Carlo.

NL = 33,773 should yield the same error as a double preci-
sion sampling with N = 32,768. We repeat both the mixed
precision and the double precision MC 10,000 times using
different random seeds, and their distributions are shown
in Fig. 2. Note that both distributions have roughly the
same variance and mean. The result agrees with our math-
ematical model and no finite precision error exists between
the double precision Monte Carlo and our mixed precision
Monte Carlo runs.

The proposed mixed precision methodology provides sev-
eral advantages over previous FPGA designs.

1. The final result is adjusted with an approximated mean
finite precision error µεfin . This is a novel approach
which enables us to obtain a more accurate result from
the reduced precision result instead of passively finding
the error bound.

2. Since there are only sampling errors in the output, we
can achieve very accurate result by increasing the num-
ber of sample points NL and Na. The output accuracy
is no longer limited by the reduced precision.

3. The methodology is applicable to any Monte Carlo
simulation because no accuracy analysis is required for
the relative error and the methodology is totally inde-
pendent of the function f .

Although the proposed mixed precision methodology en-
ables us to aggressively exploit reduced precision data-paths
while maintaining the accuracy of the final result using aux-
iliary sampling, each auxiliary sampling still requires a costly
evaluation of the sampling function f at the reference pre-
cision.

The effectiveness of the proposed technique depends heav-
ily on how resources are allocated among the reduced preci-
sion hardware and auxiliary sampling hardware. To find the
optimal resource allocation, we should consider a number of
factors such as the cost of evaluating fL and fH , the area
available on the FPGA, the bandwidth between the FPGA
and GPP, and the reduced precision values being used.

In the next section, we propose different schemes for parti-
tioning workloads. An analytical model is developed in Sec-
tion 5 based on the partitioning schemes which enables us
to find the optimal resource allocation and optimal reduced
precision using mixed integer geometric programming.

4. WORKLOAD PARTITIONING
General-purpose processors (GPPs) are optimised for stan-

dard precisions such as IEEE-754 single/double precision.
GPPs can also employ reduced precision via multiple preci-
sion software libraries such as MPFR [9]. Multiple standard
precision instructions are required to complete a reduced
precision computation even if the reduced precision format
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Figure 3: Reduced precision sampling data-path.
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Figure 4: Workload partitioning of the auxiliary
sampling. States in reference precision are shaded.

has a smaller wordlength. Hence, it is usually not cost ef-
fective to use GPPs for reduced precision computations. On
the other hand, FPGA data-paths are customizable. Lower
precision are usually preferred over higher precision ones be-
cause they usually have higher clock frequency, consume less
resources and allow higher degrees of parallelism given the
same amount of resources. It is thus better to perform re-
duced precision computations on the FPGA and leave ref-
erence precision computations to the GPP.

Since the sampling of 〈fL〉NL involves only reduced pre-
cision evaluations of f , we assume it is achieved by using
reduced precision sampling data-paths on FPGA as shown
in figure 3. A seed is fed into the random number genera-
tor from the GPP. The random numbers are converted into
the reduced precision format and scaled to the sampling do-
main. Although only a small fraction of bits generated by
the RNG are used in reduced precision sampling, we keep the
bit-width of the RNG the same as that for reference preci-
sion sampling. The scaled random number is then evaluated
by the reduced precision sampling function evaluator. The
accumulation is performed in reference precision to avoid
loss of accuracy due to insufficient dynamic range in the ac-
cumulator. Finally, the accumulated result is sent back to
the GPP. Multiple reduced precision sampling data-paths



can be used with different seeds, and the averaging of the
final results is done in the GPP.

Figure 4 shows the workload partitioning of the auxiliary
sampling. It consists of 4 main stages: (1) random number
generation, (2) evaluation of the sampling function f in ref-
erence and reduced precision, (3) computing the difference e
between fL and fH in reference precision, and (4) accumula-
tion of the difference. Auxiliary sampling is the process used
to estimate the average finite precision error (µεfin) between
the reduced and the reference precision data-paths under the
same set of random inputs. We implement the random num-
ber generator using the FPGA and sent results back to the
GPP. This method utilises highly efficient RNG generation
on FPGAs which are an order of magnitudes faster than
GPP based RNGs [16]. The trade-off for this partitioning
method is increased bandwidth. For each sample point of
the auxiliary sampling, we need to transfer s reference preci-
sion random numbers and one reference precision evaluation
result from the FPGA to the GPP where s is the dimension
of the sampling function.

Problem parameters

σtol output error tolerance, in terms of standard devi-
ation of the output

s dimension of the sampling function

σfL standard deviation of reduced precision sampling

σfa standard deviation of auxiliary sampling

L the number of significand bits being used in the
reduced precision data-paths

Resource allocation parameters

pL ∈ Z number of reduced precision sampling data-paths

paux ∈ R effective number of auxiliary sampling data-paths

FPGA parameters (for each FPGA)

Atotal total available area

Acom cost of communication infrastructure

RS slack ratio

freq clock frequency

c number of clock cycles to compute a sample point

Ared cost of a reduced precision sampling data-paths as
shown in figure 3

Aaux cost of auxiliary sampling data-path

GPP parameters

Taux time required to compute a sample point

System parameters

Ncore number of cores in each GPP

Ngpp number of GPPs in the system

Nfpga number of FPGAs in the system

BWgpp bandwidth between the GPP and I/O the hub (in
terms of number of reference precision data / sec)

BWfpga bandwidth between each FPGA and I/O the hub

Output

t time required for the system to get output with
specific error tolerance

Table 1: Parameters in our analytical model.

5. MIXED PRECISION OPTIMISATION
In this section, we develop analytical models for determin-

ing the required execution time of the proposed mixed pre-
cision method on a reconfigurable accelerator system. Fig-
ure 5 shows the system architecture for the reconfigurable
system in our analytical model. The GPP is connected to
an I/O hub (i.e. North Bridge) through a high bandwidth

core

core

core

core

GPP

BWfpga

BWfpga

FPGA

FPGA

I/O hub

(north bridge)

BWgpp

BWgpp

core

core

core

core

GPP

Figure 5: System architecture of the reconfigurable
accelerator system in our analytical model.

communication channel such as the Intel QPI or the AMD
HyperTransport link. The FPGAs are connected to the I/O
hub through another bus, usually PCI express. Thus com-
munication between the GPP and the FPGA has to pass
through the two kinds of communication link.

Table 1 shows the parameters in our analytical model.
It should be noted that all FPGA cost related parameters
such as Atotal and Ared should be applied to every kind of
FPGA resource that is involved. For example, there will
be 4 different Atotal parameters for FPGA’s look up table
(LUT), registers, embedded DSP blocks and block mem-
ory respectively. Some other assumptions are made in the
model. First, we assume a fixed amount of FPGA resources
is used for the communication infrastructure between the
FPGA and the I/O hub. Second, we assume the entire
FPGA is running at a single clock frequency. Finally, we
assume that a certain percentage of the FPGA’s resource
(the slack ratio) is left intentionally unused to avoid over-
congestion in placement and routing.

Since the aggregated throughput of the auxiliary sampling
on GPP does not always match the throughput of an aux-
iliary sampling data-path on the FPGA, we assume the ef-
fective number of auxiliary sampling data-paths can take
fractional values. For example, paux = 0.75 means there
is one auxiliary sampling data-path on the FPGA but only
75% of its outputs are computed by the GPP. The remaining
25% of the outputs are discarded.

Let THred and THaux be the aggregated throughput of
reduced precision sampling and auxiliary sampling of the
entire system. Using Equation 15, the required execution
time for the system to produce an output with error equal
to σtol can be found by Equation 16:

σ2
tol =

σ2
fL

t× THred
+

σ2
fa

t× THaux
=⇒

t =
σ2
fL

σ2
tol × THred

+
σ2
fa

σ2
tol × THaux

(16)

The aggregated throughput of the reduced precision sam-
pling and the auxiliary sampling of all FPGAs can be mod-
elled as:

THred = Nfpga × pL × freq/c
THaux = Nfpga × paux × freq/c (17)

The execution time for the mixed precision methodology is:

t(pL, paux) =
c

σ2
tol ×Nfpga × freq

×
 
σ2
fL

pL
+

σ2
fa

paux

!
(18)

The following constraint should be applied to ensure the
architecture described by the resource allocation parameters



can fit within the FPGA. We round paux to the next larger
integer. The constraint (19) is transformed into two new
constraints (20-21) using a new integer variable paux i to
avoid the ceiling function:

pL×Ared+dpauxe×Aaux≤Atotal×(1−RS)−Acom (19)

pL×Ared+paux i×Aaux≤Atotal×(1−RS)−Acom (20)

p−1
aux i×paux≤1 (21)

The number of auxiliary samplings that each GPP can
perform is Ncore/Taux and the aggregated throughput of all
GPPs is Ngpp×Ncores/Taux. Hence the effective number of
auxiliary sampling data-paths on each FPGA is constrained
by the following equation:

Nfpga × paux × freq/c ≤ Ngpp ×Ncore/Taux (22)

One evaluated value of f and s random numbers must be
sent every cycle to the GPP to complete the subtraction and
accumulation for each auxiliary sampling, hence the band-
width constraints are:

paux × freq/c× (s+ 1) ≤ BWfpga (23)

Ncore/Taux × (s+ 1) ≤ BWgpp (24)

The optimal resource allocation among the reduced preci-
sion sampling and the auxiliary sampling can be found by
applying the following optimisation:

min
pL∈Z,paux∈R,paux i∈Z

t(pL, paux, paux i)

s.t. constraints (20)-(24) are satisfied

Since the objective function t(pL, paux) and all the con-
straints are posynomial, the optimisation can be solved us-
ing mixed integer geometric programming (MIGP) [2]. The
globally optimal pL, paux values and the optimal precision
can be found using enumeration from Algorithm 1, where
Lmin and Lmax are the minimum and maximum choice of
reduced precision in the system respectively.

Algorithm 1 Enumeration process for optimal reduced pre-
cision and optimal resource allocation.

1: tglobal ← huge value
2: for L = Lmin → Lmax do
3: apply MIGP on t(pL, paux) for the minimum execution

time tmin in precision L
4: if tmin < tglobal then
5: tglobal = tmin
6: paux(global) = paux, pL(global) = pL
7: end if
8: end for

6. CASE STUDIES

6.1 Asian option pricing
The first case study for our mixed precision methodology

is an arithmetic mean Asian call option pricing problem. An
Asian call option is characterised by S0, the current price of
the underlying asset; K, the strike price; T , time to maturity
and steps, the number of observation points to maturity.
The arithmetic mean of the asset’s current price and the
prices at all the observed points computed. At maturity, if
the mean is larger than the strike price, the option pays the
owner the mean less the strike price. Otherwise, if the strike

price is larger, the payoff of the option is zero. Unlike the
geometric mean Asian option pricing problem, there is no
closed form analytical solution for this problem and Monte
Carlo simulation is a common way for pricing this option.

Algorithm 2 shows the sampling function for pricing Asian
options using the Black-Scholes model. Since the intermedi-
ate variables drift and vsqrtdt are the same for every sample
point, they are pre-computed to reduce computation work-
load. We do not compute the actual arithmetic mean in
each sample point. Instead, the strike price is multiplied by
(steps + 1) and it is compared with the sum of the prices.
This optimisation removes the division operation from the
sampling function as it is expensive to implement. We use
a fully pipelined design and it takes on average (steps + 1)
clock cycles for the FPGA to complete a single sampling of
the Asian option problem.

Algorithm 2 Sampling function for the Asian call option
pricing problem

Input: S0 = current price of the underlying asset, K =
strike price of the option, v = volatility of the underlying
asset, r = interest rate, steps = number of time step, δt =
time period between two time steps
W ∼ N (0, 1) Gaussian random number
Output: p steps = payoff of the option multiplied by
(steps+ 1)

1: drift← (r − v2/2)δt, vsqrtdt← v
√
δt

2: Si ← S0, Ssum ← S0

3: for i = 1→ steps do
4: Si ← Si−1 × exp(drift+ vsqrtdt×W )
5: Ssum ← Ssum + Si
6: end for
7: p steps← max(0, Ssum −K × (steps+ 1))

6.2 The GARCH volatility model
Our second case study is for pricing of a fixed strike look-

back call option under the GARCH model. This option pays
the owner max(Sceil−K) at maturity, where K is the strike
price and Sceil is the maximum day closing price of the un-
derlying asset within the lifetime of the option.

In the original Black-Scholes model, the volatility of an
asset is assumed to be constant. However, this assumption
may not be realistic. A solution is to employ a stochas-
tic volatility model such as the generalised autoregressive
conditional heteroskedasticity (GARCH) model proposed by
Bollerslev [1]. We use the common GARCH(1,1) model
where the volatility of the asset vi at time step i can be
modelled. Let α and β be pre-calibrated model constants,
v0 be the volatility at the start time and λ be a random
number following a N (0, 1) distribution.

v2
i = v0 + αv2

i−1 + βv2
i−1λ

2

= v0 + v2
i−1(α+ βλ2) (25)

The implementation of lookback option pricing is similar
to Asian option pricing, except that drift and vsqrtdt are
updated every time step according to Equation 25. An ad-
ditional random number source is also required.

6.3 Collateralized Mortgage Obligation
Our third case study concerns pricing Collateralized Mort-

gage Obligation (CMO) [15]. A CMO is a security which



generates cashflow to the owner from interest and prepay-
ments from a pool of mortgages. The actual payoff of CMO
depends on the classes of the CMO, commonly referred to
as tranches, and a set of pre-specified rules [6]. We adopt
the algorithm in [15] in our FPGA design. An arctan func-
tion is required in each random walk of the interest rate.
This function is often not efficiently implemented in GPP
maths libraries On the other hand, lookup table based func-
tion evaluation is efficient on FPGA, especially when the
required precision is low. Algorithm 3 shows the sampling
function of the CMO pricing problem. The variables can be
found in Table 2.

uk discount factor for month k

mk cash flow for month k

ik interest rate for month k

wk fraction of remaining mortgages prepaying in
month k

rk fraction of remaining mortgages at month k

ck (remaining annuity at month k) / c

c monthly payment

Table 2: Variables in the sampling function of CMO
pricing problem.

Algorithm 3 Sampling function for the CMO pricing prob-
lem
Input: c = monthly payment, K0,K1,K2,K3,K4 = con-
stants of the model, I0 = initial interest rate, M = length
of the mortgages, σ = standard deviation of interest rate
Pre-computed constants ck =

PM−k
j=0 (1 + I0)−j , remain-

ing annuity at month k) / c
W ∼ N (0, 1) Gaussian random number
Output:
PV = present value of the security

1: sum← 0, i0 ← K0 × I0
2: r1 ← 1, u1 ← (1 + I0)−1

3: for k = 1→M do
4: ik ← K0 × exp(σW )× ik−1

5: wk ← K1 +K2 × arctan(K3 × ik +K4)
6: if k ≥ 2 then
7: rk ← rk−1 × (1− wk)
8: uk ← uk−1 × (1 + ik−1)−1

9: end if
10: mk ← c× rk((1− wk) + wk × ck)
11: sum← sum+ uk ×mk

12: end for
13: PV ← sum

6.4 Numerical integration
Our last case study is multi-dimensional integral evalu-

ation using the Monte Carlo integration method. Multi-
dimensional integrals arise in many areas such as engineer-
ing, biology, chemistry and physics modellings and they are
not always solvable with analytical methods. Equation 26
shows a multi-dimensional integration where ai and bi are
the lower and upper bounds of the integration domain of the
ith dimension. To evaluate the integral using Monte Carlo
simulation, random input vectors are generated within the
integration domain and the average value of the integration
function f is sampled. The approximated value for the inte-
gral can then be found by multiplying the average with the

hypercube V of the integration domain as shown in Equa-
tion 28. The Monte Carlo integration method is preferable
over quadrature based integration methods for high dimen-
sional integrals, because MC integrations always converge
with a rate of O(1/

√
N) and the complexity of MC inte-

gration does not increase exponentially as quadrature based
numerical integration methods. We refer to [3] for an exten-
sive introduction of Monte Carlo integration method.

I =

Z b1

a1

dx1

Z b2

a2

dx2 · · ·
Z bn

an

dxnf(x1, x2, · · ·xn) (26)

I ∼ V × 〈f〉 (27)

V =

nY
i=1

(bi − ai) (28)

We use Genz’s “Discontinuous” multi-dimensional integral
in this case study (29). This is a common test integral used
in evaluation of different numerical integration methods. In
our tests we use n = 8 as the dimension and an integration
domain [0, 1)8. Fully parallelised designs are used in our
FPGA implementations and the data-paths can compute a
single sample point per clock cycle, with constants ci and
wi:

fdis =


0 if x0 > w0 or x1 > w1

exp(
Pn
i=1(ci × xi)) otherwise

(29)

7. EVALUATION

7.1 Reconfigurable accelerator system
We use the MaxWorkstation reconfigurable accelerator

system from Maxeler Technologies for our evaluation. It has
a MAX3424A card with a Xilinx Virtex-6 SX475T FPGA.
The card is connected to an Intel i7-870 CPU through a
PCI express link with a measured bandwidth of 2 GB/s.
The Intel GPP has 4 physical cores.

current I II III

Ngpp 1 8 1 1

Nfpga 1 1 4 8

BWgpp(GB/s) 2 2 4×2 8×2

BWfpga(GB/s) 2 8×2 2 2

Table 3: Parameters of the current system and other
hypothetical systems.

An important advantage of having an analytical model
for our mixed precision methodology is that system design-
ers can predict the performance of a hypothetical system
based on parameters of the current system and the analyt-
ical model. Table 3 shows the parameters for our current
system and three hypothetical systems. The hypothetical
systems are constructed in such a way that the aggregated
computational power of the FPGAs or the GPPs are 4 or 8
times higher than the current system, and the bandwidth is
scaled proportionally.

The Intel Compiler (ICC) and the Intel Math Kernel Li-
brary are used in our software implementations. We use the
SFMT random number generator and the Box-Muller trans-
formation in the Intel Vector Statistical Library (VSL) for
the random number generation. Every effort has been made
to ensure the software implementations are optimised, and
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Figure 6: Cost of reduced precision sampling data-
paths of the Asian option problem.

the comparisons are fair and accurate. For the FPGA im-
plementations, we use the MaxCompiler as our development
system. This adopts a streaming programming model sim-
ilar to [13] and supports customisable data formats so that
floating point can be exploited with different precisions. All
the FPGA results reported in this paper are post place and
route results.

The error tolerance σtol of the three financial case studies
is set to 2.5e-3 such that 99.99% (4σ) of the time the er-
ror is less than a cent, given that the pricing is in dollars.
For the numerical integration case study, the tolerance is
set to 2.5e-4 since most scientific applications require high
accuracy.

7.2 Applying optimisation
There are a few steps to apply Algorithm 1 in Section 5

in order to use the proposed mixed precision methodology
optimally on a reconfigurable accelerator system. The first
step is to find the system parameters such as Ncore, Ngpp,
Nfpga, BWgpp and BWfpga. These parameters can usually
be found in the specification of the reconfigurable accelerator
system.

The second step is to collect application specific FPGA
and GPP parameters. In the MaxCompiler system, we de-
scribe the precision of the entire sampling data-path using
a global variable and scripts are used to automatically gen-
erate data-paths with varying number of significand bits.
Figure 6 shows the place and routed result of reduced pre-
cision data-paths of the Asian option problem. It is clearly
shown that all the resource requirement increase with pre-
cision. Moreover, due to the function approximator in the
exponential function, the block memory usage increases ex-
ponentially with the precision. The figure shows the Ared
parameters of different precisions used in our model. Other
FPGA parameters such as the Aaux parameters can be found
using a similar method. The cost of communication infras-
tructure Acom is assumed to be constant. We also estimate
the GPP parameter Taux by writing a software benchmark
program, which implements the data-flow in Figure 4c for
certain iterations, and the average time required for an iter-
ation is used as Taux.

The next step is the estimation of the standard deviations
for reduced precision sampling, σfL , and for auxiliary sam-
pling, σfa . An FPGA bit-stream with auxiliary sampling
data-paths of different precisions is loaded and the results
of the sampling function evaluations in different reduced pre-
cisions are sent back to the host PC. Using these results and
the reference precision sampling function evaluations result
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Figure 7: The standard deviations of the reduced
precision sampling and the auxiliary sampling verses
different precisions.

from the GPP, the two standard deviations can be estimated
using the two-pass algorithm on the host PC [20]. Figure 7
shows how the two standard deviations change with different
precisions in the Asian option problem, using the parame-
ters (S0 = K = 100, T = 1, v = 0.2, r = 0.05, steps = 360).

It is interesting to note that the standard deviation of
the auxiliary sampling σfa decreases exponentially with in-
creasing precision. However the standard deviation of the
reduced precision sampling σfL is low when the precision
is low and increases rapidly to reach a constant maximum
value with further increases in precision. The same pattern
is also observed in the standard deviations of other case
studies. A possible explanation is that when the reduced
precision is low, different values are compressed to the same
numerical representation and hence the standard deviation
is reduced. The standard deviation grows with reduced pre-
cision because there are more possible representations, and
will finally converge to a value where the value is the same
as the standard deviation of the reference precision sam-
pling (i.e. σfH ). The observed exponential reduction of σfa
could be explained by the fact that finite precision error de-
creases exponentially with the number of significand bits in
floating point formats.

Using parameters collected in the previous steps, we can
apply geometric programming to find the optimal precision
and resource allocation. A major assumption of this flow is
that the two standard deviations do not change with input
parameters (e.g. strike price of an option). If this assump-
tion does not hold, we can profile the common σfL and σfa
combinations and generate an optimal bit-stream for each of
these combinations. When the input parameters change, we
profile the two standard deviations again, run the geometric
programming solver and load the bit-stream closest to the
optimal configuration.

It is important to note that the choice of error toler-
ance σtol affects the execution time of our mixed precision
methodology as shown in Equation 16. However, the opti-
mal reduced precision and resource allocation do not change
with the error tolerance. Hence there is no need to rerun
the geometric programming.

7.3 Performance: parallelism versus precision
Figure 8 shows the execution time and the degree of par-

allelism of the Asian option pricing problem for different
reduced precision in the current system as evaluated by our
analytical model. The optimal reduced precision in this
benchmark is s12e8. The performance curve and the opti-
mal point can be explained by considering Figures 6 and 7.
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Figure 8: Results of Asian option pricing versus dif-
ferent number of significand bits.

If the reduced precision is lower than the optimal one, the
auxiliary sampling error σfa is high, and more computations
must be included. This will take a longer time even though
parallelism is increased due to smaller data-paths. If the re-
duced precision is higher than the optimal one, the decrease
of the auxiliary sampling error is marginal and cannot offset
the disadvantage of reduced parallelism.

current I II III

execution time (s) 0.65 0.65 0.19 0.09

optimal precision s12e8 s12e8 s15e8 s16e8

pL/paux 23.9 13 73.9 147.9

Table 4: Execution time, optimal reduced precision
and the pL/paux ratio of the same Asian option pric-
ing under different system parameters.

We also investigate the relationship between the optimal
reduced precision and system parameters. Table 4 shows
that when the aggregated FPGA computational power is
increased (II and III), the optimal reduced precision will
increase because the system can perform more reduced pre-
cision sampling (i.e. higher pL/paux ratio), and thus afford
a higher σfL . Investing in higher aggregated GPP compu-
tational power (I) seems to have a marginal effect in this
benchmark as the sampling error in reduced precision al-
ready dominates the sampling error in the auxiliary sam-
pling.

7.4 Comparison: GPP/FPGA double precision
Table 5 shows comparisons of the 4 MC case studies run-

ning on a GPP only system with double precision arithmetic,
an FPGA only system with double precision arithmetic, and
a reconfigurable accelerator system with our proposed mixed
precision methodology. All designs are run for a specific time
so that the 3 systems have the same accuracy. As shown in
the table, the mixed precision methodology requires 5-11 %
additional sample function evaluations but only 1-4 % of to-
tal evaluations are computed in reference precision. This
clearly shows the trade-offs between number of computa-
tions and the contribution of each computation in increasing
the accuracy of the final result. Using the mixed precision
methodology, we achieve 2.9 to 7.1 times speedup over the
double precision FPGA designs and 44 to 163 times speed
up over the quad-core GPP designs.

We also compare the energy efficiency of the three set-
tings. The average power consumption is measured using

a remote power measuring socket from Oslon R© electronics
with an measuring interval of 1 second. As shown in Ta-
ble 5, although the mixed precision designs using both the
FPGA and the GPPs have the highest power consumption
compared with the GPP only or the FPGA only settings,
they consume the least total energy to achieve the required
accuracy because the execution times are significantly re-
duced thanks to our technique for workload partitioning.
Our mixed precision methodology achieves 1.4 to 3.1 times
energy saving compared with the FPGA only designs with
double precision, and 41 to 170 times energy saving com-
pared with GPP only designs, while meeting the same out-
put accuracy requirement.

7.5 Comparison: GPU
We also compare our mixed precision methodology on a

reconfigurable accelerator system with a graphics processing
unit (GPU). Table 6 compares the execution time and power
consumption of our mixed precision methodology with an
NVIDIA Tesla C2070 GPU for pricing Asian options. The
GPU has 448 cores running at 1.15 GHz. Both the Tesla 2070
GPU and the Virtex-6 FPGA are fabricated using 40nm
technology. We use the same GPU Asian option pricing de-
sign as described in our previous work [19]. Since random
number generation and pricing calculation take place on the
GPU, communication is not a bottleneck as only the final
accumulated result in double-precision need to be sent from
the GPU to the GPP. Using our mixed precision methodol-
ogy, an Virtex-6 ST475X FPGA and an i7-870 GPP are able
to out-perform the GPU by 4.6 times. We also achieved 5.5
times energy saving compared with the GPU.

GPP
only

GPU
FPGA
only

FPGA
+ GPP

precision double double double mixed

execution time (s) 29 3 4.7 0.65

power (W ) 183 236 85 192

energy (kJ) 5.3 0.71 0.4 0.13

normalised
speedup

1x 9.7x 6.2x 44.6x

normalised energy 40.7x 5.5x 3.1x 1x

Table 6: Comparison with GPP and GPU.

8. CONCLUSION
This paper proposes a novel mixed precision methodology

for Monte Carlo simulation in reconfigurable accelerator sys-
tems. The technique is applicable to any Monte Carlo appli-
cation and exploits the synergy between FPGA and GPP to
produce results of the desired accuracy. An analytical model
and optimisation method is developed for locating the opti-
mal precision and optimal resource allocation. Experimental
results on four realistic case studies show that auxiliary sam-
pling would only require 5 % to 11 % additional evaluations,
and less than 4 % of total evaluations are computed in the
reference precision (Table 5). We demonstrate that recon-
figurable accelerator system using our methodology can be
up to 4.6 times faster than state-of-the-art GPU, 7.1 times
faster than a baseline FPGA design using double precision,
and 163 times faster than optimised software running on a
quad-core GPP. It can also be up to 5.5 times more energy
efficient than a GPU and 170 times more energy efficient
than a quad-core software implementation.



Asian option GARCH CMO Numerical integration

SW FP Mixed SW FP Mixed SW FP Mixed SW FP Mixed

clock freq. (GHz) 2.93 0.175 0.1751 2.93 0.175 0.1751 2.93 0.175 0.1751 2.93 0.175 0.161

num. of cores2 4 5 36/1.5 4 5 24/0.9 4 5 20/0.65 4 5 16/0.18

num. of fL evaluations (M) 0 0 12 0 0 321 0 0 7.2 0 0 2320

num. of fH evaluations (M) 11.3 11.3 0.47 317 317 11.6 6.75 6.75 0.23 2230 2230 26.8

num. of total evaluations (M) 11.3 11.3 12.5 317 317 333 6.75 6.75 7.43 2230 2230 2347

additional evaluation (%) - - 10.6 - - 4.8 - - 10 - - 5.2

evaluations in reference precision (%) 100 100 3.8 100 100 3.5 100 100 3.1 100 100 1.1

execution time (sec.) 29 4.7 0.66 1560 131 26.6 117 2.8 0.72 95.8 2.6 0.9

normalised speedup 1x 6.2x 44x 1x 12x 59x 1x 42x 163x 1x 37x 106x

mixed precision gain - 1x 7.1x - 1x 4.9x - 1x 3.9x - 1x 2.9x

power consumption (W ) 3 183 85 192 179 90 181 175 94 171 184 90 189

energy consumption (kJ)4 5.3 0.4 0.13 280 11.8 4.8 20.4 0.26 0.12 17.6 0.23 0.17

normalised energy 41x 3.1x 1x 58x 2.5x 1x 170x 2.2x 1x 104x 1.4x 1x
1 Only the FPGA clock frequencies are reported and the 4 GPP cores are all running at 2.93 GHz.
2 For the mixed precision design, all the 4 GPP cores are used and the number of reduced precision sampling and auxiliary

sampling data-paths (pL/paux) are shown.
3 The idle power consumption of the system is 80W .
4 Energy consumption = power consumption × execution time.
5 The optimal precision of the 4 mixed precision designs is s12e8.

Table 5: Comparison of MC simulations using GPP only system (SW), double precision FPGA only sys-
tem (FP) and mixed precision methodology using both GPP and FPGA (Mixed).

Future work includes applying the proposed methodology
to other sampling methods such as the Quasi-Monte Carlo
methods. Other directions of further research involve ex-
tending the proposed methodology to cover heterogeneous
systems consisted of GPPs, FPGAs and GPUs, and au-
tomating the steps of the methodology.
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