
PARALLEL FPGA-BASED ALL PAIRS SHORTEST PATHS FOR SPARSE NETWORKS:
A HUMAN BRAIN CONNECTOME CASE STUDY

Brahim Betkaoui1, Yu Wang2, David B. Thomas3, Wayne Luk4

1,4Department of Computing, Imperial College London
2Department of Electronic Engineering, Tsinghua University, China

3Department of Electrical & Electronic Engineering, Imperial College London
1,3,4email: {bb105,dt10,wl}@ic.ac.uk

2email: yu-wang@mail.tsinghua.edu.cn

ABSTRACT

This paper proposes a highly parallel and scalable reconfig-
urable design for the All-Pairs Shortest-Paths (APSP) algo-
rithm for very sparse networks. Our work is motivated by
a computationally intensive bioinformatics application that
employs this memory-latency bound algorithm. The pro-
posed design methodology takes advantage of distributed
on-chip memory resources of modern FPGAs to reduce ac-
cesses to high-latency off-chip memories. We develop de-
sign optimisations that yield different FPGA configurations
which are selected at run time based on the input graph data.
Using human brain network data, we are able to achieve per-
formance results superior to those from multi-core CPU and
GPU, while attaining linear scaling over the number of pro-
cessors introduced. Our FPGA-based APSP design is over
10 times faster than a quad-core CPU implementation and 2-
5 times faster than an AMD Cypress GPU implementation.

1. INTRODUCTION

Many real-world problems, such as social networks and bio-
logical interactions, have been represented as graphs or net-
works involving millions of vertices and edges. For instance,
in bioinformatics the human brain has been modelled as
a network based on blood oxygen level dependent signals.
These human brain networks are analysed using graph the-
ory algorithms [1]. However, one of the human Brain Net-
work Analysis (BNA) limitations is the great computational
complexity. Many graph algorithms, such as APSP, become
intolerably time-consuming when the network becomes too
large. Hence, a solution with a strong computational capa-
bility will greatly benefit the BNA research.

Previous work has shown that FPGA-based reconfigurable
computing machines can achieve order of magnitude speed-
ups compared to microprocessors for many important appli-
cations. Application-specific designs lead to efficient utili-
sation of hardware resources on FPGAs. In this paper, we

leverage the benefits of FPGAs for the Breadth-First Search
algorithm used to solve the APSP problem in a directed
graph with unweighted edges. Our key contributions are:

• A parallelisation methodology that we have adopted to
design a parallel and scalable FPGA-based solver for the
APSP problem for sparse networks (Section 4).

• A detailed description of a reconfigurable hardware ac-
celerator for the APSP problem, including a novel way
to leverage the power of distributed on-chip memory re-
sources to reduce off-chip memory accesses (Section 5).

• Design optimisations that yield different FPGA bitstreams
which are selected at run-time based on the input graph
data (Section 6).

• An in-depth performance evaluation that analyses perfor-
mance scalability, and the effects of different design opti-
misations using real-word data (Section 7).

• A performance comparison with CPU and GPU imple-
mentations using human brain network data, showing that
our FPGA design outperforms both the CPU and GPU im-
plementations (Section 7).

2. BACKGROUND

The All-Pairs Shortest-Paths (APSP) problem is defined as
follows. Given a weighted, directed graph G = (V,E) with
a weight function, w: E → R, that maps edges to real-
valued weights, we wish to find, for every pair of vertices
u, v ∈ V , a shortest (least weight) path from u to v, where
the weight of a path is the sum of the weights of its con-
stituent edges. There are mainly two classes of APSP algo-
rithms. One class is Johnson’s algorithm [2], which is based
on single-source shortest path algorithms such as Dijkstra
algorithm [3] and Bellman-Ford algorithm [4]. When ap-
plied to unweighted graphs, Johnson’s algorithm reduces to
Breadth-First Search (BFS). Johnson’s algorithm and BFS
are efficient with sparse graphs but perform poorly with dense

graphs. Another class is the Floyd-Warshall (FW) algo-
rithm [5], which has O(N3) time complexity and favours
dense networks. In our work, we consider unweighted graphs
and hence focus on using BFS to solve APSP. We refer to it
in this paper as APSP-BFS (Algorithm 1).

Algorithm 1: Sequential APSP-BFS algorithm

Input: Graph G(V,E)
Output: Array distance[1..n][1..n] with distance[u][v] holding

the shortest path distance from u to v

foreach v ∈ V do1
Invoke BFS_KERNEL(v)2

end3

The BFS problem is defined as follows. Given a graph
G = (V,E) with a set V of n vertices and a set E of m
directed edges, the BFS problem is to traverse the vertices of
G in breadth-first search order starting at source vertex vs.
Each newly-discovered vertex vi is marked by its distance
from vs, i.e. the minimum number of edges from vs to vi.

Algorithm 2 describes the standard sequential BFS algo-
rithm. CQ (current queue) is used to hold the set of vertices
that must be visited at the current BFS level. At the begin-
ning of a BFS, CQ is initialised with vs. As vertices are
dequeued, their neighbours are examined. Unvisited neigh-
bours are labelled with their distance (BFS level) and are
enqueued for later processing inNQ (next queue).After rea-
ching all nodes in a BFS level, CQ and NQ are swapped.

Algorithm 2: Simple sequential BFS
Input: Vertex set V , source vertex vs
Output: Array distance[1..n] with distance[i] holding the

minimum distance of vi form vs
Data: CQ: queue of vertices to be explored in current level;
NQ: queue of vertices to be explored in next level

CQ ← ∅; distance[] ← ∞;1
distance[s] ← 0; CQ ←− {vs}; bfs_level ← 0;2
while (CQ != ∅) do3

NQ ←− ∅;4
for all vi ∈ CQ do5

v ← Dequeue CQ;6
foreach uj adjacent to v do7

if distance[j] == ∞ then8
distance[j] ←− bfs_level + 1;9
NQ ← Enqueue uj ;10

end11
end12

end13
bfs_level ← bfs_level + 1;14
Swap(CQ,NQ);15

end16

3. RELATED WORK

The importance of efficient processing of the APSP problem
has led to a substantial amount of previous work that deals

with the design and optimisation of APSP either for com-
modity processors [6, 7, 8], or for dedicated hardware [9,
10, 11, 12]. Matsumoto et al. [6] proposed a CPU-GPU hy-
brid system that is reported to have outperformed previous
work on APSP for commodity processors.

Much previous work on using FPGAs to solve graph
problems has used low-latency on-chip memory resources
to store graph data [13, 12]. These solutions are not sui-
table for large graph problems that require high-latency off-
chip storage. In our work, we present a reconfigurable hard-
ware architecture to accelerate the APSP algorithm for graph
problems that require high-latency off-chip storage.

Some recent publications have described successful pa-
rallel implementations of graph problems on reconfigurable
hardware [10] and [11]. To the best of our knowledge, no
previous FPGAwork has tackled the APSP problem for sparse
graphs with unweighted edges. Bondhugula et al. [9] pro-
posed a parallel FPGA design to accelerate the FW algo-
rithm which is more suitable for dense networks, and is
proven to be inefficient for very sparse networks. We con-
sider our work complementary to Bondhugula et al.’s work.

4. PARALLELISING APSP-BFS FOR FPGAS

Graph algorithms have a low computation to access ratio [14],
where the algorithm is often traversing the vertices and edges
of a graph while doing very little computation per vertex
or edge. In other words, graph algorithms are in general
memory-latency bound. Achieving good performance le-
vels on FPGAs will require a design that exploits parallel
on-chip memory resources to reduce off-chip memory ac-
cesses. Having said that, parallelism achieved for the APSP
problem will likely be limited by the amount of on-chip
memory resources. So choosing carefully how to use on-
chip memory resources will prove key towards achieving
high parallelism, and subsequently high performance. The
sequential APSP-BFS algorithm (Algorithm 1) in Section 2
can be parallelised using one of the following three methods:

1. Serial APSP, Parallel BFS: The outer-loop in al-
gorithm 1 executes serially a parallel BFS kernel for each
vertex in the graph. Only one BFS kernel is running at any
time. So all the parallel resources are dedicated to execu-
ting one BFS kernel. One drawback of this method is that
on-chip memory resources will be shared which will lead
to high access contention. This access contention results in
higher latencies to access shared on-chip memories, which
defies the purpose of using low-latency on-chip memories in
the first place. For example an on-chip bitmap implemented
on FPGA BRAM will have a latency of one or two clock
cycles. However, if there are 64 processing elements (PEs)
trying to access it at the same time, then this access latency
jumps from 1 or 2 clock cycles to more than 64 clock cy-
cles. This will translate onto poor scalability as increasing

Fig. 1. Reconfigurable hardware architecture template for
parallel graph exploration algorithms

the number of PEs will increase access contention overhead.

2. Parallel APSP, Serial BFS. The outer-loop in Algo-
rithm 1 runs in parallel a number of sequential BFS kernels.
This approach allows for private on-chip memory resources
that are exclusive to a PE, as each PE is executing a different
BFS kernel. An advantage of this approach is performance
scalability as the number of PEs is increased. However, one
drawback of this method is that assigning exclusively on-
chip memory resources to a specific PE may limit the num-
ber of PEs by the available on-chip memory resources, even
if there are many unused hardware resources on an FPGA
such as LUTs and DSP blocks.

3. Parallel APSP, Parallel BFS: This is the general case
where the outer-loop in Algorithm 1 executes in parallel a
number of parallel BFS kernels. This method can be a com-
promise between the two previous methods by tolerating ac-
cess contention up to a certain degree, while avoiding par-
allelism being limited by on-chip memory resources. If the
number of PEs executing the same BFS kernel is kept small
enough, then access contention overhead remains negligible.

In this work, we adopt the second method for our FPGA-
based APSP-BFS, and leave evaluation of the third method
for future work. The overall architecture of the FPGA-based
APSP design, as illustrated in Figure 1, resembles a scal-
able many-core style processor architecture, comprising a
Run-time Management Unit (RMU), multiple Graph pro-
cessing elements, and a memory interconnect network. The
RMU acts as a control processor that manages the opera-
tion of the GPEs, including initialisation, task assignment,
and synchronisation of the GPEs. The GPEs are a collec-
tion of replicated and parallel processing elements that are
application-specific. Each GPE can independently execute
a BFS on given source node. Each GPE can have a pri-
vate local memory accessible only to itself. The intercon-
nect memory network links the GPEs to an off-chip shared-
memory subsystem.

5. PARALLEL FPGA DESIGN FOR APSP-BFS

In this section, we describe how we parallelised the APSP-
BFS algorithm using our reconfigurable hardware architec-
ture template presented in Section 4. In our approach, we
chose to parallelise APSP-BFS algorithm using the sequen-
tial version of BFS (Algorithm 2). As for graph represen-
tation, we used the popular CSR (Compressed Sparse Row)
format which merges the adjacency lists of all vertices into
a single O(m)-sized array, with the beginning location of
each vertex’s adjacency list stored in a separate n-sized ar-
ray. For each BFS, we require an n-sized array, the distance
array, to store the BFS level of each vertex, and hence we
require an n2-sized array to store all the APSP-BFS results.

We start by breaking the APSP-BFS algorithm into two
parts: one part running on the run-time management unit
(Algorithm 1, line 1), and the other part on the GPEs (Al-
gorithm 2). The RMU dispatches tasks to GPEs, by issuing
source vertices for BFS execution. It starts by initialising the
GPEs and waits for GPE requests which are queued up in a
FIFO-based queue. Once all the source vertices have been
dispatched the RMU issues a termination signal to the host
CPU to indicate that the APSP routine completed execution.

Since the BFS problem is memory latency bound, we
devise a GPE design approach based on three key design
ideas: (i) efficient utilisation of BRAM resources on FPGAs
to reduce off-chip memory accesses, (ii) prioritise reducing
random accesses over regular accesses, and (iii) parallelising
access to off-chip shared memory.

To reduce off-chip memory accesses, we design a Bitmap
scheme to store the visitation status of all vertices in the
graph, and emulate the queues used in the sequential BFS
kernel (Algorithm 3, line 1). We use one bitmap, the Status
Bitmap, for the visitation status of vertices, and two bitmaps
for queue emulation, the CQ_bitmap and the NQ_bitmap.
Each bitmap has n bits, and is implemented as dual-port
RAM that maps onto FPGA BRAMs. CQ_bitmap and
NQ_bitmap are used as follows: if a vertex has been en-
queued, then the corresponding bit in the bitmap is set to 1,
otherwise this bit is set to 0. This means the maximum size
of the CQ_bitmap and NQ_bitmap is n bits, which can
be stored entirely in on-chip memories. In contrast, using a
standard FIFO queue requires log2(n) bits per vertex, and
approaches n × log2(n) bits for the worst case. This worst
case scenario may lead the queue to spill to slow off-chip
memory as fast on-chip memories are exhausted.

A key decision is to select data to store in on-chip memory
and off-chip memory. Our main selection criterion is ac-
cess patterns. We use on-chip memories to reduce random
or irregular accesses. For example, in the BFS kernel (Al-
gorithm 3), the visitation status of vertices requires random
memory accesses (Algorithm 3, line 15). Instead of reading
the distance array from memory to determine the visitation
status of a vertex, we store the visitation status of vertices

Fig. 2. Graph Processing Element (GPE) design for BFS.

in an on-chip bitmap, which can be accessed in one clock
cycle, saving on up to tens of clock cycles.

Finally, parallelising memory accesses is achieved by
enabling the GPE to sequentially issue multiple outstanding
memory requests to a parallel memory subsystem, and use
on-chip RAM resources to store data from memory for sub-
sequent processing. Instead of issuing one memory request,
and then waiting for response from memory, the GPE issues
multiple non-blocking memory requests to take advantage
of the capabilities of the parallel memory subsystem. As-
suming that the requests are destined for different memory
banks, the off-chip memory latency of a single memory re-
quest is amortised over multiple memory requests as they
get serviced simultaneously.

Figure 2 presents a schematic overview of the GPE de-
sign for the BFS kernel (Algorithm 3) that incorporates the
design choices discussed above. In Algorithm 3, data de-
fined as Input and Output is stored in off-chip memory,
whereas data defined as Data is stored in on-chip memories.
A step-by-step description of the GPE design follows:

1. Read CQ_bitmap. This unit checks whether a vi
belongs to the current BFS level by readingCQ_bitmap (line
7). If CQ_bitmap[vi] is set, its neighbours are explored in
the current iteration (steps 2-4).

2. Neighbour gathering. The neighbours of vi are re-
trieved from memory in q-sized batches using multiple non-
blocking memory requests (lines 9-12). The retrieved neigh-
bouring vertices are stored in local registers (NID regis-
ters). For area-efficiency reasons, these registers are imple-
mented using distributed RAM instead of Slice registers.

3. Status look-up. The visitation status of the gathered
neighbours is checked (line 15) by reading Status_bitmap.

4. Distance update. Unvisited vertices will have their

distance value updated to the current BFS level plus one
(line 18). Status_bitmap and NQ_bitmap are also up-
dated accordingly (lines 17-18).

Algorithm 3: BFS kernel executed by each GPE
Input: R[1..n]:offsets of adjacency lists, C[1..m]: adjacency lists.
Output: Array distance[1..n] with distance[i] holding the

minimum distance from vs to vi
Data: NID[1..q]: 16-bit GPE registers to store Neighbour IDs,
Status_bitmap[1..n]: stores visitation status of vertices,
CQ_bitmap[1..n]: stores marked vertices for current BFS level,
NQ_bitmap[1..n]: stores marked vertices for next BFS level,
q: number ofNID registers

bfs_level ←− 0; distance[s] ←− bfs_level ;1
CQ_bitmap ← NQ_bitmap ← Status_bitmap ← 0 ;2
CQ_bitmap[s] ← Status_bitmap[s] ← 1;3
repeat4

done ← 1 ;5
foreach v ∈ 1..n do6

// Step 1: read CQ_bitmap[v]
if (CQ_bitmap[v]) then7

CQ_bitmap[v] ← 0;8
for (offset ← R[v]; offset < R[v+1]; offset += q) do9

// Step 2: Neighbour gathering
foreach i ∈ 1..q do10

NID[i] ← C[offset+ i];11
end12
foreach i ∈ 1..q do13

u ← NID[i];14
// Step 3: status look-up
if (Status_bitmap[u] == 0) then15

// 4. distance update
distance[u] ← bfs_level+ 1 ;16
Status_bitmap[u] ← 1;17
NQ_bitmap[u] ← 1;18
done ← 0;19

end20
end21

end22
end23

end24
bfs_level = bfs_level + 1;25
Swap(CQ_bitmap,NQ_bitmap);26

until (done) ;27

6. DESIGN OPTIMISATIONS

6.1. Adjacency lists encoding

This optimisation is platform-dependent: we consider the
size of the native memory word of the target platform in bits,
and encode our adjacency list such that for each memory
load operation we get more than one neighbouring vertex
from the adjacency list. So if the native memory word is
k-bit wide, we can obtain k/w neighbouring vertices per
memory operation if we usew bits to represent neighbouring
vertices. Figure 3 illustrate this idea with k=64 and w=16.
An adjacency list must be padded to multiples of 64 bits if
the number of neighbouring vertices is not a multiple of 4.

6.2. Hybrid BFS kernel

Beamer et al [15] presented a hybrid approach to the BFS
algorithm that combines the conventional top-down algo-
rithm 2 and a bottom-up algorithm. This hybrid approach
takes advantage of the small-world property of real-world
graphs [16] to significantly reduce the number of edges exa-
mined, and hence speed up the BFS kernel. Because of
the small-world phenomenon the number of vertices in each
BFS level grows very rapidly, leading to most edges being
examined in one or two BFS levels, the critical BFS levels.
Algorithm 4 describes the bottom-up algorithm that replaces
lines (6-24) in Algorithm 3, i.e. steps 1-4.

In addition, the switching mechanism from top-down ap-
proach to bottom-up approach requires knowledge about the
sum of the degree of the vertices marked for the next ite-
ration. So this means that when neighbouring vertices are
marked for the next BFS iteration, their degrees need to be
obtained, leading to extra random memory accesses. In or-
der to avoid these randommemory accesses, the encoding of
the adjacency list is modified as follows: 32 bits are used for
each neighbouring vertex, with bits 0-15 used to store the
vertex ID, while bits (16-31) store the degree of the vertex.

6.3. Run-time configuration selection

Since the hybrid BFS kernel requires 32 bits per neighbour-
ing vertex (to store degree information), only one of the
above optimisations can be present in an FPGA configura-
tion. During BFS execution, the top-down algorithm (Al-
gorithm 2) is used when the size of CQ is small, and the
bottom-up algorithm is used when the size of NQ is large.
In our work, we used human brain networks [17] with diffe-
rent diameters ranging from 7 to 32. Since we are executing
BFS n times, we can afford to run BFS once on the host
CPU to find out if there are any critical BFS levels. In the
event of the existence of critical BFS levels, we opt to to
use the hybrid algorithm. In our experiments, a BFS level is
considered critical if the number of edges examined is above
30% of the total number of edges.

7. EXPERIMENTAL RESULTS

In this section, we validate the effectiveness of our parallel
FPGA-based APSP design presented in Section 5. For the
graph data, we extracted our data from a downloaded dataset

Fig. 3. The encoding format of the adjacency list

Algorithm 4: Bottom-up algorithm for BFS kernel

foreach v ∈ 1..n do1
if (Status_bitmap[v] == 0) then2

for (offset ← R[v]; offset < R[v+1]; offset += q) do3
foreach i ∈ 1..q do4

NID[i] ← C[offset+ i];5
end6
foreach i ∈ 1..q do7

u ← NID[i];8
if CQ_bitmap[u] then9

distance[v] ← bfs_level+ 1 ;10
Status_bitmap[v] ← 1;11
NQ_bitmap[v] ← 1;12
done ← 0;13
break;14

end15
end16

end17
end18

end19

from a fMRI data sharing project, 1000 Functional Connec-
tomes Project [17]. The resulting graphs have 38368 ver-
tices with varying sparsity values. This is the same dataset
used in [18]. For the high performance reconfigurable com-
puting system, we use the Convey HC-1 server [19] which
has four Virtex-5 LX330 FPGAs which are connected to a
shared memory subsystem. Our FPGA implementation has
32 GPEs (128 GPEs in total) that utilise about 69% of LUTs
and 86% of BRAMs, with an operational clock frequency
of 150MHz. We compare our performance results to CPU
and GPU results reported in [18] and [6] respectively. An
AMD Phenom II X4 965 quad-core CPU running at 3.4 GHz
is used in [18] for APSP-BFS, while an AMD Cypress GPU
(Radeon HD 5870) is used in [6] for APSP-FW.

 0

 20

 40

 60

 80

 100

 120

 140

 0 20 40 60 80 100 120 140

S
pe

ed
up

 o
ve

r 1
 G

P
E

Number of GPEs

1 FPGA

2 FPGAs

4 FPGAs

Linear speedup
sparsity=0.06%
sparsity=0.38%
sparsity=5.46%

Fig. 4. FPGA design performance: speedup over 1 GPEs.

Figure 4 shows the scalability of our FPGA-based APSP
design for graphs with different sparsity values. The num-
ber of vertices is set to 38368, and the number of GPEs
varies from 1 to 128. We define the efficiency as the ratio
of speedup of g GPEs over 1 GPE, divided by the linear or
ideal speedup. In our current design we are able to fit up
to 32 GPEs per Virtex5 LX330 device, so we used 2 and 4

FPGA devices for 64 GPEs and 128 GPEs respectively. For
different graph sparsity values, we observe that our design
not only scales well on one FPGA device giving over 96%
of efficiency, but also over multiple FPGA devices as we are
able to reach efficiency rates over 94% and over 90% for 2
and 4 FPGA devices respectively. This suggests that given a
larger FPGA device, such as a Virtex-6 LX760, our design
can achieve better performance results.

Table 1 compares the performance of our FPGA-based
APSP design to that of a quad-core CPU [18], and a GPU [6].
Note that the GPU implementation executes the FW algo-
rithm to solve the APSP problem, and hence the execution
time stays the same when the sparsity of the graph varies.
In contrast, the CPU and FPGA implementations run the
APSP-BFS algorithm whose execution time depends on the
both the graph size and its sparsity. We present the result
of two FPGA designs with different design optimisations:
FPGA-1 which implements 16 bits encoding of adjacency
list, and FPGA-2 which implements the hybrid BFS algo-
rithm. Only one of the bitstreams of either FPGA-1 or FPGA-
2 is loaded onto the FPGA during an APSP execution. As
explained in Section 6.3, an FPGA configuration is selected
based on the input graph data at run-time.

The FPGA implementation of APSP outperforms both
the quad-core CPU and the GPU for up to 5% graph sparsity.
As the graph grows in size, our FPGA implementation is 6-
13 times faster than the CPU implementation, and 2-5 times
faster than the GPU implementation for most graph spar-
sity values. Note that the GPU is faster than our FPGA de-
sign as the graph sparsity percentage increases beyond 5%.
This presents an opportunity to build a heterogeneous sys-
tem comprising CPUs, GPUs, and FPGAs to accelerate the
APSP problem for different graph sparsity values.

Table 1. Performance comparison with CPU and GPU.
Sparsity CPU [18] GPU [6] FPGA-1 FPGA-2
0.06% 39s 167s (0.2x) 37s(1.1x) 55s (0.7x)
0.13% 74s 167s (0.4x) 45s(1.6x) 76s (0.9x)
0.38% 191s 167s (1.1x) 72s(2.7x) 81s (2.5x)
1.39% 633s 167s (3.8x) 185s(3.4x) 93s (6.7x)
5.46% 2430s 167s (14.5x) 612s(3.9x) 177s(13.7x)

8. CONCLUSION AND FUTURE WORK

This paper proposes a parallel and scalable FPGA design for
the All-Pairs Shortest Paths problem for sparse graphs with
unweighted edges. Using a case study from bioinformatics,
namely human brain connectomes, we have shown through
experimental study that our FPGA design is able to outper-
form both a multi-core CPU as well as a hybrid CPU-GPU
system. Future work includes investigating ways to improve
the performance by increasing the number of GPEs in the
design by parallelising the BFS kernel as well as extending
our design to support weighted edges.

Acknowledgments
The research leading to these results has received funding
from European Union Seventh Framework Programme un-
der grant agreement number 287804, 248976 and 257906.
This work has been supported by National Science and Tech-
nology Major Project (2010ZX01030-001), IBM/Microsoft,
NSF of China (61171002), Tsinghua University Initiative
Scientific Research Program, the Royal Academy of Engi-
neering, UK EPSRC, the HiPEAC NoE, Convey Computer
Corporation and Xilinx.

9. REFERENCES

[1] Y. He et al., “Uncovering intrinsic modular organization of sponta-
neous brain activity in humans,” PLoS ONE, 4(4):e5226, 2009.

[2] D. B. Johnson, “Efficient algorithms for shortest paths in sparse net-
works,” JACM, 24(1):1-13, 1977.

[3] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische Mathematik, 1:269-271, 1959.

[4] R. Bellman, “On a routing problem,” Quarterly of Applied Mathemat-
ics, 16:87-90, 1958.

[5] R. W. Floyd, “Algorithm 97: Shortest path,” CACM, 5(6):345, 1962.

[6] K. Matsumoto, N. Nakasato, and S. Sedukhin, “Blocked all-pairs
shortest paths algorithm for hybrid CPU-GPU system,” in HPCC,
2011.

[7] A. Buluç, J. R. Gilbert, and C. Budak, “Solving path problems on the
GPU.” Parallel Computing, 36(5-6):241-253, 2010.

[8] K. Matsumoto and S. G. Sedukhin, “A solution of the all-pairs short-
est paths problem on the Cell Broadband Engine processor,” IEICE
Transactions on Information nd Systems, E92.D(6):1225-1231, 2009.

[9] U. Bondhugula et al., “Parallel FPGA-based all-pairs shortest-paths
in a directed graph,” in IPDPS, 2006.

[10] Q. Wang, W. Jiang, Y. Xia, and V. Prasanna, “A message-passing
multi-softcore architecture on FPGA for breadth-first search,” in FPT,
2010.

[11] M. deLorimier et al., “GraphStep: A system architecture for sparse-
graph algorithms,” in FCCM, 2006.

[12] K. Sridharan, T. Priya, and P. Kumar, “Hardware architecture for find-
ing shortest paths,” in TENCON, 2009.

[13] O. Mencer, Z. Huang, and L. Huelsbergen, “HAGAR: Efficient multi-
context graph processors,” in FPL, 2002.

[14] A. Lumsdaine et al., “Challenges in parallel graph processing.” Pa-
rallel Processing Letters, 17(1):5-20, 2007.

[15] S. Beamer, K. Asanović, and D. A. Patterson, “Searching for a parent
instead of fighting over children: a fast breadth-first search imple-
mentation for graph500,” EECS Department, University of Califor-
nia, Berkeley, Tech. Rep. UCB/EECS-2011-117, Nov 2011.

[16] D. J. Watts and S. H. Strogatz, “Collective dynamics of ’small-world’
networks.” Nature, 393(6684):440-442, 1998.

[17] NITRC: the source of neuroimaging tools and resources. [Online].
Available: http://www.nitrc.org/projects/fcon_1000

[18] Y. Wang et al., “A heterogeneous accelerator platform for multi-
subject voxel-based brain network analysis,” in ICCAD, 2011.

[19] J. D. Bakos, “High-performance heterogeneous computing with Con-
vey HC-1,” Computing in Science and Engineering, 12(6):80-87,
2010.

