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Abstract—Atmospheric modeling is an essential issue in the
study of climate change. However, due to the complicated algo-
rithmic and communication models, scientists and researchers
are facing tough challenges in finding efficient solutions to
solve the atmospheric equations. In this paper, we accelerate a
solver for the three-dimensional Euler atmospheric equations
through reconfigurable data flow engines. We first propose a
hybrid design that achieves efficient resource allocation and
data reuse. Furthermore, through algorithmic offsetting, fast
memory table, and customizable-precision arithmetic, we map
a complex Euler kernel into a single FPGA chip, which can
perform 956 floating point operations per cycle. In a 1U-chassis,
our CPU-DFE unit with 8 FPGA chips is 18.5 times faster and
8.3 times more power efficient than a multicore system based on
two 12-core Intel E5-2697 (Ivy Bridge) CPUs, and is 6.2 times
faster and 5.2 times more power efficient than a hybrid unit
equipped with two 12-core Intel E5-2697 (Ivy Bridge) CPUs
and three Intel Xeon Phi 5120d (MIC) cards.
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I. INTRODUCTION

Studying climate change has long become an urgent

issue that not only benefits our interests, but also helps

protect the planet for future generations. Especially in recent

decades, climate problems such as extreme weather events

have caused huge losses and brought significant influence

on human activities. According to the major report [1] of

the United Nations in March 2014, the impacts of global

warming are likely to be ”severe, pervasive and irreversible”.

In a climate system model, the atmospheric component

model is one of the most essential and challenging parts, and

has nowadays become a popular topic that widely applies

the world’s most powerful supercomputers (e.g., [2], [3],

[4]). However, to solve the complex atmospheric equations,

traditional platforms have to face the constraints from data

representation [3], memory accessing patterns [5], and data

communications. Therefore, it is an urgent demand for

developing wise and efficient methods and architectures to

solve atmospheric equations.

Meanwhile, reconfigurable data flow engines (DFEs) such

as Field Programmable Gate Arrays (FPGAs) start to ap-

pear as high performance platforms, and have acquired

inspiring results in many key applications such as explo-

ration geophysics [5] and financial modeling [6]. Compared

with traditional architectures, reconfigurable platforms can

achieve high performance through a deep pipeline of con-

current operations. Its customization on data representation

provides great flexibility to optimize algorithms with rigor

requirement on data precisions. Furthermore, the low clock

frequency can decrease the power consumption to a great

degree, and accordingly provides a more green way for

computing.

In this paper, we develop a highly-efficient and green

DFE solver for the 3D Euler equations, which are the

most essential equation sets that describe the mesoscale

atmospheric dynamics.

Our major contributions are:

• a hybrid CPU-DFE design to solve the Euler equations

in a more efficient mechanism (Section III);

• optimizations based on algorithmic offsetting, fast

memory table and customizable precision to decrease

the usage of computing resources (Section IV);

• implementation and evaluation of the proposed ap-

proaches, with significant improvements in perfor-

mance and in power efficiency over multicore and

manycore processors (Section V and VI).

II. BACKGROUND

A. Related Work
In atmospheric study, preliminary work through FPGA

has achieved promising results. Smith et al. [7] accelerate

the Parallel Spectral Transform Shallow Water Model using

ORNL’s SRC Computers. They manage to deploy and

accelerate the key subroutines (FFT or LT) on the FPGA

clusters. Oriato et al. [8] accelerate a realistic dynamic core

of LAM model using Maxeler [9] DFE platform. It is a

successful trial to reduce the resource usage through fixed-

point arithmetic, and acquire satisfying speedup over CPU

counterpart. In [10], we manage to solve the global-scale

shallow water equations through mixed-precision arithmetic

on DFEs. A significant speedup and higher power efficiency

are achieved over a hybrid CPU-GPU supercomputer node.
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Figure 1. Left: 25 points stencil. Right: Hybrid domain decomposition:
each subdomain is divided into inner (purple) and halo (blank) areas.

Compared with those work, the Euler equations we study

are much more complex in the spatial discretization schemes

and data layouts, and thus bring more tough challenges.

In terms of customizable precision, Duben et al. [11]

investigate the usage of stochastic processing hardware and

low precision arithmetic in atmospheric models. Their work

has achieved convincing accuracy using low-precision data,

and proved the feasibility of utilizing mixed-precision in

climate science. Another work in [10] proposes two tracking

methods to choose the bit width that can obtain the best

balance between the resource usage and the accuracy.

B. Euler Atmospheric Equations and Algorithm
It is well recognized that the mesoscale atmosphere can

be modeled by the fully compressible Euler equations with

almost no assumptions made [12]. In a 3D channel with

possibly nonsmooth bottom boundary, ignoring the effect of

Coriolis force, the Euler equations can be written as the

following set of conservation laws:

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
+ S = 0, (1)

where Q = (ρ′, ρu, ρv, ρw, (ρθ)′)
T
,

F = (ρu, ρuu+ p′, ρuv, ρuw, ρuθ)
T
,

G = (ρv, ρvu, ρvv + p′, ρvw, ρvθ)
T
,

H = (ρw, ρwu, ρwv, ρww + p′, ρwθ)
T
,

S = (0, 0, 0, ρ′g, 0)
T
,

(2)

where ρ, v = (u, v, w), p, and θ are the density, the velocity,

the pressure and the potential temperature of the atmosphere,

respectively. The system is closed with the equation of state

p = p00

(

ρRθ

p00

)γ

, (3)

where p00 = 1013.25hPa is the ground level pressure, R =
287.04J/(kg ·K) is the gas constant for dry air and γ = 1.4.

To minimize roundoff errors, values of ρ′ = ρ− ρ, (ρθ)′ =
ρθ − ρθ and p = p − p have been shifted according to the

hydrostatic state that satisfies ∂p
∂z

= −ρg.

After using a cell-centered finite volume scheme plus an

explicit Runge-Kutta time stepping [2] method, each time

step in solving the Euler equations requires two stencil

sweeps applied at all mesh elements. As shown in the left

panel of Fig. 1, to process a mesh element in the 3D channel,

24 neighboring elements need to be accessed. The right

panel of Fig. 1 demonstrates the 3D domain decomposition

for parallel computing. We first decompose the whole 3D

channel into small subdomains according to the number

of paralleling resources, and then all the subdomains will

be processed in parallel. Based on the diamond stencil,

communication is required between subdomains to update

the halo elements, which are the two outer layers of the

subdomain (e.g. blank elements of subdomain 1 in Fig. 1).

Algorithm 1 Original Euler Algorithm per Stencil Sweep

1: for (k, j, i)← (0, 0, 0) to (Nk−1, Nj−1, Ni−1) do

2: if (k, j, i) ∈ Boundary then ⊲ Boundary Condition

3: Halo Updating or Boundary Processing

4: end if

5: Calculate Coordinates ⊲ Stencil Begins

6: Compute Fluxes{
7: State Reconstruction

8: Riemann Solver }
9: Compute Source Terms ⊲ Stencil Ends

10: end for

Algorithm 1 shows the original algorithm in each stencil

sweep. For every mesh element inside a subdomain, if it

belongs to the boundary, we apply boundary condition (line

3). After that, we do the stencil computing (line 5-9), includ-

ing Calculate Coordinates, State Reconstruction (to recover

values on the interfaces of each mesh element), Riemann

Solver (to estimate the numerical fluxes) and Source Terms

Computing (to count in the effect of the gravity force). We

remark here that because of the conservative property of the

finite volume scheme, the numerical fluxes on a common

edge of two consecutive mesh elements are identical.

C. Necessity and Challenges
Efficiently solving the 3D Euler equations is a crucial step

to finally build a complete mesoscale atmospheric model.

We have to face more challenges than our preliminary work

([3], [10]) based on 2D Shallow Water Equations (SWEs).

The more realistic 3D model built upon the Euler e-

quations brings more complex data communication pattern

than the 2D scenario for SWEs. The boundary condi-

tion contains heavy halo updating and a large number of

resource-demanding conditional statements. Moreover, due

to the extremely complicated algorithm, the total number

of floating-point operations for original Euler algorithm (at

least 2100) is substantially increased, almost doubling the

number for SWEs ([3], [10]). The surge in operations greatly

challenges the limited FPGA resources, and desires extra

optimizations to reduce the resource usage other than simply

utilizing customizable data precision.

III. HYBRID CPU-DFE DESIGN

A. Hybrid CPU-DFE Mechanism
In order to avoid the DFE solver processing the complex

conditional statements and halo exchange from the Boundary

Condition, we first decompose each subdomain into an inner

area (purple elements in the right panel of Fig. 1), and

two outer layers (halo in the right panel of Fig. 1). The
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Figure 2. Work flow of the hybrid design. CPU and DFE are working
simultaneously. D2C: DFE to CPU, C2D: CPU to DFE

complex Boundary Condition only happens in the two outer

layers (halo) of each subdomain. Therefore, we apply DFE

to simply process the inner area stencil computations, and

apply CPU to handle the outer area, including the Boundary

Condition and stencil computations of the outer layers. The

work flow of the hybrid design is shown in Fig. 2. In this

way, DFEs are now only focusing on the more regular stencil

of inner area ( 1© to 4©), without worrying about the outer

area halo updating and conditional statements ( 1© to 2©)that

would consume a lot of the FPGA resources. Besides, CPU

is now working simultaneously with DFEs, which archives a

more balanced resource allocation. After both CPU and DFE

finish their work ( 4©), only four layers of elements along the

inner-outer boundary need to be exchanged between CPU

and DFE (shown as C2D and D2C in Fig. 2).

B. Hybrid Data Exchange Model
For heterogeneous architectures, data exchange between

the processors and accelerators is usually a key issue that

deserves careful consideration. The basic principles are to

maximize data reuse while data stays in the card, and to

minimize data movement between different cards.

As for atmospheric modeling, the propagate data sets are

required to be updated every time step. However, there is

also a number of constant data sets that label the basic

information of a chosen area. The constant data sets do not

need to be exchanged at every time step, and can be stored

in the on-board memory for the whole program cycle.

In the original Euler algorithm, even though the data

sets required for the stencil computation include six arrays

(x, xs0, xs1, xs2, xs3 and y), four (xs0, xs1, xs2, and xs3)

of them are constant arrays, representing the physical envi-

ronment of the selected surface. Accordingly, the constant

arrays can be stored on the DFE on-board memory, rather

than being exchanged every time step. The hybrid data

exchange model is shown in Fig. 3 with three different steps:

1) we send (CPUSend) all five input arrays to the DFE

on-board memory, which has a higher bandwidth than

the PCI express interconnections.

2) at each time step of the stencil computation, DFE reads

(DFERead) all the input arrays from on-board mem-

ory, streams them through the Stencil Kernel for com-

putation, and writes (DFEWrite) the output stream
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Figure 3. Hybrid data exchange model.

to y in the on-board memory. After the computation,

only the propagate arrays x and y will be exchanged

(CPU-DFE Talk) between CPU and DFE. CPU will

also be in charge of the halo updating (HaloEx) to

exchange data with neighboring subdomains.

3) when step 2© finishes after a given number of time

steps, CPU will read the whole y (CPURecv) from

the DFE on-board memory.

The overhead of the data copy in step 1© and 3© is

small and can be ignored in the long-term simulation which

contains thousands of stencil computation ( 2©). Besides the

hybrid data exchange model, techniques such as hardware

data-compression [5] and mathematical reduction [3] could

also be applied to optimize the data exchange.

IV. DESIGN OF EULER STENCIL KERNEL

A. Streaming Computing Model
In this section, we introduce approaches to decrease the

usage of computing resources, so as to fit the complex Euler

kernel into one single FPGA. The hardware implementations

are introduced in the next section.

Reconfigurable platforms achieve computation through

developing a deep pipeline of concurrent units, and process-

ing the targeting problem in a streaming model. In terms

of the Euler algorithm, we use the computing resources

of the FPGA chip to deploy the hardware kernel (Fig. 4)

that contains different modules equivalent to the steps listed

in Algorithm 1. Input streams from the inner buffer will

go through corresponding modules and get processed. The

total number of floating-point operations for the original

algorithm is shown in the Original ALG row in Table I.

B. Algorithmic Offsetting
The identical rule to compute the fluxes on a common

edge of two consecutive mesh elements (remarked in Section

II-B) offers us a big optimizing space by means of the

streaming offsetting model. We thus carry out an algorithmic

offsetting method to simplify the Euler stencil kernel.

Algorithm 2-Part 1 shows a fragment of the State Recon-

struction step to compute east-direction intermediate vari-

ables qe[0], qe[1], and west-direction intermediate variable

qw[1]. We can figure out that computing qe[0] and qw[1] is





Algorithm 2 Demonstration of the Algorithmic Offsetting Method

1: Part 1: Original code. (qe[0], qe[1], and qw[1] are intermediate variables in the step of State Reconstruction)
2: qe[0] = 24*x[k,j,i] - (x[k,j,i+1]+x[k,j,i-1]+x[k,j+1,i]+x[k,j-1,i]+x[k+1,j,i]+x[k-1,j,i]) + 3*(x[k,j,i+1]+x[k,j,i-1]) - 2*(x[k,j,i+1]-x[k,j,i-1]);
3: qe[1] = 24*x[k,j,i+1] - (x[k,j,i+2]+x[k,j,i]+x[k,j+1,i+1]+x[k,j-1,i+1]+x[k+1,j,i+1]+x[k-1,j,i+1]) + 3*(x[k,j,i+2]+x[k,j,i]) + 2*(x[k,j,i+2]-x[k,j,i]);
4: qw[1] = 24*x[k,j,i-1] - (x[k,j,i]+x[k,j,i-2]+x[k,j+1,i-1]+x[k,j-1,i-1]+x[k+1,j,i-1]+x[k-1,j,i-1]) + 3*(x[k,j,i]+x[k,j,i-2]) - 2*(x[k,j,i]-x[k,j,i-2]);

1: Part 2: Algorithmic offsetting method.
2: tmp1 = 24*x[k,j,i]-(x[k,j,i+1]+x[k,j,i-1]+x[k,j+1,i]+x[k,j-1,i]+x[k+1,j,i]+x[k-1,j,i])+3*(x[k,j,i+1]+x[k,j,i-1]);
3: tmp2 = 2*(x[k,j,i+1]-x[k,j,i-1]);
4: qe[0](t) =tmp1 - tmp2;
5: qe[1](t) =tmp1(t+1) + tmp2(t+1);
6: qw[1](t) =qe[0](t-1);
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Figure 6. Mass conservation: relative error should be less than 10−11.

6 MB on-chip fast memory that can provide a bandwidth of

14 TBytes/s. DFEs are connected with the CPU through PCI

Express 2.0 interconnection.

In the hybrid design, we first decompose the total channel

into eight (130 × 120 × 114) subdomains. For each sub-

domain, the DFE processes the inner area, and the CPU

processes the outer area. The halo exchange is done auto-

matically by the neighboring communication functions from

the framework of PETSC (Portable Extensible Toolkit for

Scientific Computation) [14]. Constant streams will stay in

the large on-board memory, and coordinate data will stay in

the on-chip fast memory. We apply the algorithmic offsetting

method to eliminate the unnecessary operations, and apply

customizable precision to further reduce the resource usage.

Based on the analysis in Section IV-C and the resources

provided by Stratix5 D8 chip, we finally set the floating-

point number to be 11 bits exponent and 32 bits mantissa.

Fig. 6 shows the accuracy validation on the basis of the

mass conservation law. Mass conservation is an essential

integral invariants in atmospheric simulation. Mathemati-

cally, the discretization scheme we employ leads to exact

mass conservation. Due to the truncation error, the error of

mass conservation is near to machine epsilon (around 10−14

in double precision). This conservation law can be further

relaxed to 10−11, indicating that at most 1% of total mass

discrepancy is introduced after a billion time steps.

B. Reference Implementation

Our reference implementations are based on a hybrid rack

with two 12-core Intel E5-2697 (Ivy Bridge) CPUs, and

three Intel Xeon Phi 60-core 5120d (MIC) cards.

In the CPU implementation, we employ OpenMP multi-

threading and vectorization to scale the performance over

cores and vector units, and employ cache blocking to im-

prove the efficiency of data reuse. After careful tuning, we

manage to scale the CPU performance over 24 threads and

achieve a speedup of 20x over a serial implementation.

In the CPU-MIC implementation, as the hybrid unit

contains three MIC cards, we first decompose the whole

data channel into three equal subdomains according to

the right panel of Fig. 1. After applying the same hybrid

methodology we proposed in Section III, MIC only needs

to process the inner area of each subdomain, with CPU cores

processing the outer area simultaneously. Both the CPU

and MIC programs are fully optimized through OpenMP

multi-threading, vectorization and cache blocking. The best

performance is achieved with 24 threads for CPU and 236

threads for MIC in the offload mode.

VI. RESULTS AND ANALYSIS

Table II shows the performance (number of mesh points

processed per second) and power efficiency (performance

per Watt) for different implementations. Note that the power

consumption is measured with a power meter, and the FPGA

chip works on a frequency of 180MHz. The CPU-MIC rack

has the same physical size as the MPC-X FPGA unit, and

can provide a more fair comparison based on performance

per volume and power efficiency per volume.

The CPU-DFE unit with 8 FPGA chips is 18.5 times faster

and 8.3 times more power efficient than the multi-core CPU

implementation with two 12-core Intel E5-2697 (Ivy Bridge)

CPUs, and is 6.2 times faster and 5.2 times more power

efficient than a hybrid implementation with two 12-core Intel

E5-2697 CPUs and three Intel Xeon Phi 5120d (MIC) cards.

The reference designs based on the most powerful multi-

core and many-core architectures have been fully optimized

through a series of sophisticated paralleling techniques.

However, the overall performance is not scaled ideally, as

we have to face the challenges from the complex stencil

algorithm, and the bandwidth bottleneck caused by heavy

data exchange. The discontinuous data access for the stencil

computation leads to a higher rate of cache miss, and

further restricts the computing efficiency. As for the DFE

design, through applying hybrid mechanism, algorithmic



Table II
PERFORMANCE AND POWER EFFICIENCY FOR DIFFERENT PLATFORMS

Mesh size: 260× 240× 228
performance

speedup
power efficiency power

(points/s) (Watt) Perf/Watt efficiency

CPU 24-core 154K 1 427 0.36K 1

CPU-MIC unit 474K 3x 815 0.58K 1.6x

CPU-DFE unit 2.85M 18.5x 950 3K 8.3x

offsetting, fast memory table, and the customizable-precision

arithmetic, we manage to map the complex Euler stencil

kernel into a single FPGA chip (Fig. 4), and build a deep

pipeline that can efficiently perform nearly 1000 floating-

point operations per cycle. The inputting streams in addition

form a cache-like data buffer that provides perfect data

access [15]. All above contributions finally lead to the better

performance of DFE over the reference designs.

In terms of the power efficiency, due to the low clock

frequency, DFE generally consumes a lower energy usage

over traditional platforms, and accordingly becomes a bet-

ter alternative for studying the climate issues in a more

environmentally-friendly and green way.

Note that the CPU-MIC unit used in the reference imple-

mentation can be considered as a replication of one comput-

ing node from Tianhe-2, the world’s top supercomputer with

a theoretical peak performance of 54.9 PFlops. As atmo-

spheric modeling generally desires large-scale experiment

to achieve better resolutions, we can project that our hybrid

CPU-DFE design, if scaled to a large-scale supercomputer

scenario, would demonstrate a similar speedup as archived in

this paper, and greatly reduce the huge power consumptions.

VII. CONCLUSION

This paper proposes a highly-efficient and green DFE

solver for the complex Euler atmospheric equations. The

hybrid design achieves more balanced resource allocation

and better data reuse, and can be generalized to any hetero-

geneous node equipped with both processors and accelera-

tors. Optimizing approaches based on algorithmic offsetting,

fast memory table and customizable-precision help us map

the resource-demanding stencil kernel into a single FPGA

chip and gain significant improvements in performance and

power efficiency over multicore and manycore platforms.

The experimental results show great potential on utilizing

reconfigurable platforms in the atmospheric simulations.
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