
A Dataflow System for Anomaly Detection and
Analysis

Andrei Bara, Xinyu Niu, Wayne Luk
Dept. of Computing, Faculty of Engineering, Imperial College London, UK

{andrei.bara10, niu.xinyu10, w.luk}@imperial.ac.uk

Abstract—This paper proposes DeADA, a dataflow architec-
ture incorporating an automated, unsupervised and online learn-
ing algorithm. Compared with 24 core software implementations,
DeADA achieves up to 6.17 times lower data drop rate and 10.7
times higher power efficiency. More importantly, experimental
results for the Heartbleed case study suggest that DeADA is
capable of detecting unknown attacks under network speeds of
at least 18Mbps, a feature which is essential for modern network
intrusion detection.

I. INTRODUCTION

The recent Heartbleed exploit and Bash vulnerability have
brought the importance of network security back to the pub-
lic’s attention. One area concerned with network security is
network intrusion detection (NID). Various systems have been
proposed, from simpler techniques like rule based intrusion
detection which can perform live intrusion detection, but which
has difficulties in handling more complex scenarios, to ma-
chine learning algorithms which are smarter, but significantly
slower. Both methods have a reduced ability when dealing with
unknown attack patterns.

We identify two main issues. Firstly, reduced process-
ing speed of the machine learning solutions results in low
throughput of the analysis step, and thus an decrease in the
probability of discovering anomalies in big data/network data
[1]. Secondly, modern systems are structured around big data
which is quite often subjected to concept drift [2]. The lack of
a scalable and automated solution which can handle concept
drift causes the classification accuracy to degrade over time.

Hence, we highlight the following contributions of our
paper:

• DeADA: a scalable dataflow architecture which acts as
an end-to-end system for anomaly detection and analy-
sis, focusing on removing the bottleneck introduced by
the decision function of the One-Class Support Vector
(OCSVM).

• We analyze the impact of an increased processing rate
on the accuracy of the anomaly detection algorithm by
using the Heartbleed attack as an example.

II. ANOMALY DETECTION

A. One Class Support Vector Machines

One-Class Support Vector Machines (SVM) are a recent
addition to the field of machine learning algorithms which
build on top of the classical SVMs, and deal with identifying
whether new data are of the same class as the training data,
thus becoming an attractive candidate for anomaly detection
techniques. There are two main models used for describing the
OCSVMs: one developed by Schölkopf et al. [3], the other

one by Tax and Duin [4]. For this paper we will be using
Schölkopf’s version.

The idea behind Schölkopf’s algorithm is to create a
function f which maps most of data in some small region
+1 and the rest to −1. During the offline phase the OCSVM
considers the origin point to be the only negative example in
the data set and tries to find a separating hyperplane, while
maximizing the margin between the data points and the origin
[3]. In Figure 1 we can see the learned frontiers of a set of
two dimensional data points. These two regions are the result
of mapping a higher dimension hyperplane generated using an
Radial Basis Function (RBF) kernel back to a two dimensional
representation. Although all of the points are part of the same
class (i.e. normal) only the ones inside the frontier will be
classified as normal, the rest being abnormal.

0

0

-2 2

2

-2

-4
-4

4

4

resulting
regions

Target class

Fig. 1: Learned frontier for One-class SVM.

The decision function of OCSVM is f(z) as shown in
Equation 1. λi are the coefficients of the support vectors and
will be 0 if the vectors are not support. K(xi, z) is the kernel
function, z is the new data vector and ρ is a constant resulted
from the OCSVM model generation phase. For this paper we
will use a slightly modified version of Equation 1 which has
the sgn function removed and call it OCSVMpartial. This
will give us more control in judging how much of an anomaly
a certain data point is.

f(z) = sgn(

n∑
i

λiK(xi, z)− ρ)) (1)

There is research on accelerating the training phase of
Support Vector Machines with FPGA. Of particular interest
is the work done by Papadonikolakis et al. [5] who propose a
geometrical approach to training a classifier which can exploit
the heterogeneous capabilities of the FPGA. However, the

focus of our paper is in accelerating the classification phase
and not on the training phase. In addition, to the best of our
knowledge, building a dataflow architecture around One-Class
Support Vectors has not been done before. Future research
could build on top of the work presented in [5] to speed-up
the OCSVM training.

B. Concept drift in anomaly detection

From a technical perspective we can view concept drift as
in Figure 2. Here, we trained an initial classifier on D1 data set
resulting in the separating hyperplane shown as a solid line,
whereas D2 and D3 show two ways in which the change of the
hyperplane results in concept drift. The decision boundary of
the second data set D2 moves below that of the first data set,
thus leading to an increase in the rate of false positives. The
boundary of the third data set D3 moves above the initial one,
thus leading to an increase in the number of false negatives.

normal data

timeline

D2D1 D3

initial boundary
current boundary

abnormal data
misclassified data

Fig. 2: Different types of concept drift relative to the initial
data D1.

In practical terms, the problem of concept drift becomes
highly dependent one what we define to be an anomaly.
Suppose the current models are able to identify {a, b, c} as
being normal and {e} as abnormal. A data point affected by
concept drift would be similar to the existing one (e.g. {bb})
as opposed to one affected by concept shift (e.g. {d}) [6]
which, depending on the application, could be considered a
true positive. Hence, since no knowledge of {bb} exists at the
time of the training, this means we would require some sort
of incremental updating of the models. A good approach will
maintain, or improve the accuracy of the original models.

C. Modified OCSVM algorithm

Because anomaly detection is a one class problem, the
notion of concept drift applies to the normal data. As such,
for automating the incremental learning process, we devised
an algorithm which analyses abnormal data, and tries to
differentiate between false positives and true positives based on
how closely the new instance matches the previous ones. In this
way, we are updating the training data set (of normal instances)
with the latest available information. The algorithm use the
OCSVMpartial decision function, majority voting, a window
of OCSVM models and a heuristic function for selecting the
best candidates to serve as training data for new models.

III. DEADA

The challenge of analysing big data in a timely fashion
can be illustrated by having a thread Receiver receiving a
series of network packets which are enqueued for analysis
by a thread running the OCSVM algorithm. We set the size

����������
����������
����������
����������
����������

����������
����������
����������
����������
����������Model

training

......

......

Detected

Anomaly

heuristic
apply

results buffer

Capture data

packets

PreProcess PreProcess

aggregate

vote

anomaly

normal

normal

PreProcess
layer

layer
Decision

OCSVM
layer

update window

partial
OCSVM

partial
OCSVM

Temp
Storage

Storage
Model

Fig. 3: DeADA architecture. Each blue box represents a
computation node, at the various level. The OCSVM layer
and Decision layer are the implementation of USAE. Note the
Model Training node is stripped as this phase can be done via
the architecture, or as an offline and separate process.

of the queue to be 6000 to reflect memory contraints. The
OCSVM processing uses a model with 20000 support vectors
with 20 attributes each. There are 80855 re-assembled packets
(totalling 72 MB) in the data set which are being sent over to
the Receiver at a rate of 2571.95 packets/s (corresponding to
a throughput of 18Mbps). The classification rate of the OCSM
thread is 461.36 packets/s. In real time, the cut off point (stop
of processing) is quickly reached when the queue buffer is full.
In order to cover the gap between the incoming rate and the
analysis rate, packets need to be dropped not only diminishing
the probability of detecting attacks, but also diminishing the
OCSVM’s accuracy when affected by concept drift.

A. System Overview

We introduce DeADA, a dataflow architecture (Figure 3)
designed as an end-to-end system (from capturing to analysis)
structured on three layers: PreProcess layer, OCSVM layer and
a Decision layer.

B. Hardware Architecture

The design challenge for a hardware OCSVM architecture
is to efficiently transfer and process support vectors represented
in sparse format. The algorithm details of OCSVM are given
by Equation 2, and Figure 4 presents the customized FPGA
architecture which uses our modified OCSVM algorithm. At
each clock cycle, the ROM kernel and the RAM kernel feed
the required data into the stream aligner, and the data-paths
process the aligned data to generate one partial result per data-
path.

The ROM kernel stores shared incoming instances and
the RAM kernel distributes the support vectors loaded from
off-chip memory. In an OCSVM system, some of these
attributes may or may not exist for some instances, thus
many implementations store the support vectors in sparse
format as [index, value] pairs, along with their corresponding

path
Data

path
Data

path
Data

path
Data

ROM
kernel kernel

StreamStream
align

Stream
alignalign

Stream

PCIe

Incoming Instance

align

Off−chip

RAM

memory

RAM

PCIe

Collect
kernel

Output Buffer

FPGA

Fig. 4: FPGA architecture for OCSVM with USAE.

λ coefficients. Similarly the incoming instance is formed
of [index, value] pairs, where index is the ordinal of the
attribute. The support vectors and the shared instance are
distributed across the DeADA units(a grouping of a stream
aligner and a data-path). Support vectors from a model can
be distributed across several units for quicker processing and
several models can be processed on a unit (since the number of
SVs from each model is known). Storing the shared instances
in on-chip ROMs saves communication bandwidth as the
instances do not need to be loaded repetitively from external
devices. The RAM kernels request consecutive memory bursts
to hide the off-chip memory latency and maximize the memory
bandwidth.

K(x, x′) = exp

(
−||x− x

′||22
γ

)
(2)

The stream aligners pre-process the loaded data from the
ROM kernel and the RAM kernel. Due to the sparsity of
instance data and support vector data, the applied arithmetic
operations depend on data indices. A typical OCSVM algo-
rithm such as the one used by LibSVM has five run-time
conditions with different operations on the x x′ input streams,
the final two conditions dealing with scenarios where only one
of the streams has data left. If implemented as a data-path,
all the possible arithmetic operations need to be implemented,
to ensure correct functionality. Instead, we develop finite-state
machines named stream aligners to pre-align the input streams.
When stream indices are not even, a stream aligner fetches
new data from the stream with the smaller index, and outputs
0 for the other stream. As an example, at cycle N of runtime,
x[i].index > x′[j].index, the x′ stream outputs its latest
fetched data, and fetches x′[j + +] from the ROM kernel,
while the x stream remains the same and outputs 0. With
the stream aligners dynamically adjusting the stream output
data, the five run-time condition are now implemented with the
same arithmetic operations: (x−x′)2. In the previous example,
when x is set to be 0 the arithmetic operation becomes x′2. In
an OCSVM kernel, the multiplication results are accumulated,
generating a feed-back loop in the data-path. If floating-point
arithmetic operators are used, multiple cycles are required to
generate one result, and the feed-back loop will thus reduce

the data-path throughput. We represent the input streams with
fixed-point formats, to ensure the arithmetic operations can be
finished within one clock cycle.

We define the overall data size ds as in Equation 3, where
M are the total number of models, Si the total number support
vectors of the ith model, aj the number of attributes of the
support vector and ainstance the number of attributes of the
analysed instance.

ds =

M∑
i=1

Si∑
j=1

aj + ainstance (3)

IV. EVALUATION AND INTERPRETATION

We measure the classification accuracy of the first data set
and use that as the reference accuracy of the system. We assess
the benefits of the modified OCSVM algorithm and DeADA,
highlighting the importance of accelerated anomaly detection
in maintaining the reference accuracy. For the experiment we
have chosen the Heartbleed bug as the anomaly.

A. Setup

The compare the efficiency of the DeADA architecture with
software implementations with single-device and multi-device
systems. The CPU designs are parallelised under the OpenMP
framework, and the data-paths in a DeADA architecture are
replicated to fully exploit all available resources. We run
the CPU designs on a Dell PowerEdge R610 machine, with
24 Intel(R) Xeon(R) X5660 cores running at 2.67GHz. For
single-FPGA designs, we use a Max3 data-flow engine (with
a Virtex-6 SX475T FPGA) from Maxeler Technologies, host in
a MaxWorkstation. The multi-FPGA designs run on an MPC-
C500 compute node with 4 MAX3 dataflow engines.

Heartbleed is a recent exploit of the OpenSSL implemen-
tation of the SSL protocol and takes advantage of a lack of
bounds check in the payload of a Heartbeat request.

We use Wireshark [7], a tool for capturing and analyzing
network traffic, to record ≈2000 packets of normal OpenSSL
traffic.

To simulate drift we start from the initial 2000 packets, and
continuously increasing the size of the record.length field
until we have generated 400000 data points/packets. We ran-
domly introduce the Heartbleed anomalies with a probability
of 0.1.

In order to accelerate the OCSVM layer we have imple-
mented the generic FPGA design from Figure 4 using the
Maxeler platform. The core parts of the implementation are
the Stream aligner and the Data path, which form a DeADA
unit. We define the replication factor to be the number of
DeADA units (e.g. Figure 4 has four DeADA units).

B. DeADA evaluation

In this section we will demonstrate the benefits of using
DeADA and an accelerated OCSVM layer, in performing live
network intrusion detection.

Table I contains the resource usages for the Maxeler
implementation of the OCSVM layer. As we can see in both
cases only ≈40% of the resources are being used. The design
parallelism is limited by available memory bandwidth (38.4
GB/s for MAX3), and cannot be further increased to exploit
the remaining resources. The memory bus width (3072/6144
bits) is a bottleneck when it comes to scaling.

Card LUTs FFs BRAMs DSPs component
MAX3 21.97% 16.79% 0.94% 9.52% data-paths
MAX3 43.25% 30.89% 30.31% 9.52% total

TABLE I: Resource usage for a build with replication factor
48 on MAX3. Infrastructure includes PCIe and DRAM con-
trollers.

As we have seen from section III a slow analysis/processing
rate allows for a reduced number of packets to be analyzed
in real time. Hence, we define DropRatio (Equation 4) as
a metric indicating the number of packets which need to be
dropped before a single packet can be processed.

Drop Ratio =
arrival rate

processing rate
(4)

Table II contains the resulting DropRatios when accel-
erating the OCSVM layer of DeADA, for various replication
factors. For replication factors 48 and 192 the design is tested
on a MAX3 node. The formula for computing the DropRatio
is given by Equation 4. We define the theoretical execution
time of a hardware design to be the performance when all N
replicated data-path are working actively in runtime, generating
N partial results each clock cycle. As shown in Table II,
for the hardware designs, while the ROM kernel initialisation
time dominates the overall execution time for small data
sets, the measured execution time approximates the theoretical
execution time when data size increases. Due to the higher
processing capacity, the hardware DeADA designs achieve up
to 6.17 times lower DropRatio compared a 24 core software
counterparts. Moreover, the DeADA designs are 4.7 to 10.7
times more efficiency than the software implementations. The
power efficiency of the multi-FPGA design is limited by the
power efficiency of its host CPUs, which consume 209 W in
idle state.

Drop Ratio P E (10−6)

CPU Cores Data size (mil.)
0.4 3.2 25.6 102.4

6 1.9 19.54 164.6 718.66 280 4.97
12 0.92 6.37 58.79 238.42 326 12.9
24 0.92 3.8 42.51 207.30 363 13.2

FGPA
DeADA units
48 (1-FPGA) 1.35 4.38 33.83 130.66 145 52.8

192 (4-FPGA) 0.33 1.12 8.64 33.5 482 61.9
theoretical (4-FPGA) 0.13 1.04 8.38 33.5 n/a n/a

TABLE II: Drop ratios for a CPU server and a MPC-C500
system. P indicates power consumption in Watt, and power
efficiency E is calculated as 1 / (Dropratio · P).

In order to see how the accuracy decreases with time we
split the 400000 data samples into 5 batches. For each batch,
a varying number of packets are analysed depending on the
DropRatio (lower drop ratio means more packets are anal-
ysed). From Figure 5 we can see that a high drop ratio reduces
DeADA’s capability of handling the concept drift in the system.
When subjected to concept drift DropRatio, the simple and
modified (used by DeADA) algorithms lose information about
the properties of the normal data, thus diminishing their
discrimination abilities. This can happen in scenarios where
the base models do not incorporate information about future
data points, hence the data points behave as when subjected
to concept shift (i.e. they act as true positives). However, if
we lower the DropRatio even further (DropRatio = 33)
the accuracy is being maintained throughout the length of the

experiment, as newer information is being incorporated into
the models more frequently.

1 2 3 4 5

0.4

0.5

0.6

Data batch no.

A
cc
u
ra

cy

DeADA(ratio=718,CPU)
DeADA(ratio=130,FPGA)
DeADA(ratio=33,FPGA)

Fig. 5: Impact of various drop ratios on the accuracy of the
classification.

V. CONCLUSION

This paper proposes DeADA, a solution for detecting
anomalies in live network data. We evaluate the DeADA
dataflow architecture built around the modified OCSVM algo-
rithm on a case study of the Heartbleed bug in an environment
with aggressive concept drift. Accelerating the anomaly detec-
tion not only allows for more data/packets to be analysed thus
capturing more potential attacks, but it is also important in
maintaining the accuracy of the system as can be seen from
our evaluation.

Future work would focus on mapping both the PreProcess
and Decision layers to FPGA to achieve a higher analysis
rate, and evaluate DeADA on larger data sets captured from
non-simulated environments.

Acknowledgement. This work is supported in part by
UK EPSRC, by the European Union Seventh Framework
Programme under Grant agreement number 257906, 287804
and 318521, by the HiPEAC NoE, by the Maxeler University
Program, by Altera, and by Xilinx.

REFERENCES

[1] B. D. W. Group, “Big data analytics for security intelligence,” CLOUD
SECURITY ALLIANCE, Tech. Rep., 2013.

[2] H. Yang and S. Fong, “Countering the concept-drift problem in big data
using iovfdt,” in Big Data (BigData Congress), 2013 IEEE International
Congress on, June 2013, pp. 126–132.

[3] B. Schölkopf, R. C. Williamson, A. J. Smola, J. Shawe-Taylor, and J. C.
Platt, “Support vector method for novelty detection.” NIPS, vol. 12, pp.
582–588, 1999.

[4] D. M. Tax and R. P. Duin, “Support vector data description,” Machine
learning, vol. 54, no. 1, pp. 45–66, 2004.

[5] M. Papadonikolakis and C. Bouganis, “A scalable fpga architecture
for non-linear svm training,” in ICECE Technology, 2008. FPT 2008.
International Conference on, Dec 2008, pp. 337–340.

[6] S. Wang, S. Schlobach, and M. Klein, “What is concept drift and how to
measure it?” in Knowledge Engineering and Management by the Masses,
ser. Lecture Notes in Computer Science, P. Cimiano and H. Pinto, Eds.
Springer Berlin Heidelberg, 2010, vol. 6317, pp. 241–256. [Online].
Available: http://dx.doi.org/10.1007/978-3-642-16438-5 17

[7] Wireshark. (2010, Jun.) Wireshark. http://www.wireshark.org/, accessed
June 2014. [Online]. Available: http://www.wireshark.org/

http://dx.doi.org/10.1007/978-3-642-16438-5_17
http://www.wireshark.org/
http://www.wireshark.org/

	Introduction
	Anomaly detection
	One Class Support Vector Machines
	Concept drift in anomaly detection
	Modified OCSVM algorithm

	DeADA
	System Overview
	Hardware Architecture

	Evaluation and interpretation
	Setup
	DeADA evaluation

	Conclusion
	References

