
A Hybrid Genetic-Programming Swarm-Optimisation
Approach for Examining the Nature and Stability of

High Frequency Trading Strategies

Andreea-Ingrid Funie
Department of Computing
Imperial College London

London, United Kingdom SW7 2AZ
Email: andreea.funie09@imperial.ac.uk

Mark Salmon
Faculty of Economics

University of Cambridge
Cambridge, United Kingdom CB3 9DD

Email: mhs39@cam.ac.uk

Wayne Luk
Department of Computing
Imperial College London

London, United Kingdom SW7 2AZ
Email: w.luk@imperial.ac.uk

Abstract—Advances in high frequency trading in financial
markets have exceeded the ability of regulators to monitor
market stability, creating the need for tools that go beyond
market microstructure theory and examine markets in real
time, driven by algorithms, as employed in practice. This pa-
per investigates the design, performance and stability of high
frequency trading rules using a hybrid evolutionary algorithm
based on genetic programming, with particle swarm optimisation
layered on top to improve the genetic operators’ performance.
Our algorithm learns relevant trading signal information using
Foreign Exchange market data. Execution time is significantly
reduced by implementing computationally intensive tasks using
Field Programmable Gate Array technology. This approach is
shown to provide a reliable platform for examining the stability
and nature of optimal trading strategies under different market
conditions through robust statistical results on the optimal rules’
performance and their economic value.

I. INTRODUCTION

Two elements drive trading in high frequency markets: the
traditional external economic forces of demand and supply,
as captured by the order book of a market, and forces that
arise from within the market structure itself, as liquidity moves
to balance risk structure in the market. Simple mechanical or
technical trading rules based on visual patterns (e.g ”head and
shoulders”), have been examined for many years in the context
of equity and currency markets [1] but with modern technology
it is possible to go much further in the design of trading rules.

Machine learning related research presents a number of
approaches, all of which tend to be highly computationally
expensive, limiting the testing and evaluation process. In
addition, a single dominant strategy with suitable performance
and stability under a range of different market conditions has
yet to be found, thus the need for real-time adaptation to
market characteristics. This adaptation implies learning along-
side the optimisation algorithm. For such adaption to perform
optimally, market conditions must be monitored and fed back
to the algorithm in real time to achieve maximum performance.
It is thus apparent that the requirement for computational
speed becomes paramount both for regulation and trading. This
leads to the current situation where high frequency markets
are being driven by machine-based trading algorithms that
are able to analyse huge streams of data in real-time using
advanced hardware and software. Recent developments in

hardware acceleration are now commonly adopted by large
investment firms in the design and implementation of such
trading strategies. This has been made possible through the
use of reconfigurable hardware, provided by companies such as
Maxeler Technologies. Such developments enable the efficient
use of flexible run-time reconfigurable algorithms which are
able to rapidly react to changing market conditions.

With these considerations in mind, this study seeks to
find profitable trading patterns, or robust predictive structures
that can be employed with confidence in the market in real
time. This is achieved using artificial intelligence optimisation,
hardware acceleration and pattern recognition techniques such
as genetic programming. The approach is developed using tick
level Foreign Exchange (FX) data, with a focus on examining
predictable patterns in varying market conditions and regimes.

II. TRADING PLATFORM

Given historical market prices, order book structure, nu-
merical constants, mathematical and statistical operators as
inputs, the algorithm will identify optimal trading rules, con-
structed from a combination of these inputs under certain
economic conditions, taking into consideration our minimum
gain stopping criteria.

The use of simple evolutionary algorithms provides clear
evidence in terms of profitability over standard technical in-
dicators. However, reliability issues arise in market conditions
that lack significant predictability [2], and we aim to explore
not only good trading rules but also those states of the market
in which no trading should take place.

A. Hybrid Evolutionary Algorithm

The genetic programming method provides an effective
way to search for both linear and non-linear trading rules. We
can then evaluate predictability as widely as possible, without
imposing restrictions on the form of model, predictor or trading
rule. A trading rule is built as a binary logical tree, which
produces true (1) (buy) or false (0) (sell) signals given the set
of constructed input variables. The rules are then represented
in the form of randomly created binary trees with terminals
and operations (mathematical and binary) in their nodes.

2014 13th International Conference on Machine Learning and Applications

978-1-4799-7415-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ICMLA.2014.11

29

A GP is constructed using different individual elements
such as: functions, terminals, fitness criterion, genetic opera-
tors, variable length programs and population initialisation.

In our implementation we make use of the generational
approach, where a new generation replaces the old generation
and the program cycle continues. Our terminal set contains
the variables, which take their values from market data and
are updated every time new information arrives in the market.
Thus, it allows the conditioning information sets to update the
trading rule in real time. The algorithm explicitly computes
logarithmic values of the conditioning variables, moving av-
erage values, and maxima and minima over different periods.
The terminal set also includes real numbers and specific market
price values (e.g: volume on the bid, depth on the ask side, etc.)
as terminal constants. Each of these inputs becomes part of
the GP training and evaluation data sets as a GP terminal. Our
function set used to define the technical rules consists of the
binary algebraic operations, max, min, binary order relations,
logical operations, and unary functions (e.g: absolute value,
change of sign). Such a broad range of functions enables the
production of a huge set of non-trivial strategies.

Once we have decided on the terminal and function sets, the
initialisation of a tree structure becomes straightforward. There
are two common methods for initialising tree structures: full,
and grow. The grow method (see figure 1) produces irregular
shape trees, because nodes are selected randomly from the
terminal and function sets throughout the entire tree (except the
root node which uses only a logical or binary operator). Once a
branch contains a terminal node, that branch has ended, even if
the maximum depth has not been reached. Conversely, the full
method chooses only functions until a node is at the maximum
depth (16 in our case). Then it chooses only terminals resulting
in a complete binary tree of the maximum allowed depth.
Unfortunately neither of the above methods used exclusively

Fig. 1. Trading rule grow initialisation - maximum depth 5

will optimally exploit our design, potentially resulting in a
uniform set of structures for the initial population. According
to more recent studies [5], a better approach is the ramped half-
and-half method. Such a method calls for the equal division
of the population among the initialised individuals, with trees
having all depth sizes up to and including the maximum
allowed. For each depth group, half of the trees are initialised
with the full technique and half with the grow technique.

Evolution proceeds by transforming the initial population
through the use of genetic operators, which in our case

are: Crossover, Mutation and Reproduction. In our design,
mutation is not performed on the fittest 25% of the population
after which it occurs at a rate of 0.2. We use a crossover
probability of 0.2 and that is applied over all individuals in
the population. The reproduction probability is set to 0.05. We
have experimented with a range of values for these parameters
and these choices have provided the most consistent results
across the entire data set.

The algorithm’s fitness function is calculated on the training
data set and provides continuous feedback regarding per-
formance for the relevant data. Performance (profitability)
is measured by computing the cumulative returns from the
following allocation strategy: according to the signal provided
by the trading rule, the trader buys or sells 1 million GBP.
Using this approach we control the potential price impact of
the trade, through ensuring necessary liquidity for completing
the minimum specified transaction size. This assumption limits
the potential profitability when the trading signal is strong and
our results will therefore tend to underestimate the potential
profitability of the trading rules. When new information arrives
from the market, the system can re-evaluate the trading signal
and adapt to the new market conditions by updating their
position accordingly (e.g: buy, sell) [2](see formula 1).

Rc = Πt(1 + zt ∗ rt)− 1 (1)

where rt = (pt - pt−1) / pt−1 is the one-period return of the
exchange rate and pt corresponds for best bid or best ask price.

To control the frequency of trading, we add a trading
threshold to the strategy. According to this, the trader is
allowed to trade only if the exchange rate exceeds at any point
+k, −k, relative to the last transaction price. Formally, let’s
define: zt = - 1 for a short sterling position and zt = 1 for a
long sterling position and pt the price at time t and pt1 price
at time t1 where t1 is the time of the trader’s last transaction.
When

|pt − pt1| >= k (2)

the trader is allowed to re-evaluate its position. The parameter
k is used to filter out weak trading signals and determines an
”inertia band” that prompts the trader to trade only once the
exchange rate exceeds the value of a certain characteristic by
a value of k. In our case the characteristic followed is repre-
sented by the past exchange rate values and is tightly related
to the filter trading strategy1 which can also accommodate
accounting for transactions costs beyond the bid-ask spread.
It was shown [3] that in the face of Knightian uncertainty
incomplete preferences may lead to an absence of trading, thus
the importance of such a filter threshold which should be part
of the trader’s strategy. For example, if k=0 then trades can take
place, every time the mid-quote of the exchange rate changes,
leading to an unreasonably large number of transactions given
transactions costs. As k increases, the trading frequency drops.

The algorithm uses a ranking selection based on the
fitness order into which the individuals can be sorted. After
each iteration of the algorithm, trading rules that have poor
performance according to the fitness function are removed
from the population, and only the more profitable ones survive

1A filter trading strategy is a trading strategy where technical analysts set
rules for when to buy and sell investments, based on percentage changes in
price from previous lows and highs. [4]

30

to carry their structure onwards to create new trading rules.
At each point in time, as the size of the training set evolves,
this algorithm is replicated over a number of iterations until
ultimately it converges to the trading rule that achieves the best
in-sample performance given the conditioning information.

We decided to implement a Hybrid Genetic Programming
(GP) and Particle Swarm Optimisation (PSO) algorithm as
shown in figure 2. The additional complexity, which decreases

Fig. 2. Hybrid GA/PSO algorithm flow chart

the execution speed of the program significantly increases its
performance. As we have previously mentioned, we apply the
genetic operators after the fitness selection step. We perform
the fitness selection and then apply the PSO to the best half of
the trading rules. Afterwards, we apply the genetic operators
on only the new rules and send the offspring and the enhanced
rules into the new population. The PSO search by its nature,
will seek to find the global minimiser or maximiser of a
function that we give it as input, resulting in this case in groups
of trading rules which converge towards our optimum target.

The fitness evaluation is achieved by using a proportional
fitness criterion (roulette wheel) approach. This fitness level is
used to associate a probability of selection for each individual
rule. If fi is the fitness of individual i in the population, its
probability of being selected is

pi =
fi∑N
j=1 fj

(3)

where N represents the number of individuals in the popula-
tion. After calculating each individual fitness level, we perform
the PSO on the best half of population and receive back the
small groups of trading rules which hope to maximise the
return. Formula 1 is applied with two constraints: no two
combinations of groups are the same, and each group will
not contain the same trading rule twice. Once these groups

are returned we apply the genetic operators within each group
ensuring that a child receives the parent’s proven positive
characteristics. This clearly increases the chance of obtaining
a better child strategy compared to the case when crossover is
performed between completely random parents.

B. Field Programmable Gate Array Acceleration

From genetic programming theory we know that fitness
evaluation is the most computationally expensive part of the
algorithm. In order to improve execution time, a Field Pro-
grammable Gate Array (FPGA) is used to provide hardware
acceleration: our FPGA is a Xilinx V6-SXT475 device in a
Maxeler MAX3A Vectis dataflow engine, running at 100MHz.

Our design involves sending the population of individuals
from the CPU (represented as trees) as two streams: the first
being represented by each trading rule terminal and the second
containing each trading rule operator. We keep the order of
the trading rules such that the array block address for the
trading value in the first stream corresponds to the array
block address from the operators value in the second stream.
Together with those two streams we currently send a number
of transactions on which we want to compute our individuals’
fitness. The transactions (each transaction being represented
by an array of market data price values on which we evaluate
our trading rules) are all sent together to the FPGA as the
third stream of data. We perform the fitness evaluation of the
current population on the FPGA: we then evaluate each of the
individual trading rules on all of the transactions and get back
a result representing the actual fitness value of the evaluated
individual. Once the computation is done, we return to the
CPU an array with the fitness values for each trading rule.
Then we proceed with the remaining operations on the CPU.

As a result of this approach our accelerated design runs
15.62 times faster than the corresponding software running on
an Intel i7-2600 processor at 3.4GHz. It enables us to test our
program on a larger data set, thus improving our statistical and
profitability evaluations.

III. TESTS AND RESULTS

A. Robustness Tests

For this approach to be seen as a reliable trading mech-
anism we need to examine its robustness. This was achieved
through aggregate testing, as well as the insertion of noisy
signals into both training as well as evaluation data sets.

We split our data from 2003 and 2004 each into three
different data-sets (three months split into individual months:
January, February, March) to identify any predictable market
price patterns as well as to evaluate the consistency of the
algorithm’s performance under noisy signals. As different
market conditions will lead to different trading rules, con-
secutive periods of three months are sufficient to identify any
exploitable price patterns which in practice will only exist for
a very short fraction of time within each day.

1) Aggregate Testing: We first evaluate the number of times
the best fitting in-sample trading rule from one month (e.g:
January) appears in the top 15% of the best performing trading
rules in each of the other two months (e.g: February and
March) (see tables below, e.g: the January trading rule under

31

the column named Feb/March). We evaluate the 2003 and 2004
data sets on a population of 150 individual strategies, each with
a range of iterations (X). These results show that in 2003 the

TABLE I. 2003 AGGREGATE TESTING

X Feb/March Jan/March Jan/Feb
1000 137/118 142/108 136/120

800 127/102 130/103 122/119

600 122/98 117/92 117/103

400 117/92 121/99 115/92

200 103/86 97/93 95/84

TABLE II. 2004 AGGREGATE TESTING

X Feb/March Jan/March Jan/Feb
1000 107/98 122/92 102/110

800 102/92 99/92 104/88

600 99/89 94/97 107/91

400 86/92 78/86 87/84

200 71/79 74/69 67/62

best trading rule from one month appears in the top 15% best
trading rules from the other months in over 50% of the cases.
So, even though the best trading rule for one time period might
not naturally maintain its ranking over the remaining individual
time periods, it appears in the top ranked strategies most of the
time. This results provides some confidence that the algorithm
is able to perform consistently through time and can identify
re-occurring predictable trading patterns.

2) Algorithm Behaviour in Presence of Noisy Data: This
test consists of taking the best fitting in-sample trading rule
and examining its performance on the out-of-sample data, with
and without different amounts of spurious noisy prices added
(to a subset, a percentage of the data values) to examine
sensitivity of our results to the strength of predictability, or
signal, in the price data. We take the out-of-sample market data
values and measure their mean and standard deviation and then
add to the original data different amounts of noise following
a Normal distribution. We vary the standard deviation and
hence the amount of noise keeping the prices’ mean fixed
and generate new price values, until our selected trading rule
stops predicting and starts giving bad results. We performed the
test on the best trading rule from an out-of-sample ”January-
March” period, rule which has a performance of 1.17213 with
1000 iterations. The buy/sell price means for the tests are
1.61065/1.61075 with their original standard deviation (std)
being: 6.99e− 05/7.41e− 05.

In Table III, the last four columns represent the perfor-
mance results of the same trading rule applied on the original
out-of-sample market data but with a specified (percentage)
amount of random noise added. We notice that for a standard
deviation value of 0.0001 for the prices modification we get
a performance very close to the original, while for the 0.1
standard deviation value we obtain the lowest performance
with 0.639034. These results show what we would expect to
see: if we add some random noise to the out-of-sample data, in
terms of both a percentage of the data affected and noise level,
the best GP/PSO trading rule’s performance starts to decrease
and this continues while increasing the standard deviation.
Thus, Table III indicates that our algorithm performs well
because its performance only drops off gradually as the signal

TABLE III. 2003 NOISE BEHAVIOUR - PERFORMANCE MEASURE

Random Noise Amount Noise Std Noise Std Noise Std Noise Std
0.0001 0.001 0.01 0.1

50% 0.088953 -0.203530 -0.650471 -1.048890

25% 0.454831 0.128904 0.003891 -0.378158

10% 1.119038 1.005998 0.899640 0.639034

to noise ratio decreases initially, but then its performance falls
away significantly as the signal is drowned by extreme levels
of the added noise. This result implies there is structure in the
data that our algorithm can detect and shows how sensitive the
results are to variations in the signal to noise ratio.

3) Rejection-Acceptance Testing: We now check whether
those poor (rejected) strategies may be reselected within the
best set if they are allowed to remain and re-entered within the
next iteration’s set of strategies. In a sense this exercise mirrors
the aggregate testing described above, when we examined if the
best strategy would re-occur in later periods, but now we are
looking at the consistency of rejection within the iterations of
the best strategy selection process. We examine the rejection-
acceptance for each iteration measured at the end of the X
iterations. Keeping the same market data testing split choice,
we evaluate our algorithm on a different number of iterations
for a different number of tests. Briefly, let’s assume we have a
population of N individual trading rules to be examined. When
each iteration ends we split this population into the best half
(accepted for performing GP operations next) and the worst
half (rejected for the next iteration).

The 2003 and 2004 results presented in Tables IV and V
were obtained using a population of 150 individual strategies
for each of the individual months examined once for each of
the X number of iterations. Formula 4 provides the required
calculation:

TotalAcceptedX =

N−1∑
i=0

i ∗ itAcceptedi (4)

where TotalAcceptedX is the total number of individuals
accepted in the next iteration after originally being rejected
in the previous iteration, after X total iterations; itAcceptedi
stands for the number of individuals being accepted after one
iteration only, and i represents the iteration number.

TABLE IV. 2003 REJECTION-ACCEPTANCE TESTING

X Jan% Feb% March% Jan-March%
1000 38,40% 30,51% 40,07% 36,33%

800 50,93% 48,40% 53,32% 50,88%

600 45,11% 44,19% 39,44% 42,91%

400 41,43% 31,47% 40,96% 37,95%

200 28,70% 21,08% 25,18% 21,08%

TABLE V. 2004 REJECTION-ACCEPTANCE TESTING

X Jan% Feb% March% Jan-March%
1000 57,76% 47,87% 54,73% 53,44 %

800 53,00% 51,09% 52,05% 52,05%

600 40,57% 43,64% 42,08% 42,10%

400 43,26% 34,71% 32,64% 42,31%

200 38,53% 24,77% 26,78% 30,03%

32

Looking at Table IV, with the January-March 2003 data
we re-accept least fit strategies between 21.08% and 50.88%
of the time. Naturally with a greater number of iterations
the probability of re-selection will rise. There is a trade-off
here between ensuring consistent rejection of failed strategies
and flexibility to ensure the ability to adaptively respond to
new regimes in the data when different strategies may become
optimal. Since our worst result arises with 800 iterations and
this is a little over 50% we feel this trade off between flexibility
and consistency in optimal rule selection is acceptable. Table V
with 2004 data shows us that the re-acceptance rate of failed
strategies is higher than in the 2003 data. This might suggest
that for 2004, the potential market data price patterns may be
harder to find, even non-existent (we cannot be sure at any time
that a predictable pattern exists, until we have confirmed the
presence of the trading rules giving profitable returns). These
results reinforce the impression that the algorithm can identify
shifting patterns of predictability in the information set, given
that in the majority of cases we have found a relatively low
level of re-acceptance of failed strategies. Thus, the algorithm’s
power to consistently reject poor trading rules while retaining
flexibility to adapt to new signals in the data.

B. Individual Returns

Before introducing the results of statistical tests below we
perform a brief comparison of the best strategy’s returns for
the original GP and the improved GP/PSO versions.

Table VI shows the daily returns of the best fit trading
strategy after a different number of iterations (X) were used in
the GP. From this we can see a clear decrease in return level

TABLE VI. 2003-2008 GP INDIVIDUAL RETURNS

X Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08
1000 1.142 1.094 1.003 0.991

800 1.032 1.012 0.850 0.786

600 0.903 0.855 0.739 0.704

400 0.845 0.684 0.714 0.593

200 0.799 0.684 0.709 0.549

from 2003 and 2008. This might be due to different market
conditions belonging to different regimes but more likely this
indicates the greater efficiency of the FX market in 2008 with
the huge growth in electronic high frequency trading between
2003 and 2008. Table VII shows the corresponding returns for
the GP/PSO of our algorithm. We can draw similar conclusions

TABLE VII. 2003-2008 GP/PSO INDIVIDUAL RETURNS

X Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08
1000 1.273 1.202 1.185 1.044

800 1.075 1.086 1.032 0.885

600 0.879 0.884 0.923 0.915

400 0.756 0.773 0.724 0.702

200 0.663 0.687 0.688 0.613

as from Table VI regarding the 2003 and 2008 performance,
but more clearly as we notice a considerable increase in
profitability due to the use of PSO, allowing our program
to perform genetic operations only on the best-fit individuals,
thus generally converging to better trading rules. Comparing
our results to the Salmon and Kozhan [2] paper, that didn’t
employ PSO and FPGA technology, it’s clear how important

these tools are in exploiting the information hidden in price
data. FPGA’s computation power is shown to be important as
the degree of profitability increases with the iterations’ number
used to search for the optimal rules and PSO appears to show
clear profitability remaining in 2008 if the correct tools are
used, unlike the results in Salmon and Kozhan [2].

C. Statistical Tests

1) Anatolyev-Gerko Tests: The crude return calculations
previously reported must be evaluated in a proper statistical
framework to examine their true significance. One test that
achieves this is the AG test which statistically compares return
levels based conditioning information with those that might
occur randomly within the correct distribution/inference frame-
work. We apply this test to the ”majority rule” strategy ie. 99
independent runs of the algorithm have been performed (each
containing 1000 iterations) to select the best in-sample trading
rules. Our ”majority” rule produces a buy/sell if the majority
of the 99 best fit in-sample trading rules produce a buy/sell
signal. The resulting rule is then used to trade out-of-sample
[2]. We adjust returns to a daily basis, and express their amount
in percent, taking into account the k threshold value as well as
transaction costs which are reflected in the bid-ask spread. The
real-returns needed to perform the AG test can also be found
by calculating actual values from the data, while the predicted-
returns are calculated according to what our ”majority” rule
tells our algorithm to do. The test statistic values shown in

TABLE VIII. 2003-2008 GP/PSO AG TEST WITH FILTER

k Jan (20-24) 2003 Feb (17-21) 2003 March (10-14) 2003 March 31, 2008
0 1.73 2.11 0.97 -0.84

2 1.07 1.10 0.28 0.24

4 0.76 0.69 0.54 -1.92

Table VIII are based on different conditioning information sets,
making variability degree comparisons difficult in each data set
but all the reported test statistics are statistically significant.
This highlights two things: the results for 2003 are all positive
while two for 2008 are negative, and the results vary with
different levels of inertia parameter. This also tells us that
in 2003 there was significant profitability, which decreased
as the number of trades decreased as k increased. Secondly,
the negative results for 2008 tell us that for values of k=0
and k=4, despite what we have seen in Table VII the use of
conditioning information would have given us negative returns
compared to purely random decision making as to how to trade.
Hence the test statistic is negative, moreover within the correct
distribution for comparison, this contrast is also statistically
significant.

So, despite the apparent predictability seen in Table VII,
the GP/PSO algorithm does’t deliver greater profitability in
2008 whereas it did in 2003. This is important as it confirms
the impression from earlier results that the efficiency of FX
markets increased between 2003 and 2008. The apparent
advantage of FPGA and PSO have not in fact generated
statistically significant conditional profitability in the 2008 data
where it was clearly present in 2003 data.

2) T-statistics tests: In order to explore this conclusion
further we next performed t-tests to examine if the mean of the
returns is significantly different from zero. We start by testing

33

the GP’s profitability under different number of iterations until
converge. Table IX results appear not be significant at 5%
level but reconfirms the AG test results which says there
was a greater probability of profitability in 2003 data, and
consistently less so in 2008. We performed the same test on
the GP/PSO program and obtained similar results to the classic
GP. We now perform the t-test both on 2003 and 2008 data,

TABLE IX. 2003-2008 GP T-STATISTICS

X Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08
1000 1.630 0.810 0.323 0.592

800 1.629 0.809 0.290 0.593

600 1.591 0.784 0.314 0.583

400 1.587 0.780 0.288 0.572

200 1.580 0.766 0.274 0.572

but we keep the number of iterations fixed at 1000 and we
vary the ”inertia band” parameter k within the range 0-20. In
our case, we measure the filter parameter k in basis points (bp
= unit equal to one hundredth of a percentage point). Table X
presents the out-of-sample percentage of cumulative returns
generated varying the k parameter for the GP while Table XI
presents the same test performed for the GP/PSO approach.
The results obtained in Table XI for the 2003 data indicate
that the systematic pattern that seems to exist inside of the
market data values as noticed in Table IX, maintains its virtual
pattern for different values of k. Small values of the inertia
band parameter reflect a high number of transactions, which
implies a large cumulative transaction cost that more likely
exceeds the profits from trading.

TABLE X. 2003-2008 GP T-STATISTICS WITH FILTER

k Jan(20-24) ’03 Feb(17-21) ’03 March(10-14) ’03 March 31 ’08
0 1.630 0.810 0.323 0.592

4 1.523 0.722 0.268 -0.412

8 0.991 0.703 0.013 -0.081

12 0.269 1.083 0.215 -0.106

16 0.018 0.590 0.027 0.790

20 -0.166 -0.608 -0.148 -0.429

TABLE XI. 2003-2008 GP/PSO T-STATISTICS WITH FILTER

k Jan(20-24)’03 Feb(17-21)’03 March(10-14)’03 March 31 ’08
0 1.683 0.832 0.358 0.618

4 1.680 1.003 0.617 -0.139

8 1.035 0.788 0.146 -0.489

12 0.117 0.912 0.018 0.101

16 0.242 0.713 0.109 0.664

20 -0.042 0.184 -0.029 -0.254

The t-test results shows us that our evolutionary approach
can be adjusted to handle different levels of transactions costs
providing what looks like a systematic predictable pattern for
the 2003 data set but little or no pattern for the 2008 data set.
These results are consistent with those obtained with the AG
test for conditional predictability and demonstrate substantial
increases in the efficiency of FX markets enabled by high
frequency markets. This confirms the utility of the tool we
have developed to examine the nature and stability of high
frequency trading strategies. We have demonstrated that we
have built a tool that can capture predictable structure if it
exists (2003) and hence can be used to monitor irregular

patterns by regulators-perhaps caused by market manipulation
or extreme events, flash crashes, which would cause market
interventions to maintain stability within the market.

IV. CONCLUSIONS

We have built an evolutionary hybrid genetic program
which uses aspects of swarm intelligence (particle swarm
optimisation) in order to seek reliable and profitable trading
patterns that can be used to enhance trading strategies. Nat-
urally, evolutionary methods are time consuming and thus,
to reduce execution time and produce more advanced trading
rules, hardware acceleration techniques are required, allowing
us to obtain significant computational speedup.

We have analysed what happens when negative results are
produced, due to market unpredictability. Furthermore we eval-
uated the algorithm for robustness, profitability, reliability and
predictability, aspects which are critical for the employment of
the resulting trading rules in the real world.

From a regulator’s point of view, our tool will be beneficial
because it helps them identify and analyse market behaviour
under different market regimes, as well as identify trading rules
which could cause significant market changes (e.g: a sudden
and substantial change in the GBP/EUR cross due to non-
obvious market conditions). Such results can be obtained at
great speed, aiding them in avoiding significant risk taking.
The analysis of the generic stability of the best performing
trading rules is left to further research. Financial institutions
could also see great benefit from this tool, particularly in the
context of increasing trading profits.

Given the positive results produced by this working proto-
type, it is clear to see that a hybrid genetic program enhanced
with swarm optimisation and hardware acceleration techniques
is capable of producing valuable real time feedback in today’s
high frequency trading environment, to the point that we have
removed any potential we are tracking spurious signals. It
also provides a valid framework for evaluating market stability
when the market is populated by such strategies.

ACKNOWLEDGMENT

This work is supported in part by the United Kingdom
Engineering and Physical Sciences Research Council, by the
European Union Seventh Framework Programme under grant
agreement number 257906, 287804 and 318521, by the Max-
eler University Programme, and by Xilinx.

REFERENCES

[1] Christopher J. Nelly and Paul A. Weller, ”Technical Analysis in the
foreign exchange market”, Federal Reserve Bank of St. Louis-Research
Division (working paper series), Working Paper 2011-001B, January
2011.

[2] Roman Kozhan and Mark Salmon, ”The information content of a limit
order book: The case of an fx market”, in Journal of Financial Markets,
2012, pp. 1-28.

[3] D. Easley, M. O’Hara, ”Liquidity and valuation in an uncertain world”,
in Journal of Financial Economics, 2010, pp. 1-11.

[4] Investopedia, Filter Rule [Online], Available: http://www.investopedia.
com/terms/f/filterrule.asp

[5] Jeroen Eggermont, Genetic Programming [Online], Available: http://
www.win.tue.nl/ipa/archive/falldays2007/HandoutEggermont.pdf

34

