
Research Article
Using Statistical Assertions to Guide Self-Adaptive Systems

Tim Todman,1 Stephan Stilkerich,2 and Wayne Luk1

1 Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK
2 Software Engineering, EADS Innovation Works, Willy-Messerschmitt Street 1, 85521 Ottobrunn, Germany

Correspondence should be addressed to Tim Todman; tjt97@doc.ic.ac.uk

Received 7 January 2014; Accepted 4 March 2014; Published 13 April 2014

Academic Editor: Marco D. Santambrogio

Copyright © 2014 Tim Todman et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Self-adaptive systems need to monitor themselves, to check their internal behaviour and design assumptions about runtime inputs
and conditions. This kind of monitoring for self-adaptive systems can include collecting statistics about such systems themselves
which can be computationally intensive (for detailed statistics) and hence time consuming, with possible negative impact on self-
adaptive response time. To mitigate this limitation, we extend the technique of in-circuit runtime assertions to cover statistical
assertions in hardware.The presented designs implement several statistical operators that can be exploited by self-adaptive systems;
a novel optimization is developed for reducing the number of pairwise operators from 𝑂 (𝑁) to 𝑂 (log (𝑁)). To illustrate the
practicability and industrial relevance of our proposed approach, we evaluate our designs, chosen froma class of possible application
scenarios, for their resource usage and the tradeoffs between hardware and software implementations.

1. Introduction

Self-adaptive systems can configure themselves to flexibly
deal with changing environments after they are deployed.
The configuration itself is systematically guided by means
of system self-monitoring to aid decisions about changing
modes or to check design assumptions about runtime data
and conditions or their internal operation. Such monitoring
could check elementary Boolean conditions or, more gen-
erally, could process collected runtime system data, feeding
a process of deciding whether or how the system can be
adapted. The response time to adaptation is a fundamental
feature characterizing self-adaptive systems. For the class
of applications from the avionics domain we investigate, a
fast response time to adaptation is crucial and motivates
our advocated approach, presented in the rest of the paper.
Gathered system data can be used for many purposes; for
example, design assumptions about ranges of input values,
used to optimize operator bit-widths, can be checked by
assertions about the standard deviation of the input.

In this paper, we propose in-circuit statistical assertions,
compiled into the hardware part of a software-hardware
design as a dedicated self-monitoring facility for self-adaptive
systems, with a fast response time to adaptation. Compared

to the proposed in-circuit assertions that can compute in
parallel with the rest of the design, assertions based on
sequential software need to wait until the hardware has
finished computing its results before they can begin their
own tasks. Moreover, efficient hardware designs are often
deeply pipelined, operating on large batches of data, fur-
ther prolonging the time until software assertions can start
processing. Additionally, by preprocessing potentially large
amounts of data, in-circuit data gathering can improve use of
limited bandwidth betweenhardware and software of the self-
adaptive system triggering and controlling systemadaptation.
In summary, in-circuit assertions are the necessary precondi-
tion to realize fast response times to adaptation not achievable
by sequential software assertions.

Figure 1 provides a structural overview of our approach.
A hardware datapath is instrumented by in-circuit statistical
operators which compute relevant statistics about the design.
These are then sent back to a software engine running a
self-adaptive system.The software builds up the self-adaptive
representation which is used to control reconfiguration of
the system. It should be mentioned that whilst we target
a software-hardware system setting, our approach is not
limited to this setting at the outset. The software could

Hindawi Publishing Corporation
International Journal of Reconfigurable Computing
Volume 2014, Article ID 724585, 8 pages
http://dx.doi.org/10.1155/2014/724585

http://dx.doi.org/10.1155/2014/724585

2 International Journal of Reconfigurable Computing

∗

∗

SD

Hardware

SD

+

Ru
nt

im
e d

at
a

configuration

Software

Standard datapath

Statistical assertions

Self-adaptive engine

Adapt

<s

Softwar

Self-adaptive engin

Ad pt

Figure 1: Our approach: hardware datapath augmented with in-
circuit statistical assertions feeding an engine running a self-
adaptive algorithm in software.

likewise run, for example, on a soft processor within a field
programmable gate array (FPGA) fabric.

This paper makes the following contributions:

(i) the design and optimized implementation of in-
circuit statistical assertions, which can be used by self-
adaptive systems to monitor themselves and control
system adaptation;

(ii) a case study on avionics systems, showing the poten-
tial of in-circuit statistical assertions;

(iii) evaluation of tradeoffs between assertion implemen-
tations in software and in hardware, showing the
advantages of our proposed in-circuit assertions.

Compared to our previous work [1], this paper adds two
new architectures for statistical assertions and extends the
avionics case study with an implementation of true airspeed,
an important instrument for many avionics applications; we
apply our statistical assertions to this implementation.

The rest of the paper is organized as follows. Section 2
describes related work. Section 3 shows our designs for asser-
tions and implementations for Maxeler systems. Section 4
is a brief case study for avionics. Section 5 evaluates our
implementation. Section 6 concludes and suggests future
research.

2. Background

Runtime Verification. Several researchers have used temporal
logic for runtime verification; for example, Reinbacher et
al. [3] implement hardware temporal logic monitors for a

software system running on a soft processor on the same
device. Calinescu et al. [4] propose that self-adaptive software
needs quantitative runtime verification; our statistical in-
circuit assertions could complement such approaches.

Assertion-based verification allows the use of Boolean
and temporal assertions for debugging designs in simulation
[5]; it is extended to in-circuit assertions by Curreri et al.
[6].This paper introduces in-circuit assertions with statistical
operators. In our approach, failed assertions do not necessar-
ily indicate errors but may be the trigger for a self-adaptive
system to adapt or reconfigure itself.

Statistical assertions have been proposed by Dinh et al.
[7] to allow users to reason about large parallel programs (at
debug time) using derived metrics, rather than raw program
output. The assertions are implemented efficiently using
a map-reduce style computation. We use statistical asser-
tions for runtime monitoring of reconfigurable hardware-
accelerated systems.

3. In-Circuit Statistical Assertions

This section presents our approach to in-circuit statistical
assertions and their implementation.

3.1. Assertion Language. Our assertion language comprises
C language style Boolean operators, augmented by statistical
primitives.We choose the C language as it is familiar to many
designers. The set of statistical primitives is as follows:

(i) mean(𝑒), the mean value of expression 𝑒;

(ii) stdev(𝑒), the standard deviation of expression 𝑒;

(iii) variance(𝑒), the variance of expression 𝑒.

We choose these primitives as a useful set for expressing
statistical conditions; futurework could add further statistical
operators such as covariance, skewness, and kurtosis or limit
the number of cycles over which the statistics are calculated,
potentially reducing hardware resources.

The following shows the grammar of our statistical
assertions language in extended Backus-Naur form:

e = a

| e bop e

| uop e

| mean (e)

| stdev (e)

| variance (e)

bop = == | ! = | < | > | ⋅ ⋅ ⋅

uop = + | − | ! |
−

,

(1)

where bop represents any C binary operator, uop any C unary
operator, and a any atomic expression (literals, variables, and

International Journal of Reconfigurable Computing 3

constants). This language allows the user to combine both
Boolean and statistical operators.

Notation. We adopt the notation of Chan et al. [2] given data
points 𝑥

𝑖

to 𝑥
𝑗

calculate the sum 𝑇
𝑖,𝑗

, the mean𝑀
𝑖,𝑗

, and the
sum of square differences from the mean 𝑆

𝑖,𝑗

as:

𝑇
𝑖,𝑗

=

𝑗

∑

𝑘=𝑖

𝑥
𝑘

𝑀
𝑖,𝑗

=
1

(𝑗 − 𝑖 + 1)
𝑇
𝑖𝑗

𝑆
𝑖,𝑗

=

𝑗

∑

𝑘=𝑖

(𝑥
𝑘

−𝑀
𝑖𝑗

)
2

.

(2)

3.2. Architectures for Assertion Operators. We propose four
architectures suitable for streaming systems: both feedforward
and feedback architectures of online and pairwise algorithms.
Each design has different properties which can be useful
for different applications of statistical operators. All of the
designs are based on statistical building blocks which we call
𝑆-operators; the same design can be used with different 𝑆-
operators to build different statistical operations such as sum,
mean, and variance.

Online algorithms for calculation of statistical metrics
such as mean, variance, and standard deviation are known
[8, 9]. They involve a single pass over the input data, using
an accumulator and the current input element. While such
designs may seem suitable for streaming implementations,
they contain feedback owing to the accumulator, requiring
the design to use techniques such as C-slowing and unrolling
to achieve a reasonable clock speed.

Online algorithms can be expressed as a set of recurrence
equations calculating the sum, mean, and sum of square
differences in terms of the current input 𝑥

𝑛

and the sum,
mean, or sum of square differences for the previous 𝑛 − 1

inputs [2]:

𝑇
1,0

= 0

𝑇
1,𝑛

= 𝑥
𝑛

+ 𝑇
1,𝑛−1

𝑀
1,0

= 0

𝑀
1,𝑗

= 𝑀
1,𝑗−1

+
1

𝑗
(𝑥
𝑗

− 𝑀
1,𝑗−1

)

𝑆
1,0

= 0

𝑆
1,𝑗

= 𝑆
1,𝑗−1

+ (𝑗 − 1) (𝑥
𝑗

−𝑀
1,𝑗−1

)(

𝑥
𝑗

−𝑀
1,𝑗−1

𝑗
) .

(3)

We design both feedforward and feedback architectures
for the online algorithms. Figure 2 shows a feedforward
implementation for part of the calculation. The design can
calculate sum, mean, and sum of square differences by
changing the 𝑆-operator. Note that the design calculates a
large majority of the result; the rest can be calculated in

Xn
−1 −1

−1

−1 −1

S S S S

S Online operator

Stream offset

Xn−1 Xn−2 Xn−3 Xn−4

Sn−4,n

Figure 2: Partial calculation of statistics using feedforward online
operators. There are𝑊 repeating units; in this diagram,𝑊 = 4.

Xn

0

0

1

S

S

−1

−C

<C

<C

Statistics operator

Stream offset

Counter

Other operators

Figure 3: Partial calculation of statistics using feedback online
operators.

software. The design consists of 𝑊 repeating units, costing
𝑂(𝑊) area, and reducing output volume by factor𝑊+ 1.

Figure 3 shows a feedback version of the online algorithm.
Feedback feeds partial results from the 𝑆-operator back into
its input, reducing the total output size to 𝐶 (the pipeline
length of the 𝑆-operator), at an area cost of 𝑂(1) (a single
𝑆-operator), given that the −𝐶 and < 𝐶 operators are of
negligible size.

Chan et al. developed pairwise algorithms for sum,mean,
and variance [2] which can be parallelized; for 𝑊 input
elements, naively implementing this algorithm on streaming
systems would require𝑂(𝑊) hardware, as shown in Figure 4.
Unlike the online algorithms, pairwise algorithms use a
divide-and-conquer approach which Chan et al. show to
give better numeric stability than online algorithms. For
example, their pairwise algorithm calculates the sum of
square differences as

𝑆
1,2𝑚

= 𝑆
1,𝑚

+ 𝑆
𝑚+1,2𝑚

+
1

2𝑚
(𝑇
1,𝑚

− 𝑇
𝑚+1,2𝑚

)
2

. (4)

Figure 4 shows the datapath for a straightforward feedfor-
ward design, combining stream offsets with Chan’s pairwise
operators for calculating variance or mean; for clarity, we
omit the calculation of 𝑇

𝑖,𝑗

, which has the same pattern.
We optimize the feedforward pairwise design using the

observation that, in a streaming system, iterating through
the input data in order, sums of neighbouring elements

4 International Journal of Reconfigurable Computing

Xn

−1

−1

−1

−1

−1

−1

−1

S

S

S

S

S

S

S

S

−16

Pairwise operator

Stream offset

Sn−1,n

Sn−3,n

Sn−7,n

Sn−3,n−2

Sn−5,n−4

Sn−7,n−4

Sn−7,n−6

Xn−1

Xn−7

Figure 4: Partial calculation of statistics using feedforward pairwise
operators: naive implementation of Chan et al.’s algorithm [2], in
hardware.

can be accessed by stream offsets, which are mathematically
equivalent to

offset (𝑇
𝑚,𝑚+𝑏

, −𝑜) = 𝑇
𝑚−𝑜,𝑚+𝑏−𝑜

. (5)

In Figure 4, note that 𝑆
𝑛−3,𝑛−2

is simply 𝑆
𝑛−1,𝑛

delayed by
two cycles. Adapting Chan et al.’s notation,

𝑇
1,2

𝑘 = 𝑇
1,2

𝑘−1 + 𝑇
2

𝑘−1
+1,2

𝑘

= 𝑇
1,2

𝑘−1 + offset (𝑇
1,2

𝑘−1 , −2
𝑘

) ,

(6)

where offset(𝑒, 𝑛) means the value of expression 𝑒 sampled 𝑛
cycles in the past; so, for example, 𝑇

𝑖−3,𝑖−2

= offset(𝑇
𝑖−1,𝑖

, −2);
𝑆
1,2

𝑘 is calculated in the same way; Figure 5 shows our opti-
mized design. Unlike the straightforward implementation of
Chan et al.’s algorithm, which requires 𝑂(𝑊) hardware, our
optimized design requires only𝑂(log

2

𝑊) statistical operators
plus 𝑂(𝑊) delay elements used to implement the offset
operation.

Note that the above only calculates part of the variance,
specifically the local variance around each sample; however, it
greatly reduces the amount of data sent back to software. The
design consists of repeating units of the pairwise operator and
stream offsets to delay the input. Each repeating unit reduces
by half both the output data and the remaining calculations
to be done in software, so 𝑈 units reduce it 2𝑈-fold. Note
furthermore that the leftmost operator can be optimized,
because 𝑆

𝑖,𝑖

= 0 (the variance of a single point is zero) and
𝑀
𝑖,𝑖

= 𝑥
𝑖

.

Xn
−1

−2

−4

S

S

S

S

−16

Pairwise operator

Stream offset

Sn−3,n
Sn−7,n

Sn−1,n

Xn−1

Sn−7,n−4

Sn−3,n−2

Figure 5: Partial calculation of statistics using feedforward pairwise
operators, optimized for streaming systems. Compared to Figure 4,
this design uses 𝑂(log𝑁) instead of 𝑂(𝑁) 𝑆-operators.

Xn

−2a

−1

−a
0

1

0

1

S
S

S

Even?

<C−1

Statistics operator

Stream offset

Counter

Other operators

−C

Figure 6: Partial calculation of statistics using feedback pairwise
operators.The twomultiplexors share a control input; stream offsets
labelled −𝑎 and −2𝑎 are variable.

In addition, we extend the optimized pairwise algorithm
to a feedback architecture (Figure 6); this essentially realizes
the spatial structure of Figure 4 in time. Consequently, this
requires more buffering than the feedback online archi-
tecture, 𝑂(𝑊) for summarizing 𝑊 inputs. The amount of
buffering also has to vary with time, as shown in Figure 6.

Table 1 summarizes the design properties of the different
operator designs.

3.3. Implementation Targeting Maxeler Designs. We choose
Maxeler streaming systems to implement our designs, though
the approach is not Maxeler specific and can be ported
to other design descriptions such as Verilog and VHDL.
We focus on a systematic approach to translating assertions
into Maxeler designs; future work includes developing a

International Journal of Reconfigurable Computing 5

Table 1: Summary of different operator properties.

Architecture Algorithm Storage Compute Outputs
Feedback Online 𝑂(1) 𝑂(1) 𝐶

Feedback Pairwise 𝑂(W) 𝑂(1) 𝑁/𝑊

Feedforward Online 𝑂(𝑊) 𝑂(𝑊) 𝑁/𝑊

Feedforward Pairwise 𝑂(𝑊) 𝑂(log
2

𝑊) 𝑁/𝑊

tool for compiling Maxeler designs extended with statistical
assertions into the current base language.

The Maxeler system generates streaming designs, where
inputs and outputs are large arrays used as streams. Each
output element is calculated from corresponding elements
in one or more input streams; offsets allow reading from
neighbourhood stream elements. The user programmatically
builds a datapath using a domain-specific language based on
Java.The control path can involve counters or state machines
generated from another domain-specific language.

Maxeler tools compile designs into hardware description
languages and control FPGA vendor tools to build the
corresponding bitstream for a specific FPGAdevice. Software
can interact with the generated hardware using a Maxeler
application programming interface to configure the FPGA
device with the bitstream and run on user data stored
in C arrays. The Maxeler tools automatically pipeline the
datapath, resulting in deeply pipelined operators at a high
clock rate. This works well for feedforward designs, but
feedback requires some manual intervention and reordering
or duplicating of input data.

4. Case Study: Avionics Systems

Avionics systems are electronic systems used for control or
information in the aviation or aerospace industries [10].

Self-adaptive systems with a fast response to adaptation
(where fast means quicker than 500ms) are promising archi-
tectures for dedicated application scenarios in the avionics
and space-flight industry. Systems that profit from architec-
tures with fast response time to adaptation include

(i) autonomous flying systems,
(ii) special satellites,
(iii) deep-space mission systems,
(iv) exploratory space mission systems.

All these systems operate in environments that cannot be
fully described at design time and hence such systems cannot
be statically designed to cover and handle all environmental
settings. Furthermore, these systems have strong constraints
on power consumption, weight, and packaging volume.
Additionally, these systemsmay never be physically reachable
after deployment.

We choose a 500ms limit as this duration meets the
requirements of many processing and control loops of the
systems and application scenarios mentioned in the paper.
Hence, if we realize our self-adaptation and self-expression
with the configuration within this limit, it would fit into

our proposed self-adaptive systems, applications, and current
systems that can benefit from self-monitoring.

We analyze the processing structure of these systems for
the functionality of guidance, navigation, and orientation,
revealing that the processing is commonly composed of dif-
ferent blocks/kernels with inputs and outputs. Determining
the adequate bit widths and hence precision for the inputs
and outputs is difficult and is often based on worst case
assumptions involving unnecessary resources. An alternative
is to start with an initial, more optimistic design assumption
about the input/output value range, used to optimize operator
bit widths. Such assumptions can be checked by assertions
about the standard deviation of the input and adapted by
another kernel version accordingly if required.Obviously, fast
response time to adaptation is to avoid compromising system
functionality, while simultaneously optimizing the system at
runtime with respect to performance, energy efficiency, and
environmental adaptability.

Our case study involves true airspeed calculation. Calcu-
lating the true airspeed from external sensor signals (Pitot
tubes) and continuously providing a correct value of the true
airspeed to the avionic computers is of critical importance
for safe flying, navigation, and air-traffic operation. This
calculation affects aircraft and helicopters operated manually
as well as autonomous unmanned aerial vehicles (UAVs).
Due to the safety relevance of this particular calculation and
the overall unalterable structure of today’s avionic systems,
it is common practice to redundantly (triple) realize the
calculation of the true airspeed, including the sensors. With
respect to the sensors, the redundant approach is obvious and
well justified, but for the calculation of the true airspeed a
redundant approach is, in most flight phases, an overdesign
and consequently awaste of computing resources. For civilian
and military aircraft and helicopters, this approach can
currently be tolerated and technically realized. However, for
UAVs with envisaged long operation times, a predefined
and fixed architecture wastes computing resources, directly
impacts on weight and fuel consumption, and consequently
negatively influences operation time.

Our proposed approach offers a twofold strategy and
technical solution to systematically address the calculation,
with respect to the true airspeed, especially providing a
technically attractive solution for UAVs. In detail, hardware
assertions will allow for single realisation of the true air-
speed calculation in flight phases with stable and predictable
weather conditions. Possible failures in the calculation can
be identified by the assertions with counteractions of using
the old value or starting reconfiguration actions if the
failure remains permanent. Statistical assertions evaluation
can be utilized to predict upcoming problems and to start
counteractions before the failure appears and affects the
system. Reconfiguration itself, within our defined timeframe
of 500ms, enables flexible adjustment of system to adapt
to identified failures or simply to different flight phases,
where, for instance, failures of the true airspeed are not
acceptable and double or triple modular redundancy is, for
that situation in time, the best solution. Consequently, our
proposed approach can adjust our calculation of the true

6 International Journal of Reconfigurable Computing

airspeed to suit different flight situations and can utilize the
computing resources efficiently.

For example, given inputs of static and impact pressures,
the formula for calculating true airspeed 𝑉

𝑡

is as follows (if
the Mach number is not known) [11]:

𝑉
𝑡

= 𝑎
0

⋅ √5 [(
𝑞
𝑐

𝑃
+ 1)

2/7

− 1] ⋅
𝑇

𝑇
0

, (7)

where

(i) 𝑎
0

is the speed of sound at standard sea level;
(ii) 𝑞
𝑐

is the impact pressure;
(iii) 𝑃 is the static pressure;
(iv) 𝑇 is the temperature;
(v) 𝑇
0

is the standard sea level temperature.

Note the units of measurement are governed by the units
of 𝑎
0

; for navigation purposes the units of speed are knots.

Implementation. We implement the true airspeed as a stream-
ing Maxeler design, using 32-bit floating point arithmetic for
internal calculation precision. Since the Maxeler library does
not provide general exponentiation operators, we substitute
the equivalent calculation using logarithms.

Figure 7 shows our implementation of the datapath for the
true airspeed calculation. Statistical assertions can be added
to each variable input (𝑞

𝑐

, 𝑃, and 𝑇) and to each connector
within the datapath.

5. Evaluation

We evaluate our implementations of on-chip statistical asser-
tions showing the tradeoff between hardware and software
implementations. We compare

(i) scalability: operator size versus hardware size;
(ii) software versus hardware-assisted results: speed,

bandwidth.

Experimental Setup. We implement our designs using Max-
eler compiler version 2012.1 andXilinx ISE 13.1. Designs target
aMAX3 system, containing aXilinx xc6vsx475t FPGA,with a
speed goal of 200MHz. We implement one or more variance
assertions, with 32-bit input data in IEEE single-precision
(SP) floating-point format, one data element per cycle. The
variance assertion is the largest and most computationally-
intensive of all the operators we design and implement.

Figure 8 shows the effect of unroll factor on the area
resources for the feedforward pairwise variance operator;
the area is measured in numbers of look-up tables (LUTs),
flip flops (FFs), and digital signal processing (DSP) blocks.
The area cost is linearly proportional to the unroll factor
(for LUTs and FFs), but the output data reduction factor is
exponential: increasing the unroll factor by one halves the
overall output volume. For unroll factor 𝑈 = 15, the data
reduce by 215 and the variance takes about 5% of flip flops

qc

P
/

/

+ In
∗

∗

∗

∗

exp

sqrt

Vta0

T0

T

5

1

2/7 −

Figure 7: Datapath of streaming implementation of true airspeed.
Each connector is a potential point to add statistical assertions.

0

5000

10000

15000

20000

25000

30000

35000

40000

0 2 4 6 8 10 12 14

N
um

be
r

Unroll factor

LUTs
FFs Output reduction factor

∗ 100BRAMs

DSPs ∗ 100

Figure 8: Area usage and output reduction versus unroll factor for
the feedforward pairwise variance operator.

and 8% of other resources. For LUTs and FFs there is also a
small fixed cost which is due to the Maxeler runtime system
used to communicate with the host. The cost in block RAMs
(BRAMs) is exponential in the unroll factor, as they are used
to store delayed stream elements used for calculating the
offset expressions; however, the cost is still modest even for
large unroll factors.

The feedforward online operator performs less well than
the feedforward pairwise operator, as shown in Figure 9. For
unroll factor 𝑈, the output reduces by factor 𝑈.

Figure 10 shows that the feedback online design uses a
small fixed area per assertion (about 3.5% of LUTs, 2% of
FFs for 32-bit SP variance). For 32-bit SP data, the pipeline
is 85 stages long, padded to 128 stages. The data are reduced
to 128 partial variances, which can be further reduced to a
single variance by Chan et al.’s method [2].The design runs at
200MHz.

Case Study. We assume a hard 0.5 s limit for avionics
hardware runtime. Figure 11 shows estimated runtimes versus

International Journal of Reconfigurable Computing 7

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 0 2 4 6 8 10 12 14

N
um

be
r o

f r
es

ou
rc

es

Unroll factor

LUTs
FFs Output reduction factor

∗ 100BRAMs

DSPs ∗ 100

Figure 9: Area usage versus unroll factor for feedforward online
variance operator.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14

N
um

be
r o

f r
es

ou
rc

es

Number of assertions

LUTs
FFs ∗ 100BRAMs

DSPs ∗ 100

Figure 10: Area usage versus number of variance assertions for
feedback online variance operator.

the number of statistical assertions for both software and
hardware implementations. We assume the design is limited
by the bandwidth between software and hardware (MAX3
has 2GB/s maximum speed); stream length is 226, and each
output is 4 bytes wide, so the runtime with no assertions
is 0.15 seconds. Software calculations are limited to two
assertions within the time limit, because all 226 values must
be streamed across the bus for each exception. In contrast,
the feedback design summarizes 226 data to 128 values, and
hence the time cost of each exception is much lower. The
feedforward hardware designs allow the number of assertions

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10

Ru
nt

im
e (

s)

Number of variance assertions

Feedback online hardware variance

Software variance
Real-time limit

Feedforward online hardware variance, 1 unit
Feedforward online hardware variance, 2 units

Figure 11: Avionics case study: estimated time taken by software and
feedback hardware variance assertions versus number of assertions.

 0
 5000

 10000
 15000
 20000
 25000
 30000
 35000
 40000
 45000
 50000
 55000

 0 2 4 6 8 10 12 14

N
um

be
r o

f r
es

ou
rc

es

Number of assertions

LUTs
FFs

∗ 100BRAMs

DSPs ∗ 100

Figure 12: Avionics case study: resources used by the true airspeed
datapath (Figure 7) versus number of feedback online variance
operators.

to be traded for hardware area. Note we do not include time
to calculate the variance on the host.

True Airspeed Calculation. We augment the true airspeed
datapath (Figure 7) with several in-circuit, feedback online
variance assertions. As expected, there is a modest linear
cost per assertion (Figure 12). If we assume the same time
constraints as in Figure 11, the number of feedback online
assertions is limited by area, not by time.

8 International Journal of Reconfigurable Computing

6. Conclusion

To enable efficient monitoring for self-adaptive systems,
we design and implement in-circuit statistical assertions,
allowing designs to use several frequently occurring statistical
operators to capture desired runtime properties of design
inputs, outputs, and internal signals. Results show that
response time can be greatly reduced at a modest cost in
hardware area per exception.

Current and future work includes enlarging the set of sta-
tistical primitives to allowmore general assertions on the state
of the design. We would also like to explore the interaction of
the statistical operators with runtime reconfiguration, since
statistical conditions can be used to decide when to recon-
figure. More generally, the statistics operators themselves can
be reconfigured, allowing the system to alter the balance of
configurable hardware between assertions and computation
depending on runtime conditions. Furthermore, runtime
statistics for large datapath operators can provide information
about their adequacy, enabling continuous runtime optimiza-
tion of system performance and energy efficiency.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the UK EPSRC, by
the European Union Seventh Framework Programme under
Grant agreement nos. 257906 and 318521, by the HiPEAC
NoE, by the Maxeler University Program, and by Xilinx.

References

[1] T. Todman, S. Stilkerich, and W. Luk, “Using statistical asser-
tions to guide self-adaptive systems,” in Proceedings of the
2nd Workshop on Self-Awareness in Reconfigurable Computing
Systems (SRCS’13), 2013.

[2] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Updating formulae
and a pairwise algorithm for computing sample variances,”
Tech. Rep. STAN-CS-79-773, Department of Computer Sci-
ence, School of Humanities and Sciences, Stanford University,
1979.

[3] T. Reinbacher, M. Függer, and J. Brauer, “Real-time runtime
verification on chip,” in Runtime Verification, S. Qadeer and S.
Tasiran, Eds., vol. 7687 of Lecture Notes in Computer Science, pp.
110–125, Springer, Berlin, Germany, 2013.

[4] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola,
“Self-adaptive software needs quantitative verification at run-
time,” Communications of the ACM, vol. 55, no. 9, pp. 69–77,
2012.

[5] S. Vasudevan, “What is assertion-based verification?” SIGDAE-
News, vol. 42, no. 12, 2012.

[6] J. Curreri, G. Stitt, and A. D. George, “High-level synthesis
of in-circuit assertions for verification, debugging, and timing
analysis,” International Journal of Reconfigurable Computing,
vol. 2011, Article ID 406857, 17 pages, 2011.

[7] M. N. Dinh, D. Abramson, J. Chao et al., “Debugging scientific
applications with statistical assertions,” in Proceedings of the
International Conference on Computational Science (ICCS ’12),
vol. 9, pp. 1940–1949, Procedia Computer Science, 2012.

[8] D. E. Knuth, “The art of computer programming,” in Seminu-
merical Algorithms, vol. 2, Addison-Wesley, 3rd edition, 1998.

[9] B. P.Welford, “Note on amethod for calculating corrected sums
of squares and products,” Technometrics, vol. 4, no. 3, pp. 419–
420, 1962.

[10] R. P. G. Collinson, Introduction to Avionics Systems, Kluwer,
South Holland, The Netherlands, 2nd edition, 2003.

[11] H.W. Liepmann and A. E. Puckett, Introduction to Aerodynam-
ics of a Compressible Fluid, John Wiley & Sons, New York, NY,
USA, 1947.

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mechanical
Engineering

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Antennas and
Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

