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Abstract—Genetic Algorithms (GAs) are a class of numerical
and combinatorial optimisers which are especially useful for
solving complex non-linear and non-convex problems. However,
the required execution time often limits their application to small-
scale or latency-insensitive problems, so techniques to increase
the computational efficiency of GAs are needed. FPGA-based
acceleration has significant potential for speeding up genetic
algorithms, but existing FPGA GAs are limited by the gener-
ational approaches inherited from software GAs. Many parts
of the generational approach do not map well to hardware,
such as the large shared population memory and intrinsic loop-
carried dependency. To address this problem, this paper proposes
a new hardware-oriented approach to GAs, called Pipelined
Genetic Propagation (PGP), which is intrinsically distributed
and pipelined. PGP represents a GA solver as a graph of
loosely coupled genetic operators, which allows the solution to be
scaled to the available resources, and also to dynamically change
topology at run-time to explore different solution strategies.
Experiments show that pipelined genetic propagation is effective
in solving seven different applications. Our PGP design is 5 times
faster than a recent FPGA-based GA system, and 90 times faster
than a CPU-based GA system.

I. INTRODUCTION

Genetic algorithms (GAs) are a family of nature-inspired
search algorithms for general-purpose optimisation. A genetic
algorithm finds good solutions to a problem by mimicking the
natural evolutionary process, using mutation, crossover, and
selection to improve the overall fitness of a pool of candidate
solutions. However, natural selection is a slow process, so the
GA execution time is significant when the problem is large-
scale or has a complicated fitness surface. To allow the use
of GAs in a wider range of practical problems, researchers
have explored many ways of improving efficiency, including
FPGA-based accelerators.

Most existing FPGA-based GAs are adaptations of classic
software-based genetic algorithms, which model evolution
using consecutive distinct generations. They introduce three
significant problems in hardware. First, to compute a new
generation of candidate solutions, the algorithm needs to wait
for the evolution results of the previous generation, forming
a hard data dependency. Second, the generational algorithm
requires a large shared memory space to store a pool of
candidate solutions, presenting a memory-access bottleneck in
FPGAs. Third, when a genetic algorithm in FPGAs reaches
a local optimum, it is difficult for users to re-tune hardware
architecture because a modification usually results in hours of
recompilation.

To address these problems, this paper proposes a novel
GA approach called Pipelined Genetic Propagation (PGP),

designed specifically for reconfigurable hardware, with the
following contributions:

• A hardware-oriented way of structuring GAs as a
graph of parallel pipelined components with local
candidate storage, breaking the data dependency found
in generational genetic algorithms, and eliminating the
shared memory bottleneck.

• A topology generator for producing PGP solver in-
stances, allowing multiple candidate graphs to be
created for a given FPGA.

• A resource-efficient concrete architecture for PGP,
demonstrating high performance compared to exist-
ing FPGA solvers, and dynamic changing of solver
topology at run-time.

According to the experiments on two classical problems
(TSP and MAX-SAT) and five benchmark problems, our
pipelined genetic propagation are 5 times faster than a recent
hardware-based GA system, 30 times faster than a GPU-based
work, and 90 times faster than a multi-core GA system.

II. BACKGROUND AND RELATED WORK

A. Genetic Algorithms

GAs belong to a larger class of evolutionary algorithms, all
inspired by natural evolution. The type of evolution in GA is
usually an iterative process, with a population of individuals
in every iteration called a generation. Every individual in a
generation has a genetic chromosome to represent a candidate
solution in the search space for a problem. A generational
GA evolves candidate individuals towards the individuals
with better qualities as follows [1]. First, the GA creates an
initial generation with a population of random individuals.
Then an evaluation function assesses the quality of all the
individuals and assigns them fitness values. After that, three
genetic operators evolve the current individuals to produce new
candidates: 1) selection operators choose pairs of individuals
as parents based on the fitness values; 2) crossover operators
combine the chromosomes of the selected parents to produce
offspring; 3) mutation operators modify the chromosome of
the offspring to gain diversity. Finally, after all the offspring
are produced, the new generation of offspring replaces the
old generation of their parents. The individuals evolve from
generation to generation, so GA has a strong data dependence
between generations [2]. The evolutionary process stops when
a termination condition is satisfied, such as time running out,
or finding an acceptably good solution.
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B. Genetic Operators

The three types of genetic operators, selection, crossover
and mutation, represent natural evolutionary processes, but
there are multiple artificial operators which can be chosen
for a given problem. Selection variants include roulette-wheel,
truncation, and tournament selection, and stochastic universal
sampling. Crossover operations include one-point crossover,
multi-point crossover, blending crossover (for real-valued chro-
mosomes) [2], and reordering (for permutation chromosomes).
Mutations include random bit-flip, constrained mutation (for
real-valued chromosomes) [2], and swap mutations (for permu-
tation chromosomes). Different operators may be needed for
each problem, though some operators are essentially universal.
Supporting multiple operator choices is important, as it allows
the solver to be tailored and optimised for the characteristics
of a given problem.

C. Existing Hardware-Accelerated GA Approaches

With the increasing demand for GA performance, re-
searchers have tried to use hardware such as FPGAs and
GPUs to accelerate the evolution process. For example, a
generational GPU-based GA combined with local search for
the maximum satisfiability (MAX-SAT) problem has been
evaluated [3]. Pedemonte et al. propose a non-generational
genetic algorithm called systolic genetic search [4], which
replaces the shared generations with small pools distributed
on a spatial grid. While GPU-based GAs can be faster than
software, there is a large communication and synchronisation
cost between processing elements, and existing work is limited
in to a restricted set of problems.

FPGAs can provide the parallelism of hardware and the
flexibility of software [5], so are a promising platform for
acceleration of genetic algorithms. Scott et al. proposed the
first FPGA-based GA system in 1995, using a generational
approach called HGA [6]. A considerable number of problem-
specific FPGA-based generational GAs were then proposed
[7], [8], [9], [10], [11], [12]. More flexible problem-indendent
approaches have also been considered [10], showing speed-
ups of about 5 times over multi-core CPU across several
GA benchmarks. One reason for the low speedups is due
to the communication overhead and pipeline stalls between
generations.

Variants of classic generational GAs have also been con-
sidered for FPGAs, such as Parallel GAs (PGAs) and pipeline-
effective GAs. PGAs use multiple GA instances with scheduled
communication and exchange between the instances, which
enables a large amount of parallelism and the use of local
memories [13], [14]. A recent example is a PGA supporting
a wide class of problems using a framework for automatically
creating solvers [15]. Their work explores multi-level paral-
lelism and supports modification of some GA parameters at
run-time, but the pipelines still have stalls due to communica-
tion and synchronisation between GA instances. To reduce the
pipeline stalls, [16] and [17] propose pipeline-effective GAs
in FPGAs, but these still need large globally shared memories
to store the population.

Most FPGA-based GA systems share one or more common
problems in the algorithm mapping and tuning: 1) lack of run-
time tuning when the solver gets stuck in the local optimum; 2)

the necessity for a large single piece of memory to store all the
individuals; 3) the pipeline stalls to wait all the new offspring
to be produced before entering the next generation. These
issues limit the performance of FPGA-based GA systems, so
to address them this paper proposes a novel non-generational
genetic algorithm on FPGAs called PGP.

III. PIPELINED GENETIC PROPAGATION

Pipelined Genetic Propagation is an optimisation algorithm,
architecture, and strategy, allowing us to create a hardware-
specific graph-based GA optimiser for a chosen objective
function. A PGP system optimises the objective function by
propagating and circulating a group of individuals in a directed
graph structure G = (V,E) [18], where V is a set of genetic
nodes that perform genetic operations on data, and E is a
set of directed edges between the nodes that transport data
in a pipelined or streaming manner. All nodes and edges are
continually active, with no pauses or dependencies, allowing
good utilisation of the logic.

A. Genetic Nodes

Genetic nodes are the elementary compute components of
a PGP solver, and are represented by the nodes V in the logical
structure. A primary concern in the design of the nodes is an
efficient hardware implementation, so we propose the three
requirements below.

1) Minimise memory consumption. On-chip RAM is
limited in a reconfigurable hardware platform, so
we try to eliminate explicit RAM storage and rely
on implicit storage in pipelines, only using on-chip
memory when random accesses are needed.

2) Distribute local memories. The large shared storage
in generational GAs results in high contention and
significant fan-out. We only allow local RAMs which
are accessible within a genetic operator, ensuring
locality and exploiting the distributed nature of FPGA
storage.

3) Minimise per-node resource consumption. To get
the maximum speed-up, we want as many genetic
operators as possible, so we design small operators
that map easily to hardware, allowing us to scale up
to complex solver topologies and large FPGAs.

Based on the above requirements, we map all the data-
dependent genetic operators of genetic algorithms into hard-
ware as distributed nodes, which are shown in Fig. 1. We divide
the genetic nodes into three classes, namely selection nodes,
crossover nodes and mutation nodes. The exact behaviour
and implementation of these nodes (e.g. the specific version
of selection) is not specified at this level, only the overall
behaviour in terms of inputs and outputs.

A selection node consists of an input port, an output port,
some amount of local memory, a fitness evaluator, and an
unspecified selection process. The local memory stores a fixed
number Ni of individuals along with their corresponding fit-
ness values. Every cycle, the input port receives one incoming
individual Iin and sends it to the evaluator, while the output
port sends out one individual Iout chosen by the selector from
the local internal memory. When the fitness value of the

104



���� ����

����� �����

	
������

���

����

Fig. 1: Genetic Nodes: Selection, Mutation and Crossover

incoming individual Iin becomes available, the node compares
the fitness values of Iin and Iout. If the incoming individual Iin

has higher quality than the outgoing individual Iout, it replaces
Iout in the local memory. Meanwhile, its fitness value replaces
that of the selected individual as well. In other words, the
selection node monitors the quality of the individuals evolving
and stores the high-quality individuals in the local memory.

A mutation node contains an input port, an output port
and some sort of mutation process, but does not contain
any local memory or fitness evaluator. Every cycle, the input
port receives one incoming individual Iin, then mutates the
individual (for example using a bit-flip or constraint mutation).
Finally, the output port sends out a mutated individual to other
nodes.

A crossover node consists of two inputs, two output ports
and some sort of crossover process. Similar to the mutation
node, a crossover node contains neither local memory nor fit-
ness evaluator. The crossover node exchanges the information
between the incoming individual IinL from one input port and
IinR from the other port. After receiving the two individuals, the
crossover executor cuts off a piece of information from each
individual, and recombines the individuals by transplanting the
information taken from one individual to the other, producing
two new individuals IoutL and IoutR. The two output ports
then send out IoutL and IoutR to other nodes. Note that we
disallow any output of a crossover node to directly connect
to its inputs, because a crossover node configured in this way
might introduce a combinatorial loop.

We divide the genetic nodes into two categories, namely
non-blind nodes and blind nodes. As the selection nodes
have the evaluators to monitor the quality of individuals, we
call them non-blind nodes; the mutation and crossover nodes
change the individuals without considering their quality, so we
call them blind nodes. For ease of discussion, we denote the
set of all selection, mutation and crossover nodes respectively
as S,M, and C. Let the set of blind nodes B = M ∪ C

and the set of all non-blind nodes as N = S. A evolution
process should have at least one blind node and one non-blind
node, because blind nodes carry out the evolutionary genetic
operations which increases diversity, while the non-blind nodes
ensure that there is a trend towards higher fitness individuals.

B. Logical Connection Between Nodes

We consider the logical connections between the nodes,
which are captured as the set of edges E between nodes.
In the design of logical connections, we keep the following
considerations in mind.

(a) Topology 1 (b) Topology 2 (c) Topology 3

Fig. 2: Three Topologies

1) Minimise the amount of recompilation. Hardware
compilation of FPGA devices is time-consuming, and
it is not always clear what the best topology is, so
we support a single compilation of the architecture
which allows multiple possible topologies.

2) Dynamic changes of connection topology at run-time.
Run-time reconfiguration of the topological structure
can enhance the optimisation power of the system, but
we do not want to interrupt the current evolutionary
process. During the reconfiguration of the topological
structure, we keep the data in all unrelated blocks
unchanged, retaining the fitness already achieved.

3) Configurable set of selection, mutation, and crossover
nodes. Users can specify a set of nodes to use,
and may also choose to use a sub-set in certain
configurations. PGP will then create valid topologies
using all the user-specified nodes to allow exploration
of different patterns of connectivity between them.

Compared with the fixed and restricted connection of ge-
netic operators in generational genetic algorithms, the proposed
connection scheme is much more flexible and powerful. Given
the number and type of genetic nodes, we can create many
different topologies. For example, given 2 mutation nodes, 4
selection nodes and 2 crossover nodes, we have 10 inputs and
10 outputs in total, a large set of possible interconnections.

However, only a subset of topologies are reasonable, and
can be expected to produce good results. We restrict the set of
topologies using the following rules:

• Rule of full connectivity: for all pairs of nodes
(v†, v‡) ∈ V

2 in a topology, there exists a path from
v† to v‡ with finite length.

• Rule of striped serialisation: for all edges 〈v, v′〉 ∈
E, if (v, v′) ∈ B

2, then v′′ ∈ N for all v′′ such that
〈v′, v′′〉 ∈ E; for all edges 〈v, v′〉 ∈ E, if (v, v′) ∈ N

2,
then v′′ ∈ B for all v′′ such that 〈v′, v′′〉 ∈ E.

• Rule of fan-out control: deg+(vi) = 1 for all nodes
vi ∈ M ∪ S; deg+(vii) = 2 for all nodes vii ∈ C

where deg+(v) is the outdegree of node v.

The rule of full connectivity ensures all individuals are able
(though not guaranteed) to eventually reach all nodes in the
topology. The rule of striped serialisation ensures at most two
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(b) Pipelined Flow

Fig. 3: Physical-Level Connections between Genetic Nodes

nodes of the same type connect directly. In particular, a chain
of blind nodes may throw out or replace high-quality solutions
because the blind nodes do not monitor the fitness. Similarly, a
chain of non-blind nodes keep the individuals unchanged and
result in additional resource consumption. The rule of fan-out
control avoids duplication of individuals to keep the divergence
of the population.

It is a non-trivial task to generate legitimate topologies
satisfying all the proposed rules, particularly with large num-
bers of nodes. We tackle the topology generation problem and
present our solution in section IV. In the rest of this section, we
assume the availability of legitimate topologies. For instance,
Fig. 2 shows three topologies satisfying all the three rules. In
each topology, V includes two mutation nodes (M1 and M2),
two crossover nodes (C1 and C2), and four selection nodes
(S1, S2, S3 and S4).

C. Physical Connection Between Nodes

The pipelined genetic propagation scheme has a substantial
advantage over generational genetic computing architectures in
terms of pipeline efficiency. In a generational system, the next
generation cannot be started till the previous one has finished,
forcing a synchronisation point amongst all genetic operators.
This data dependence results in pipeline stalls and reduces the
overall efficiency of computation.

In contrast, our system does not divide the evolution pro-
cess into generations. Therefore, all genetic operations are able
to work simultaneously in a fully pipelined manner without
incurring stalls between generations. For instance, the physical
connections between the genetic nodes of the two example
topologies in Fig. 2 are shown in Fig. 3a. The two stages of
the pipelined flow of the first topology are demonstrated in Fig.
3b, showing the individuals flowing in the pipeline as streams.

To allow the propagation and circulation of individuals in
the topology, we need to map the logical structure to a phys-
ical reconfigurable device, which we solve using a topology
mapping unit to manage the connection of genetic nodes. The
mapping unit connects all the inputs and outputs of genetic
nodes, using multiplexers to support dynamic reconfiguration
of topology without interrupting executing. A direct and simple
solution is to connect all the inputs from each genetic nodes
to all genetic node outputs, using a full crossbar.

Full crossbar supports a wide range of topologies, however
it is resource-consuming, especially for a large number of
genetic nodes. It also supports many illegal connections of

nodes, as well as multiple realisations of what is essentially
the same topology. To reduce resource consumption, we limit
the inputs of each multiplexer to support only the topologies
needed. If a user generates M topologies for a structure,
we only need at most M input sources for each multiplexer.
Because some of the topologies share a subset of inputs, the
number of required inputs for a multiplexer may be even less
than M , resulting in a sparse crossbar. We will discuss the
empirical benefits of sparse crossbars over full crossbars in
section V.

D. Dynamic Change of Topology

Generational genetic algorithm sometimes gets stuck into
a local optimum, or a particular configuration is found to work
poorly for a specific problem. In software the algorithm and
parameters can be tweaked, but in hardware any modification
of the architecture requires a time-consuming recompilation. In
PGP, we can switch between multiple topologies, in order to
escape from the current local optimum found by one topology.
For instance, Fig. 4 shows a case where we support three
topologies for a problem, each of which contains two genetic
operators. In this example, we assume that the two genetic
operators are conventional and smooth, such that one execution
of the operator slightly modifies the individual. A point in the
space represents an individual, and the x axis and y axis show
respectively the directions that the two genetic operators drive
individuals along. The z axis stands for the fitness value of the
individual. All points in the space form a surface corresponding
to the three-dimensional projection of the high-dimensional
individual fitness mapping. The surfaces in the three topologies
are different as genetic operations in the three topologies move
individuals on different planes in the high-dimensional space.

The genetic operations modify an individual slightly in
each execution, resulting in small changes in the solution
space. The small scale of changes brings both benefits and
drawbacks. The small steps enable an individual to move
smoothly in the solution space of a topology without mistak-
enly skipping high-quality solutions. Nevertheless, when an
individual gets stuck in a local optimum, the genetic operators
may have insufficient power to help the individual to escape
due to the limited step size.

An occurrence of dynamic change of the topology corre-
sponds to an inter-topology crossing for all individuals. If a
individual is unable to move in the original topology due to a
local optimum, it may move again in the destination topology.
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Fig. 4: Inter-Topology Crossing

By moving back and forth between topologies, an individual
has a better chance to escape from a local optimum.

IV. TOPOLOGY GENERATION ALGORITHM

We propose a randomised topology generation algorithm
to produce legitimate topological structures for the connection
problem based on the three rules in section III.B. This algo-
rithm consists of four major parts namely balancing, threading,
dispatch and collapsing.

A. Balancing

The balancing algorithm discovers legitimate configuration
of a chosen number of blind and non-blind nodes by finding
integer solutions to a set of equations. According to the Rule
of striped serialisation, let xb and x2b be the number of blind
nodes and blind pairs respectively; let xnb and x2nb be the
number of non-blind nodes and non-blind pairs respectively.
By definition, the following must hold:

xb + 2x2b = 2c+m (1)

xnb + 2x2nb = s (2)

Here c is the number of crossover nodes, m is the number of
mutation nodes, and s is the number of selection nodes.

Because blind components and non-blind component alter-
nate in the chain, the number of blind components equals that
of the non-blind ones, such that:

xb + x2b = xnb + x2nb (3)

Therefore, the vector x = (xb, x2b, xnb, x2nb)
′ must satisfy(

1 2 0 0
0 0 1 2
1 1 −1 −1

)
x =

(
2c+m

s
0

)
(4)

The rank of the coefficient matrix is less than the number of
its rows. Therefore, the linear equation has an infinite number
of solutions if there are no additional constraints. However, we
know that xb, x2b, xnb and x2nb must be all positive integers.

To obtain the positive solutions, we first represent xb, xnb and
x2nb in terms of x2b:

xb = 2c+m− 2x2b (5)

xnb = 4c+ 2m− 2x2b − s (6)

x2nb = s− 2c−m+ x2b (7)

We then determine x2b by enumerating through a number of
integers in the range [x⊥, x�] where

x⊥ = �2c+m− s� (8)

x� =
⌊
min

(m
2

+ c,m,m+ 2c−
s

2

)⌋
(9)

Equation 8 and 9 remain unchanged regardless the value
of m, c and s. Therefore, no integer linear programming is
required to solve the equations.

B. Threading

The threading algorithm arranges the units along a directed
ring. The threading algorithm first makes a local arrangement
for blind components and non-blind ones separately, and
then merges the two sequences together. To make a local
arrangement for blind components, the algorithm creates a
sequence of blind components where the number of blind units
and pairs follow the constraints from the previous stage. To
merge the two local arrangements together, the algorithm takes
entries alternately from the two local arrangements.

The algorithm first produces a sequence list of blind nodes
LB and a sequence of non-blind ones LN . Let B be an
abstract blind node, which will become a crossover node or
a mutation node in later stages of the generation algorithm;
let N be a non-blind node, which in this work is always a
selection node. For ease of explanation, we use 2B and 2N to
represent respectively a combination of two blind nodes, and
a combination of two non-blind nodes.

LB = (B,B, . . . ,B︸ ︷︷ ︸
xb times

, 2B, 2B, . . . , 2B︸ ︷︷ ︸
x2b times

) (10)

LN = (N ,N , . . . ,N︸ ︷︷ ︸
xnb times

, 2N , 2N , . . . , 2N︸ ︷︷ ︸
x2nb times

) (11)

The algorithm then shuffles LB and LN into a random order
called ΛB and ΛN .

Finally, the algorithm returns a sequence Λ containing all
the entries in ΛB and ΛN . Entries in Λ with odd indexes are
entries in ΛB in their original order, i.e.

Λ2k+1 = ΛB

k+1 (12)

for all k ∈ Z ∩ [0, xb + x2b − 1]. Similarly, entries in Λ with
even indexes are entries in ΛN in their original order, i.e.

Λ2k = ΛN

k (13)

for all k ∈ Z∩ [1, xnb+x2nb]. By linking up the head and tail
of Λ, we may build a ring satisfying all the rules discussed in
section III.B.
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C. Dispatching

The dispatch algorithm expands the sequence produced by
the threading algorithm by dispatching mutation (M), half-
crossover (hC), and selection (S) nodes. A half-crossover node
is a temporary unit to simplify the computation. It contains one
input and one output. In a later stage, two half-crossover nodes
merge to a crossover node.

The algorithm first instantiates NB and 2NB units, as they
must be selection nodes. Let E be the result of dispatching.

EiN = (S), ∀iN ∈ {i : Λi = N} (14)

Ei2N = (S, S), ∀i2N ∈ {i : Λi = 2N} (15)

The next task is to dispatch M nodes. As we have discussed
in section III.A, we avoid the situation where an output of a
crossover node connects to its own inputs. As a result, we
avoid two hC nodes from occupying a 2B unit. To achieve
this, the algorithm dispatches at least one M node to each 2B
unit. Therefore, each 2B unit either contains exactly one or two
M nodes. In other words, the algorithm fixes a total of x2b M
nodes to 2B units, leaving (m− x2b) to dispatch elsewhere.

It is trivial to assign an M node to each 2B unit, so we
fix these M nodes while dispatching other nodes. To dispatch
the (m − x2b) M nodes in the ring, we first find all possible
dispatching locations by computing the index set IB+ of B
and 2B nodes:

IB+ = {i : Λi = B ∨ Λi = 2B} (16)

We randomly select a subset with (m− x2b) members, i.e.

I∗B+ = randomsubset(IB+,m− x2b) (17)

Then for each i∗
B+ ∈ I

∗
B+, we dispatch an M node using

Ei∗
B+

=

{
(M), Λi∗

B+
= B

(M,M), Λi∗
B+

= 2B
(18)

Next, we fix the hC nodes to the remaining locations in IB+.

Specifically, for all i
#
B+ ∈ (IB+ − I

∗
B+)

E
i
#

B+

=

{
(hC), Λ

i
#

B+

= B

(hC,M), Λ
i
#

B+

= 2B
(19)

To introduce extra diversity to the topology, when Λ
i
#

B+

= 2B,

we randomly flip (hC,M) to (hC,M) with a probability of
0.5. The dispatch algorithm finally returns a list of nodes Ξ
by linking up all list in E , i.e.

Ξ = E1 ‖ E2 ‖ . . . ‖ E|2(xb+x2b)| (20)

where ‖ is the list concatenating operator.

D. Collapsing

The collapsing algorithm transforms the outcome of the
dispatch algorithm by randomly pairing half-crossover (hC)
nodes. To achieve this goal, the algorithm first extracts loca-
tions of hC nodes in Ξ, i.e.

IhC = {i : Ξi = hC} (21)

Then it partitions IhC into two subsets with equal size c.
Next, the algorithm places the members in each subset into

a sequence in random order, called CL and CR. Finally, we
obtain the C nodes by combining the hC nodes in the two
sequence with identical index, i.e.

Ci = (CL

i , C
R

i ) (22)

The topology generator finally returns the ring Ξ along with
C. Ξ contains the logical positions of all M, S and hC nodes,
while C specifies the combination of hC nodes.

The user may then deploy the result of the topology gen-
erator in a reconfigurable device using multiplexers following
the instructions in section III.C. Experimental results related
to the generator are available in section V.

V. EXPERIMENTS

To evaluate the PGP approach, we apply it to two opti-
misation problems, the maximum satisfiability (MAX-SAT)
and travelling salesman problems (TSP), and five numerical
optimisation benchmarks [10], [19]. These seven problems
have different kinds of chromosomes, including fixed-point,
permutation and floating-point chromosomes, and vary signif-
icantly in their scale and difficulty.

We compare the proposed work to a recent FPGA-based ac-
celerator [15], a GPU-based accelerator [3], and a CPU-based
software based on the generational genetic algorithm [19]. The
CPU-based system runs on an Intel Xeon X5650 CPU using 8
of 12 cores because more cores reduce the performance. The
GPU version targets the nVidia Tesla C1060 platform. The
FPGA-based accelerator targets a Virtex 6 (SX475T) FPGA.
Our proposed system also targets the same platform for fair
comparison. A reference software model and experimental
setting are available online.1 The CPU-based PGP is slow due
to communication and synchronisation cost, so here we only
compare our work with the standard CPU-based GA system.

If the best individual fitness of a GA system remains
unchanged for 10,000 cycles, we consider the GA system to
have reached its plateau fitness. When a CPU-based GA system
reaches its plateau, we calculate the speedup by dividing CPU-
based GA system time by the time for the FPGA-based systems
to reach the same fitness.

A. Maximum Satisfiability Problem (MAX-SAT)

The maximum satisfiability problem (MAX-SAT) is a
classic NP-hard combinational optimisation problem [3]. We
apply three different topologies (PGP-1, PGP-2 and PGP-3)
in our proposed work, and denote the inter-topology crossing
technology between these three topologies as PGP-X. When
our work reaches a plateau with unchanged fitness for 10,000
clock cycles, we carry out the inter-topology crossing. Inter-
topology crossing never reduces the highest quality found
using previous topology, because the optimum is still in local
memory when switching topologies.

1) Performance Results: As GA is a stochastic algorithm,
we run the experiments multiple times. The average values
of the best fitness found over time are shown in Fig. 5.
Our proposed work clearly outperforms the FPGA-based GA
system (F-GA) and CPU-based system (C-GA), and when the

1http://guoliucheng.info/pgp
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Fig. 5: Fitness Found by Different Optimisers

C-GA system reaches plateau fitness (shown as the dotted line
in the figure), our proposed work has a speedup of 90 times
over the multi-core C-GA, and 5 times over the F-GA for the
same fitness. For the same problem, our work is also 30 times
faster than the GPU-based GA [3].

We can make the following three observation from Fig. 5.

1) All the three topologies provide significantly better
results than the CPU and generational FPGA archi-
tecture in terms of convergence speed and solution
fitness. This observation shows the increased optimi-
sation power of the PGP-X approach.

2) The gaps in terms of the optimisation power between
three different topologies are small. This observation
demonstrates the stable quality of topological struc-
tures produced by the proposed topology generator
with the three rules.

3) The results for PGP-X with inter-topology crossing
are better than all fixed topologies. This observation
shows the usefulness of dynamic switching between
topologies.

2) Resource Optimisation: We also test the reduction of
resource consumption using sparse crossbars. We build three
systems consisting of 5, 10 and 20 genetic nodes respectively.
In each system, we generate five different topologies using
the generator proposed in section IV. The resource usages are
shown in Table I, and in all cases the sparse crossbars save
resources, sometimes significantly.

B. Travelling Salesman Problem and Benchmarks

We apply our proposed work to the travelling salesman
problem (TSP) with 64 cities, and five different functional
benchmarks, including binary function 6 (BF6) [10], binary
function 7 (BF7) [10], function 11 (F11) [19], 2-D Shubert
function (2DS) [10] and Rosenbrock function (RF). After
running multiple times, we compare the average of the best
fitness versus time for the following three approaches: the
FPGA-based generational GA system (F-GA), pipelined ge-
netic propagation using inter-topology crossing (PGP-X), and
the CPU-based standard GA (C-GA). Table II and Fig. 6 show
the combined results and PGP-X information, including clock

TABLE I: Resource Usages of MAX-SAT

# of Nodes Crossbar LUTs(%) FFs(%) BRAMs(%)

5 Full 6.17 5.11 3.85

5 Sparse 5.98 5.01 3.85

5 Saving 3.08% 1.96% 0.00%

10 Full 12.90 9.54 6.95

10 Sparse 10.31 8.49 6.20

10 Saving 20.08% 11.01% 10.79%

20 Full 26.38 17.86 13.44

20 Sparse 21.50 16.96 13.35

20 Saving 18.50% 5.04% 0.67%

TABLE II: Experimental Results (SP.F: Speedup over F-GA,
SP.C: Speedup over C-GA, Res.: Resources, Freq.: Frequency)

Fun. # of M # of C # of S Freq. (MHz) Res. (%) SP.F SP.C

TSP 2 1 2 110 77.17 - 91

BF6 3 3 6 160 20.18 6 98

BF7 3 3 6 160 21.22 5.8 91

F11 3 3 6 160 46.24 3.8 83

2DS 3 3 6 160 38.73 3.1 103

RF 3 3 6 160 23.16 3.7 76

Avg - - - - - 4.5 90

frequency, resources and the numbers of genetic nodes (S,
C, M). After the CPU-based work reaches plateau labelled
as dotted line, our proposed work has an average speedup of
around 5 times than the generational FPGA-based GA system,
and an average speedup of 90 times over the multi-core CPU-
based GA. The blank in the table means F-GA cannot reach
the fitness plateau of C-GA.

We can make the following observations from Fig. 6.
1) The PGP approach provides better results versus time
spent than the other systems for different types of objective
functions, across a wide variety of problems. 2) The PGP
architecture is less likely to get stuck in a local plateau. 3)
The fitness of the pipelined genetic propagation architecture is
smoother than those of the generational GA architecture.

To sum up, the pipelined genetic propagation outperforms
the other two systems in terms of optimisation power and
computational efficiency. We offer three possible explanations
for this improvement: 1) the inter-topology crossing may help
escape from a local optimum, although there is no guarantee
it will fall into the global optimum; 2) the non-trivial topolog-
ical structure may encourage higher genetic diversity in the
population; 3) the distributed memory and reduced fan-out
enable our system to achieve a higher clock frequency than
the generational FPGA-based GA. For instance, the maximal
frequency of generational FPGA-based GA system for TSP is
75MHz, while that of our proposed work is 110MHz.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new approach for genetic algorithms
called pipelined genetic propagation, which is optimised for
reconfigurable hardware. It has many loosely coupled genetic
nodes with distributed local memory, and supports dynamic
switch of topologies to escape from a local optimum, along
with a generator to produce the topologies automatically.
Experiments on two applications and five GA benchmarks
demonstrate the high performance and flexibility of our pro-
posed work.
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Fig. 6: Fitness Results (dotted line: plateau fitness of C-GA)

In the future, we will develop a new topology generation
algorithm to support user-defined rules. Another direction is to
devise strategies to perform inter-topology crossing in a non-
random manner using reinforcement learning [20] to improve
its effectiveness.
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