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Abstract—The bilevel optimisation problem (BLP) is a subclass
of optimisation problems in which one of the constraints of
an optimisation problem is another optimisation problem. BLP
is widely used to model hierarchical decision making where
the leader and the follower correspond to the upper level
and lower level optimisation problem, respectively. In BLP, the
optimal solutions to the lower level optimisation problem are
the feasible solutions to the upper level problem, which makes
it particularly difficult to solve. This paper proposes a novel
hardware architecture known as Recursive Pipelined Genetic
Propagation (RPGP), to solve BLP efficiently on FPGA. RPGP
features a graph of genetic operation nodes which can be scaled to
exploit hardware resources. In addition, the topology of the RPGP
graph can be changed at run-time to escape from local optima.
We evaluate the proposed architecture on an Altera Stratix-V
FPGA, using a benchmark bilevel optimisation problem set. Our
experimental results show that RPGP can achieve a significant
speed-up against previous work.

I. INTRODUCTION

The bilevel optimisation problem (BLP) is a two-level

nested optimisation problem shown in (1). In BLP, the lower

level optimisation problem (f ) appears as a constraint of the

upper level optimisation problem (F ).

max
x∈X

F (x, y)

subject to G(x, y) ≤ 0

min
y∈Y

f(x, y)

subject to g(x, y) ≤ 0

(1)

BLP is used to model two-level hierarchical decision

making where two agents are involved: the leader and

the follower. The leader corresponds to the upper level

optimisation problem in BLP, has control over x, and

optimises x with respect to the objective F (x, y), constraints

G(x, y) and the follower. Meanwhile, in the lower level

problem, the follower has control over y and optimises y

with respect to the objective f(x, y) and constraints g(x, y).
When the leader makes decision x, he will take account of

the follower’s potential response(s) - the optimal solution(s)

to the lower level problem given x. The leader can foresee

the follower’s potential reactions. The leader has the initiative

to choose an optimal x∗ such that when the follower reacts

as predicted, the overall result is the optimal for the leader. In

the setting of BLP, the leader effectively guides the follower.

There are many practical problems that fit BLP’s structure

very well [1]. A common case is the interaction between

the government’s policy and the industry or person affected

[2], [3]. In [2], the leader is the government who sets a

taxation policy with the aim of maximising tax revenue; the

follower is a mining company who wants to maximise its

profit under the limitation of the tax. In [3], toll gate setting

and drivers’ reaction are modelled as a BLP. In other areas

such as corporation management [4] and engineering design

[5], BLP is also found to be a powerful modelling approach.

While being useful, BLP is intrinsically very challenging

to solve. This is because for each upper level candidate

x0, the lower level optimisation task must be solved to

find the lower level optimum y0 = argmin
y∈Y

f(x0, y), which

will be used to evaluate upper level objective function

F (x0, y0). Additionally, the two sets of constraints can often

be inconsistent, which brings extra difficulty for convergence.

Even in the linear case, BLP is known to be NP-hard [1]. As

a result, heuristics, such as genetic algorithms, are the major

ways to solve BLP. When using heuristics, solving a BLP

often requires solving the lower level optimisation problem

many times, which means the lower level objective function

f(x, y) will be evaluated a large number of times, such as

1 million [6]. To evaluate the lower level objective function

a very large number of times is extremely time consuming

for CPU, especially when these functions are non-trivial.

As a result, objective function evaluations are the major

performance overhead.

In this paper, we present a novel hardware-based genetic

algorithm to solve BLP efficiently on FPGA. The entire

system is built on FPGA so that objective function evaluations

be achieved efficiently using a pipeline architecture. The

proposed hardware structure, Recursive Pipelined Genetic

Propagation (RPGP), extends recent work on Pipelined

Genetic Propagation (PGP) to the bilevel case. It uses

distributed memories to store candidates, thus avoiding the



memory-access bottleneck of traditional FPGA-based genetic

algorithms which use a single central memory. Also, the

connections between genetic operation nodes can be changed

at run-time to help escape from local optima. To the best of

our knowledge, we are the first to solve BLP on FPGA. The

main contributions of this paper are summarised as follows:

• A hardware-based BLP solver which operates solely on

FPGA. The highly pipelined function evaluation modules

in hardware greatly reduce function evaluation overhead

that conventional CPU-based BLP solvers suffer from.

• The Recursive Pipelined Genetic Propagation (RPGP)

architecture. RPGP is a novel genetic algorithm which

employs distributed memories to avoid memory I/O bot-

tleneck and dynamic topology switching to escape from

local optima in both upper and lower level.

• Implementation of RPGP on an Altera Stratix-V FPGA

and experimental evaluation using benchmark bilevel

optimisation problems. The proposed RPGP system is

found to be significantly faster than previous work.

The rest of this paper is organised as follows. Section II

covers related background. Section III details our RPGP hard-

ware structure. Section IV presents experimental evaluation.

Section V discusses performance results. Finally, Section VI

reaches to the conclusion and suggests future work.

II. BACKGROUND

A. Solving BLP

As mentioned in Section I, the major computational over-

head of solving BLP is a very large number of lower level

objective function f(x, y) evaluations. Therefore, theoreti-

cal research has been mainly focused on making f(x, y)
less computationally expensive to evaluate and reducing the

number of function evaluations. In the simplest case, an

analytical solution of the lower level problem is available, i.e.

y0 = argmin
y∈Y

f(x0, y) = y(x0). In this case, BLP is reduced

to a single level optimisation problem. Besides, if the lower

level optimisation problem is differentiable, it is advisable

to replace it by its Karush-Kuhn-Tucker conditions, which

also reduces BLP into single level [7]. Another alternative

is to replace lower level objective function by its quadratic

approximation, which is a trade-off between accuracy and

speed [8]. These methods usually assume the optimisation

problem to have desired mathematical properties, such as

smoothness and/or convexity. Unfortunately, this may not be

the case for real world problems. In the general case, the

common approach is nested optimisation, using heuristics to

solve the lower level optimisation problem for each upper level

candidate [9]. Nested heuristic optimisation approaches make

no assumption on BLP’s mathematical properties, but they are

computationally expensive.

B. Genetic Algorithm on FPGA

As a customisable parallel computing platform, FPGA is

a natural fit for genetic algorithms. The first FPGA-based

genetic algorithm was proposed by Scott et al. in 1995

[10]. Since then, various designs and implementations have

been proposed. An automatic platform for FPGA-based

genetic algorithms is presented in [11], which enables

the user to enter the optimisation problem and genetic

algorithm parameters in a high level language and generates

FPGA implementation automatically. However, these genetic

algorithms usually use a large central memory to store the

population and wait for all offsprings to be pooled into

the population before starting next iteration of evolution.

This will result in a memory I/O problem due to limited

memory ports and pipeline stall due to the synchronisation in

each iteration. A new hardware structure, Pipelined Genetic

Propagation (PGP), is proposed in a recent paper [12].

In PGP, genetic operation nodes (selection, mutation and

crossover) are connected in a graph and there is no central

memory to store the entire population. Instead, each selection

node has a small local on-chip memory to store a group of

candidates. On every clock cycle, a new candidate comes into

the selection node and an old candidate from local memory

goes out. The better one between the newcomer and the old

candidate will be written back to the selection node’s local

memory. In this manner, there is no memory I/O bottleneck.

Also there is no need of global synchronisation, so PGP

graph can operate in a fully-pipelined manner without stalling.

To the best of our knowledge, all previous FPGA-based

systems are intended for single level optimisation with no

support for BLP. In this paper, we present the Recursive

Pipelined Genetic Propagation (RPGP) structure, which

extends PGP to the bilevel case and is the first FPGA-based

genetic algorithm for bilevel optimisation.

III. HARDWARE DESIGN

We present the details of our RPGP structure in this sec-

tion. RPGP is a nested optimisation approach using genetic

algorithm, so it can be applied to a wide range of BLP

problems regardless of smoothness or convexity. In RPGP,

we use PGP to solve a lower level optimisation problem for

each upper level candidate. Therefore, we put PGP graph for

lower level optimisation into the selection node of upper level

optimisation. Meanwhile, the upper level selection, mutation

and crossover nodes form another PGP graph. Consequently,

our RPGP system is essentially small PGP graphs nested

within a large PGP graph, which is a ‘recursive’ version of

PGP.

A. Lower Level PGP

The lower level PGP searches for the optimal lower

level candidate for each upper level candidate, i.e. to find

y0 = argmin
y∈Y

f(x0, y) for each x0. This can also be interpreted

as finding the follower’s optimal response given the leader’s

action. The lower level PGP is composed of 4 lower level

selection nodes, 2 lower level mutation nodes, 2 lower level

crossover nodes and a lower level controller. The number of

selection, mutation and crossover nodes can be adjusted to
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Fig. 1. Lower level PGP nodes: selection, mutation and crossover.

fully exploit FPGA resources. Figure 1 shows lower level

selection, mutation and crossover nodes.

1) Lower Level Selection: A lower level selection node

is composed of an input for lower level candidate, an input

for upper level candidate, an input for BRAM address and

an output for lower level candidate. On each cycle, a new

lower level candidate comes in, and is evaluated and compared

against a random selected candidate from existing population.

The random candidate goes to the output and the better one

of the two is written back to BRAM. As the evolution process

goes on, the population in the BRAM become better and better.

The BRAM address is generated on FPGA using an LUT-

optimised uniform random number generator [13].

2) Lower Level Mutation: A lower level mutation node

is composed of an input for lower level candidate, an input

for random numbers, and an output for mutated lower level

candidate. The random number is generated on FPGA using

an LUT-optimised Gaussian random number generator [14].

The random numbers follow normal distribution N(0, σ),
where the variance σ can be specified at the beginning of

computation. The benchmark problems used in this paper

are numerical optimisation problems, so both the lower and

upper level candidate are vectors of real numbers. In this case,

mutation is carried out by adding Gaussian random numbers to

candidate vectors. The mutation mechanism can be modified

for different kinds of problems.

3) Lower Level Crossover: A lower level crossover node

is composed of two lower level candidate inputs (‘parents’),

two lower level candidate outputs (‘children’) and a random

number input. For real-valued vectors, crossover is carried

out by conditionally exchange elements between the parents,

controlled by random numbers. The random number is also

generated by the Gaussian random source [14]. The crossover

mechanism can be modified for different kinds of problems.

4) Lower Level PGP graph: The lower level genetic op-

eration nodes above are connected to the lower level PGP

controller, which is essentially a complex crossbar controlling

data paths. Figure 2 shows the structure of lower level PGP

graph. The lower level PGP graph performs lower level

optimisation for the input upper level candidate, and outputs

corresponding optimal lower level candidate. To make use

of FPGA’s flexibility, the special feature of PGP is that the

crossbar configuration can be switched at run-time, which

effectively offers another dimension of mutation. As shown
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Fig. 2. Lower level PGP graph. It performs lower level optimisation for
each upper level candidate and outputs corresponding optimal lower level
candidate. The connections between selection, mutation and crossover nodes
can be switched at run-time. The dynamic topology switch helps PGP to
escape from local optima.

in the PGP paper, the dynamic topology can help the genetic

algorithm escape from local optima [12].

B. Upper Level PGP

Upper level optimisation is also carried out by a PGP

graph composed of several selection, mutation and crossover

nodes. The upper level mutation and crossover nodes have the

same structure as their lower level counterparts, so we will

not elaborate them again. Note that although very similar,

the upper/lower level mutation and crossover nodes are not

interchangeable in general, because lower and upper level

candidates may have different formats. On the other hand, the

upper level selection node is much different from lower level

selection. In fact, the lower level PGP graph is encapsulated

inside the upper level selection node to form a recursive PGP.

1) Upper Level Selection: As required by nested

optimisation, for each upper level candidate x0, we need

to find its corresponding optimal lower level candidate

y0 = argmin
y∈Y

f(x0, y). Then the fitness of x0 is evaluated

by the upper level objective function F (x0, y0). Note that

lower level optimality is a strict requirement for solving BLP,

because feeding a non-optimal y into F (x0, y) may yield a

value better than the true value F (x0, y0), which may lead

the genetic algorithm to converge into a false upper level
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Fig. 3. Upper level selection node. The lower level PGP is nested inside to
find the lower level optimum for the upper level candidates.

optimum. Intuitively, a non-optimal y with respect to x0

means the follower is sacrificing himself, which is not the

truth. For example, given a tax regulation x0, a company will

try to find an optimal solution y0 to avoid tax as much as

possible. So when planning taxation policy, the government

must take y0 into account, rather than a non-optimal y.

With this in mind, we put the lower level PGP graph

inside the upper level selection node, so that optimal lower

level candidate y0 will go to the upper level evaluator

F (x, y) together with upper level input x0. Figure 3 shows

the structure of upper level selection node. The upper level

candidate is fed into the lower level PGP graph in order to

find its corresponding optimal lower level solution. Then the

upper level and corresponding optimal lower level candidates

are evaluated and compared with an existing candidate from

BRAM. The existing candidate loaded form BRAM will be

propagated to the output port, and the better of the two will

be written back into BRAM. BRAM address is generated on

FPGA using a uniform random number generator [13].

2) Upper Level PGP graph (Recursive PGP): The upper

level PGP graph is composed of upper level selection,

mutation and crossover nodes. Figure 4 shows the structure

for upper level PGP. Note that lower level PGP is instantiated

within upper level selection nodes, so we name the system

as ‘Recursive Pipelined Genetic Propagation (RPGP)’. The

upper level controller in the center controls the data paths

between upper level selection, mutation and crossover nodes.

Similar to the lower level PGP controller, the data paths in

the upper level PGP can be switched at run-time in order to

escape from local optima in the upper level.

When compiling the RPGP system, the user will need

to specify the lower level objective function f(x, y), the

upper level objective function F (x, y), and constraints. When

running the FPGA system, parameters for genetic operations

are uploaded to RPGP at the beginning, such as the standard
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Fig. 4. Upper level PGP graph (Recursive PGP)

deviation (σ) for the Gaussian random number generator,

lower and upper level thresholds to determine convergence.

To minimise CPU-FPGA I/O overhead, random numbers are

generated on FPGA, so RPGP does not require any inputs

from CPU when running. RPGP will send final results back

to CPU when the global optimum is found.

IV. EXPERIMENTAL EVALUATION

A. System Specification

The number of selection, mutation and crossover nodes in

both lower level and upper level are customisable to exploit the

available resources on FPGA. The RPGP configuration used

in this paper corresponds to Figure 4:

• Lower Level: Selection×4, Mutation×2, Crossover×2

• Upper Level: Selection×4, Mutation×2, Crossover×2

The proposed RPGP system is described using the MaxJ

dataflow programming language by Maxeler Technologies.

User will need to specify the BLP problem in a MaxJ file, then

function evaluators F (x, y) and f(x, y) will be instantiated

within RPGP. Currently there are two PGP topologies available

for the lower level controller and the upper level controller.

For the lower level PGP, the topology will be switched every

16384 clock cycles until optimal solution is found; for upper

level PGP the topology will be switched every 16384*16384

cycles until the global optimum is found. The 16384 and

16384*16384 thresholds are empirical numbers which can be

configured by the user.



B. Benchmark Problems

To evaluate the proposed RPGP system, we use four bench-

mark BLP problems proposed in [6]. These BLP problems

have different properties:

• SMD1: Both the lower and upper level problems are

convex. The two levels cooperate with each other.

• SMD2: Both the lower and upper level problems are

convex. The two levels are in conflict.

• SMD5: The lower level has difficulties in convergence

introduced by the Rosenbrock’s function. Lower level

optima lies in a narrow, parabolic valley. The two levels

are in conflict.

• SMD6: The lower level contains infinitely many optimal

solutions for each upper level candidate, but within the

entire global solution set only one lower level point

corresponds to upper level optimum. The two levels are

in conflict.

These problems are scalable in terms of dimension. In our

tests, we set the total dimension to 10: 5-dimensional lower

level problem and 5-dimensional upper level problem.

C. Comparison

The proposed RPGP system is compared with BLEAQ,

a recent CPU-based genetic BLP solver [15]. It makes

quadratic approximations of the lower level problem whenever

possible to boost performance. The BLEAQ solver targets

the benchmark problem set above, and is publicly available

(www.bilevel.org). We use BLEAQ’s open sourced MATLAB

version in our tests.

D. Test Environment

The proposed RPGP system is built on Maxeler’s MAX4

platform with an Altera Stratix-V 5SGSD8 FPGA. FPGA

frequency is set to 100MHz. The BLEAQ program is running

in 64-bit MATLAB R2012b environment on a server with dual

Intel Xeon E5-2640 CPU @ 2.5GHz and 64GB DDR3-1333

memory. The operating system used is CentOS 6.4.

E. FPGA Resource Usage

Table I shows the resource usage of Stratix-V 5SGSD8

FPGA. Although the RPGP configuration and parallelism are

the same for all problems, resource usage varies significantly.

This is because the majority of the FPGA resources are

taken by the upper level and lower level objective function

evaluators. For different problems these functions are different,

resulting in various resource usage. For the SMD1 problem

in the 10-dimensional case, both the upper level and lower

level objective function contain two tan() functions, which

are expensive to evaluate on hardware. In contrast, SMD6

objective functions do not involve such expensive functions,

so its resource usage is much less.

F. Performance Evaluation

We compare the elapsed time for RPGP and BLEAQ to

achieve the same level of accuracy. In our tests we set the

error threshold to 0.01, and the elapsed time is shown in

TABLE I
RESOURCE USAGE OF STRATIX-V 5SGSD8 FPGA

Problem # Logic Usage DSP Usage BRAM Usage

SMD1 94.43% 100.00% 100.00%
SMD2 46.00% 82.53% 66.46%
SMD5 38.56% 78.45% 45.93%
SMD6 33.28% 47.48% 45.46%
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Figure 5. As can be seen in the figure, RPGP demonstrates

significant speed-up against BLEAQ. The best acceleration

number is achieved for SMD2 test problem, in which RPGP

running on FPGA is 1210 times faster than a Xeon-based

BLEAQ solver in software. We think this is probably because:

a) SMD2 has the largest number of function evaluations; b)

objective functions in SMD2 contain log(), which is expensive

for CPU to evaluate.

V. DISCUSSION

The major computational bottleneck for CPU-based BLP

solvers is the huge number of lower level objective function

evaluations. As can be seen from Figure 6, for test problems

SMD1, SMD2 and SMD5, BLEAQ needs hundreds of

thousands of LL evaluations, which is very time consuming

for CPU, especially when the functions are non-trivial. For

SMD6, the BLEAQ solver is lucky since it quickly converged

to the threshold using about 10000 lower level function

evaluations. Consequently, in Figure 5 the CPU time for



SMD6 is much shorter than those for other test problems.

In general, the hardware speed-up is likely to be the most

significant for the problems which are difficult to converge

(need more evolution, so more function evaluations) and

whose objective functions are costly to evaluate, such as those

involving tan() or log(). Apart from function evaluations,

the genetic operations such as mutation and crossover are

also expensive to run on a CPU, mainly because they need a

significant amount of random numbers. For SMD6, although

the number of function evaluations are low (such as 8716), it

still takes 69 seconds to reach the 0.01 threshold.

On the other hand, in the FPGA-based RPGP system,

all lower level and upper level function evaluators are built in

hardware and highly-pipelined. Therefore, RPGP is actually

indifferent to the time cost of evaluating objective functions,

because on every cycle a fitness result will come out from the

pipeline. As PGP is a non-generational approach, the lower

level PGP graph do not need global synchronisation on each

generation, therefore it is free from pipeline stall and has

better efficiency.

In terms of area cost, RPGP is sensitive to the objective

function’s complexity. In each lower level selection node,

there is a lower level objective function evaluator. As a result,

as parallelism increases (more selection nodes), function

evaluation units quickly occupy available FPGA resources.

The RPGP systems for SMD1 and SMD6 have the same level

of parallelism so they have the same number of objective

function evaluation units. However, SMD1’s tan() functions

use a lot more resources than SMD6’s polynomials, resulting

in an almost full FPGA. For random number generation,

FPGA is very efficient. The proposed RPGP system has 4

LUT-optimised Gaussian number generators [14]. In total

they only use about 5% logic and 4% BRAM.

VI. CONCLUSION AND FUTURE WORK

Bilevel optimisation problem (BLP) is a nested optimisation

problem in which one optimisation problem is nested within

another as a constraint. BLP is a useful modelling approach for

hierarchical decision making, where the leader and follower

correspond to the upper level and lower level problem, respec-

tively. However, BLP is an NP-hard problem and CPU-based

heuristic solvers suffer from very large number of lower level

objective function evaluation. In this paper, we propose the

first FPGA-based BLP solver. Our system operates solely on

FPGA and all function evaluators are built on hardware, which

greatly reduces function evaluation overhead. The proposed

Recursive Pipelined Genetic Propagation (RPGP) architecture

employs distributed memories to avoid memory I/O bottle-

neck. Dynamic topology switching is used to escape from local

optima in lower and upper level. Experimental results using

four BLP benchmark problems show that the proposed RPGP

system can achieve up to 1200 times speed-up compared to

BLEAQ, a recent CPU-based BLP solver.

Future work involves improving RPGP’s structure. As

shown in Figure 3, there are two lower level PGP graphs in

each upper level selection node. In RPGP’s next version we

will reduce this number to one, which will save a considerable

amount of hardware resources. Also, we will do a thorough

design space exploration, optimising number representation,

FPGA frequency and parameters for genetic operation. Plus,

we will include a more extensive performance evaluation in

the future, using more benchmark problems and comparisons.
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