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ABSTRACT
Genetic algorithms (GA) have been shown to be effective
in the optimization of many large-scale real-world problems
in a reasonable amount of time. Parallel GAs not only re-
duce the overall GA execution time, but also bring higher
quality solutions due to parallel search in multiple parts of
the solution space. This paper proposes a parallel GA sys-
tem on hardware such as Field-Programmable-Gate-Arrays
(FPGAs). Our approach targets multiple FPGAs by explor-
ing different search areas of the same solution space with
different behaviours. Each FPGA contains an optimised
customisable GA which can be configured using run-time
parameters, removing the need for expensive recompilation.
This paper also explores adjustment of the migration gap,
providing empirical guidance on good settings to users. Ex-
periments on three problems show the high performance of
our system, with a 30 times speedup achieved compared to
a multi-core CPU-based implementation.

1. INTRODUCTION
Genetic algorithms (GAs) are effective in solving differ-

ent types of optimization problems. Nevertheless, due to its
heuristic nature, a genetic algorithm often has a long exe-
cution time, thus becoming vital to optimise and accelerate
this well-known computation technique.

Various techniques are available to find better solutions in
the search space, with one common method being the paral-
lellisation of the GA technique itself [2]. Parallel GA (pGA)
is a type of GA which contains multiple GA instances that
are evolving and exchanging information in parallel. The
search processes of different GA instances work on different
areas of the search space in parallel. The pGAs can improve
the solution’s quality while decreasing the execution time.
The use of multiple populations in pGAs is based on the idea
that the isolation of populations can maintain a higher ge-
netic diversity, while the communication between them can
make GAs work together to find good solutions.

There exists previous work on finding an optimal way
of adapting pGAs to hardware platforms such as FPGAs.
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However, several challenges appear while optimising pGAs
for FPGAs. First, the FPGAs resource availability limits the
problem size and the degree of parallelism in the platform;
Second, when using multiple FPGAs to increase the degree
and problem size, the connection complexity and synchro-
nisation reduce performance; Third, recompilation can be
time-consuming, making it impractical to frequently modify
the hardware at run time.

This paper proposes a full system to solve the problem of
creating and executing parallel genetic algorithms on multi-
ple FPGAs. Our main contributions are:

• A fully parallel GA system on multiple FPGAs, avoid-
ing the limitation of resources in one single FPGA.

• A connection structure with a low-cost communica-
tion, making the architecture extensible without sig-
nificant cost.

• A system supporting a run-time changeable migration
gap, making it possible to tune it for fast evaluation.

• An investigation about the impact of migration gap on
optimisation quality, providing a guidance for setting
the migration gap by experiments.

We apply our system to Function 11, the Locating problem
and the Travelling Salesman Problem. The experiments on
4-FPGAs show an average of 30 times speedup over a multi-
core CPU-based GA.

2. BACKGROUND AND RELATED WORK

2.1 Genetic Algorithms
Genetic algorithms are inspired by evolution in nature and

they usually take the form of an iterative process. At the
end of each iteration, a new population of individuals (gen-
eration) gets created [1]. Every individual in the iteration is
represented as a chromosome and describes a possible solu-
tion in the search space of the specific problem.

There are different types of genetic algorithms such as:
the generational GA or the steady-state GA. The genera-
tional GAs work as follows [2]. The first step is to randomly
generate a population of individuals. The second step eval-
uates each of the individuals using a problem-specific fit-
ness function, thus assigns fitness values to all individuals



in the population. The next step is to perform the genetic
operators (crossover, mutation and selection) to produce a
new generation of individuals (offspring). After offspring
are produced, the new generation will replace the previous
generation and the above steps are then repeated. The evo-
lutionary process stops when a convergence criterion is met:
the maximum number of iterations is reached or a good so-
lution appears.

Our approach is based on the steady-state GA, which is a
simplified version of the generational GA. The steady-state
GA selects two parents, crosses them to produce two off-
spring, mutates the offspring, then inserts them back into
the population. This process is repeated in a loop, so the
population size remains constant, instead of a new popula-
tion which contains the whole offspring being maintained.
The steady-state GA requires less resources and has a re-
duced delay before entering the next evolutionary process.
Meanwhile, the steady-state GA always requires more gen-
erations to find a good solution than a generational GA.

2.2 Parallel Genetic Algorithms
Parallel genetic algorithms have been created to reduce

the execution times which are often associated with classic
genetic algorithms when finding optimal solutions for large-
scale domain specific search spaces [2].

One simple way of obtaining GA parallellisation is to sim-
ply execute multiple copies of the same GA instance, how-
ever each of these GA instances alone would have to start
with different initial sub-populations, evolve, and stop in-
dependently of the other parallel GAs. Another method is
the distributed GA (dGA): the independent GA instances
now periodically exchange chromosomes between their pop-
ulations, thus not only sharing high quality solutions, but
potentially reducing the execution time through the periodic
migration of the information. Chromosome migrations oc-
cur after a number of iterations, when each of the individual
GA instances sends a copy of its locally best chromosome to
the next GA instance at each of the migration steps and so
on. Normally, the GA instance receiving a chromosome re-
places the locally worst chromosome with the incoming one,
unless an identical chromosome already exists in its local
population.

2.3 FPGA-based Parallel GA
FPGAs are a promising platform to successfully provide

execution time speedup as they combine the parallelism and
great performance of hardware with the flexibility provided
by a software tool.

Genetic algorithms were first introduced on FPGAs in
1995 [3]. There are a number of conventional GA systems
mentioned in [4], [5], [6], [7], [8], [9]. For example, [9] devel-
oped a GA system for the travelling salesman problem.

Researchers also demonstrated a number of FPGA-based
architectures for dGAs, and other kinds of pGAs. Some of
them as mentioned in [10], [14], [12], [13], [17], [15] and [16].
For example, [16] proposes a multi-level parallel dGA system
and targets one single FPGA with multiple GA instances,
while [17] proposed a fine grained pGA system in one FPGA.
We summarise the features of these systems in the first seven
rows in Table 1. Due to the insufficient resources of one sin-
gle FPGA the scale of the problems solved and the degree of
parallelism is limited. To address the problem, researchers
adapt pGAs to multiple FPGAs [20], [11]. Majority of the

research so far involves the use of generational GA, instead
of the steady-state GA, as the former is more common in
the software GA. However, while the steady-state GA re-
quires more generations, it is simpler to perform and needs
less resources than a generational GA, thus being ideal for
FPGA.

While parallel GAs on multiple FPGAs exist, they all
suffer from a number of problems: 1) lack of flexibility of
the architecture, resulting in time-consuming recompilation
when modifying them; 2) the link of multiple FPGAs are
complex, reducing the performance carried by parallel GAs;
3) they do not investigate the impact of migration settings,
thus not providing any guidance of the settings to users.

This paper proposes a multiple FPGA GA system with
an easy communication method, supporting run-time mod-
ification of the migration gap without time-consuming re-
compilation.

3. CUSTOM GA IN MULTIPLE FPGAS
Parallel GAs have a big potential for hardware implemen-

tation, however when designing a parallel GA system on
multiple FPGAs, we need to consider the following chal-
lenges, as working with multiple FPGAs is different from
working with multi-core CPUs:

• The connection and synchronisation between FPGAs
are very complex. A simple method is needed to ab-
stract the details.

• The compilation of FPGAs is time expensive, so it
is impractical to frequently adjust GA parameters at
compile-time.

• The migration parameters play an important role in
the parallel GA system, but guidance is needed for its
correct setting.

Our approach has three novel features that significantly
improve its pipeline performance:

• It adopts the steady-state GA method, allowing a cus-
tom GA to continue to evolve without updating the en-
tire population. In contrast, recent work [16] is based
on generational genetic algorithms which have to wait
for all the new offspring to be produced before entering
the next generation, making it slow;

• It supports simple communication between multiple
FPGAs, encapsulating the complex operation of con-
necting and synchronising multiple FPGAs together;

• It provides guidance to users about how to set the
migration gap. In addition, users can change the mi-
gration gap and the other parameters at run-time.

There are several main units in the customisable GA ar-
chitecture, described in the following sections. It mainly
includes population memory, selection, crossover, mutation,
evaluation and memory control units. The flow of our GA
system is shown in Fig. 1.

3.1 Population Memory
The population memory stores both the individuals in one

population as well as their associated fitness values. In Fig.
1, we show nine different individuals in the memory. Be-
cause we use steady-state GA, we only maintain this part of
memory in our system.
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Figure 1: GA Flow

3.2 Selection-Crossover-Mutation and Evalu-
ator Unit (SCM/E Unit)

In the steady state GA, we only make use of offspring gen-
erated from a mix of the parents and offspring individuals,
instead of using the whole offspring population. On each it-
eration, the steady state GA only produces and inserts back
two individuals, which we call an update.

The selection, crossover and mutation operators deal with
two individuals sequentially, and then the evaluator assigns
the fitness values to the new offspring. This results in a big
potential for parallel processing of those operators for one
update. For further parallelism and increased performance
we combine those operators in an SCM/E unit, to finish the
updates in parallel.

In hardware, every SCM/E unit consists of one selec-
tion, one crossover, two mutation operators, and one eval-
uator, thus processing two individuals at the same time,
evaluating them one by one, and then sending them into
the memory controller units without increasing the popula-
tion size. Our system supports different configurations in
SCM/E units for different problems. For example, the bi-
nary chromosomes can be changed by one-point crossover
and flip-flop mutation, the permutation chromosomes can
be evolved by multiple-point crossover and exchange muta-
tion, while the real-valued chromosomes can be modified by
blending crossover and constraint mutation [19]. The ran-
dom number generator used in hardware is the same as the
one described in [16] paper.

As shown in Fig. 1, the system has multiple parallel
SCM/E units. In the selection stage, individuals in differ-
ent locations are chosen by a selection method and a number
of pairs of the individuals enter the SCM/E units. In this
evolving stage, the multiple SCM/E units will crossover and
mutate each of the pairs in parallel, finally producing new
offspring. Then, in the the evaluating stage, offspring are
evaluated and assigned the fitness values. In the Fig. 1, the
shapes in gray are the new offspring.

3.3 Memory Controller
The memory controller manages the update of the popu-

lations. When the memory controller receives the offspring,
it will produce a random address for the individuals to tell
it where the offspring must go. If the fitness of the incoming
individual is higher than the current one in that address,
the individual will replace the current one. Otherwise, the
lower fitness individual will be thrown away. For example,
in the updating stage of Fig. 1, the offspring replaces three

parents. The replacement method can also take a different
form, such as elite replacement, or randomised replacement.

3.4 Inter-FPGA Migration Unit
The inter-FPGA migration unit controls all the migration

parameters, including the migration gap and number of mi-
grants. The user can customise all of those parameters from
the inter-FPGA migration unit. The migration gap plays
the most important part in the system and the settings for
which is presented in the next section.

The migration unit has two input ports and two output
ports and all the units can communicate with each neigh-
bour FPGAs. Our platform’s communication process can be
divided into three stages: sending, receiving and preparing.
As shown in Fig. 2, there are three FPGA-based GAs: GA1,
GA2 and GA3. In the first stage the three FPGA-based GAs
keep sending their individuals (a, b, c) to their neighbours,
according to the links from Fig. 2, after previously placing
them into their output ports. In the second stage, the input
ports get updated after a fixed number of generations, to
c, a, b. Before that, although receiving the data, the in-
put ports will not update. Lastly, when our system reaches
the next generation gap, the data in the output ports gets
updated to a’, b’, c’ and then reaches the preparing stage.
To simplify the communication between multiple FPGAs,
we allow the hardware to receive and send the migrants at
different times.

3.5 Qualitative Summary
We summarise the features of our multiple-FPGA ap-

proach and compare it with other pGA approaches men-
tioned in the related work section. From the comparison
shown in Table 1, it is clear that our approach is different
from others, because we solve all problems encountered in
the current research:

1. Our approach adopts steady-state GA while most of
others use generational GA. The steady-state GA has
a reduced latency and lower resource usage compared
with the generational one because it maintains fixed
memory and only updates a part of whole population.

2. Our approach maximises flexibility and parallelism in
the architecture, the degrees of both inter-FPGAs and
internal SCM/E parallelism. The multiple SCM/E
units make it easy to update the steady-state GAs
while they work in parallel.

3. Our approach supports a simple method for the inter-
FPGA link, which abstracts the complexity and the



Table 1: Qualitative Comparisons of Multiple FPGA-based pGAs

Work Year # of FPGAs
Runtime Migration Parallel

GA Type Platform
Param. Param. SCM/E

[11] 1999 Multiple N/A No No Steady-State SFL
[12] 2000 Single N/A N/A No Steady-State PCIGEN10K
[20] 2005 Multiple N/A No No Generational Spartan II-E
[15] 2006 Single N/A N/A No Generational Stratix EPS1S10
[10] 2006 Single N/A N/A No Generational Cyclone FPGA
[14] 2012 Single N/A N/A No Generational Virtex 4 (LX25)
[17] 2013 Single N/A No No Generational Virtex 6 (LX240T-1)
[16] 2014 Single SCM rates Run-time Yes Generational Virtex 6 (SX475T)

Proposed 2015 Multiple SCM rates Run-time Yes Steady-State Virtex 6 (SX475T)

synchronisation between multiple FPGAs.

4. Our approach allows users to tune the migration gap
at run-time, which saves significant compilation time.

5. Our approach provides guidance of setting migration
gaps in section 4.3, which helps to reduce the number
of generations needed for good solutions.
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Figure 2: Communication Strategy

4. PERFORMANCE EVALUATION
We implement the proposed solution on a workstation

with four Maxeler MAX3A Vectis acceleration cards. Each
card contains a Xilinx Virtex-6 SX475T FPGA. The CPU-
based GA system [18] is based on a 12 physical Intel Xeon-
X5650 CPU cores running at 2.67GHz. The CPU code is
well tuned with multi-threading techniques such as Pthread,
and is compiled with the Intel C/C++ compiler with level-3
optimisation. We use eight threads to test the code. The
FPGA code is written using the OpenSPL language [21].

4.1 GA Benchmarks
Global optimization has many real-world applications, both

of discrete and non-discrete nature. We know that a general
global optimization algorithm is usually less efficient than
specific versions tuned to the problem at hand, however it is

still valuable to gauge the baseline performance of a global
optimization scheme using benchmark problems.

Therefore, in our testing we make use of classic GA bench-
marks, such as Function 11, the Locating Problem and the
Travelling Salesman Problem. All of these benchmarks are
considered to be complex to solve, but our system can find
good solutions for them. Because our system uses multiple
FPGAs in an attempt to converge faster to the optimum,
the performance scales with the number of FPGAs used, as
shown in subsection 4.3.

4.1.1 F11
Function 11 (F11) is a popular GA benchmark [18]. The

objective of the optimisation problem is to maximise

f(x) = 1 +

N∑
n=1

x2
n/4000 −

N∏
n=1

cos(xn) (1)

s.t. −10 ≤ xn ≤ 10.0
We have tested our approach with a population of 64 in-

dividuals when N is 4. We use 4 x 32 bits fixed-point chro-
mosome to represent the solution.

4.1.2 Locating Problem
The locating problem deals with finding a good location

for an emergency response unit, which has the best response
time for reaching any emergency that occurs in a city.

Reference [2] provides a complex example with a 10 km
× 10 km city divided into 100 sections. The response unit
can be put at any place in the city, so a solution (xf , yf ) is
a floating point coordinate. The objective of this problem
is to minimise the following cost function:

f(xf , yf ) =

100∑
n=1

wn

√
(xn − xf )2 + (yn − yf )2 (2)

where (xn,yn) is the coordinate of the centre of square n and
wn is emergency frequency in square n.

We have tested our approach on a number of 32 individ-
uals. The bits representation used for the solution is a 2 x
64 bits floating-point variables.

4.1.3 The Travelling Salesman Problem
The Travelling Salesman Problem is a well-known NP-

hard problem in combinatorial optimization which sorts the
following problem: given a list of cities and the distances
between each pair of cities we try to find the shortest possible
route that visits each city exactly once and returns to the
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(b) F11: 3 FPGAs
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(c) F11: 4 FPGAs
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(d) LP: 2 FPGAs
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(e) LP: 3 FPGAs
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(f) LP: 4 FPGAs

Figure 3: Experimental Results with Different Migration Gap and Number of FPGAs

origin city. We have tested our approach on a number of 64
cities. The bits representation used for the TSP solution is
a 64 x 6 bits permutation encoding.

4.2 Experimental Results
We have obtained some significant good results as well a

large speedup for the problems we have tested our approach
on (see Table 2). We will further analyse them in Section
4.3.

Table 2: Experimental Results (P: SCM/E Parallelism, I:
Individuals, Freq.: Frequency, SP.C: Speedup over C-GA)

Fun. # of FPGA # of P # of I Freq.(MHz) SP.C
TSP 4 1 32 100 30
Locating 4 32 64 150 27
F11 4 4 64 150 34

Our tool performs the best in the case of the F11 bench-
mark, obtaining a 34 times speedup, while using a 150 MHz
clock frequency, when compared to an equivalent multi-core
software implementation of the GA. We also test TSP and
we can notice from the resources usage on one FPGA that
we could try to further optimise our design and possibly fit
2 pipes instead of one (see Table 3).

Based on the resources left over, we can tailor the archi-
tectures according to the complexity of our evaluation and
SCM/E unit (see Table 3).

Table 3: Resources in one FPGA for LP, TSP and F11

Fun. LUTs(%) FFs(%) BRAMs(%) DSPs(%)
TSP 75.85 59.69 19.17 6.25
Locating 72.18 40.71 9.68 26.98
F11 60.05 38.14 17.67 32.54

4.3 Migration Gap and Discussion
In this section, we examine how the migration gap affects

the performance, and give users the guidance of setting it.
We have done experiments for the first two problems and
their results are shown in Figure 3. The first three graphs
are the F11 under different generation gap, while the last
three are for the locating problem (LP). LP-4FPGAs means
using 4 FPGAs for the locating problem.

In Figure 3, each point represents the average number of
generations to reach 90% of the best possible fitness in 100
repetitions using the corresponding generation gap. The
straight line means linear regression results from points.
This is to show the trend of the growth. The error bound is
the regression result represented by one standard deviation
of the regression error, showing the uncertainty of the linear
regression.

Thus, as a result of our extensive experiments we can draw
two major conclusions as follows:

• A system with more FPGAs takes fewer generations
to obtain satisfactory fitness. One explanation of this
observation is that having more FPGAs enables more
individuals to evolve in parallel. In addition, with a
fixed migration rate, the total number of migration
cases is higher with more FPGAs.

• The number of generations to reach the satisfactory
fitness level grows linearly against the migration gap.
We also notice that, even if we increase the degree
of the regression polynomial, we still obtain a linear
trend. This trend reveals the strong correlation be-
tween the migration gap and the optimisation quality,
but there does not seem to be any obvious reasons for
the linearity of the correlation.

The results provide practical guidance for the determina-



tion of the migration gap. The user may determine a reason-
able migration gap for a problem by trying different values.
The experiments suggest that low values of migration gap
are likely to result in high optimisation quality. As a result,
we suggest users to give high priority to small values in the
determination of migration gaps.

5. CONCLUSION
Parallel genetic algorithms have shown significant poten-

tial for large hardware acceleration in evolutionary comput-
ing [2], as demonstrated by previous work and our study.

This paper proposes a GA system which makes use of mul-
tiple FPGAs to speed up the search for optimised solutions.
Our system is simple to use, providing increased flexibil-
ity not only in picking the SCM/E components and their
rates, but also in selecting the migration parameters. Our
approach exploits two levels of parallelism: fine-grained par-
allelism in SCM/E units, and the coarse-grained parallelism
in inter-FPGAs. It enables the tuning of run-time parame-
ters without time-consuming hardware recompilation. Our
system is more flexible compared to existing FPGA systems
for parallel genetic algorithms, while providing significant
execution time speedup and converging faster to the target-
problem optimum.

We have tested our system on a location problem, a GA
benchmark called F11, as well as the well-known travel-
ling salesman problem. After running experiments on these
problems, we obtain 30 times speedup on average with a
4-FPGA system compared to a multi-core software imple-
mentation.

As a result of our extensive experiments, we are able to
provide a guidance for setting a specific value for the mi-
gration gap. The migration gap parameter can be set at
run-time, thus allowing users to change it without time-
consuming hardware recompilation.

Current and future work include exploring methods to
automatically create all hardware elements, and also to au-
tomatically pick the best configurations for the hardware.
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