
A Domain Specific Language for Accelerated
Multilevel Monte Carlo Simulations

Ben Lindsey
Imperial College London
bl2312@imperial.ac.uk

Matthew Leslie
Bank of America Merrill Lynch

matthew.leslie@baml.com

Wayne Luk
Imperial College London

wl@doc.ic.ac.uk

Abstract—Monte Carlo simulations are used to tackle a wide
range of exciting and complex problems, such as option pricing
and biophotonic modelling. Since Monte Carlo simulations are
both computationally expensive and highly parallelizable, they
are ideally suited for acceleration through GPUs and FPGAs.
Alongside these accelerators, Multilevel Monte Carlo techniques
can be harnessed to further hasten simulations. However, re-
searchers and application developers must invest a great deal
of effort to design, optimise and test such Monte Carlo simu-
lations. Furthermore, these models often have to be rewritten
from scratch to target new hardware accelerators. This paper
presents Neb, a Domain Specific Language for describing and
generating Multilevel Monte Carlo simulations for a variety
of hardware architectures. Neb compiles equations written in
LATEX to C++, OpenCL or Maxeler’s MaxJ language, allowing
acceleration through GPUs or FPGAs. Neb can be used to
solve stochastic equations or to generate paths for analysis with
other tools. To evaluate the performance of Neb, a variety of
financial models are executed on CPUs, GPUs and FPGAs,
demonstrating peak acceleration of 3.7 times with FPGAs in
40nm transistor technology, and 14.4 times with GPUs in 28nm
transistor technology. Furthermore, the energy efficiency of these
accelerators is compared, revealing FPGAs to be 8.73 times and
GPUs 2.52 times more efficient than CPUs.

I. INTRODUCTION

Stochastic equations form the bedrock of modern quan-
titative finance. Such equations, found across a variety of
pricing models and forecasts, are frequently intractable. Since
no direct solution can be found, we must use approximations
to rely upon these models. Monte Carlo simulations provide a
robust and flexible implementation of such an approximation.
They have been used in a wide variety of applications from
computational finance [1] to biophotonic modelling [4].

A. Why build a Domain Specific Language?

Portability is a fantastic benefit of using a DSL (Domain
Specific Language). Rather than writing an OpenCL model, a
C++ model, a FPGA model, and so forth, this paper introduces
the Neb approach, such that one model can be written that gen-
erates all these outputs. As exciting new hardware accelerators
are designed and built, old models can be migrated to these
platforms by updating the Neb compiler - rather than rewriting
all the models by hand.

Optimising the execution time of models is a common desire
but one that often leads to complex code. Even simple stochas-
tic models quickly become challenging to read and maintain
after layers of optimisations are placed upon them. However,

with a DSL, optimisations can be introduced at the compiler
level rather than per model. Not only does this keep models
simple by clearly separating the desired behaviours from the
optimisations, it also means any optimisations discovered can
be quickly applied to all models through recompilation.

Since stochastic models are such critical components of
some businesses, and a mistake can be so expensive, they’re
often heavily tested. Enforcing a common structure and reduc-
ing the amount of code that is required to write models helps
minimize risk.

B. Why are GPUs and FPGAs so suitable for acceleration?

While CPUs are highly optimised to compute large sequen-
tial programs, they face strong competition when problems
become parallel. The growing demand to solve graphical
problems has led to the development of GPUs, hardware
specialised in parallel computations. Recently, this power has
attracted developers facing problems beyond the original field
of graphics. OpenCL is an ongoing effort to expand the use
of GPUs beyond graphical problems.

Alongside this adaption of existing parallel hardware, FPGA
research has resulted in powerful reconfigurable hardware
that can be further specialized to certain domains. Maxeler’s
dataflow engines are an extension of this research, allowing
Java programs to be written that can be compiled down to
energy efficient and fast designs.

C. What is Multilevel Monte Carlo?

Multilevel Monte Carlo (MLMC) is a variance reduction
technique that reduces the computational cost to achieve an
accuracy of O(ε) from O(ε−3) to O(ε−2) [8]. MLMC splits
the simulation into several levels, where each level has a
different number of paths and time steps to generate. The
algorithm continuously optimises the simulation size as a
payoff function converges to a target accuracy level.

D. What are this paper’s contributions?

• The Neb language for modelling and executing stochastic
differential equations (Section II).

• A skeleton and kernel architecture for compiling and
running Neb models on CPUs, GPUs or FPGAs (Section
IV) and with Multilevel optimisations (Section V).

• A performance comparison of CPUs, GPUs and FPGAs
for path generation models written in Neb (Section VI).

% S t a t e V a r i a b l e s
p r i c e

% S t a t e I n i t i a l i s a t i o n s
p r i c e {0} = 100 .0

% Model Parame ter s
S i m u l a t i o n s = 100
S t e p s = 100

% Random S o u r c e s
r \ sim R[−1.0 , 1 . 0]

% S t a t e Updates
p r i c e { t + 1} = p r i c e { t } + r { t }

% Outpu t
p r i c e { t }

Fig. 1. A random walk model written in Neb and the paths it generates.

II. OVERVIEW OF THE NEB APPROACH

Neb is designed to provide a simple but effective way of
describing Monte Carlo simulations, which can then be used
in generating efficient implementations. While domain-specific
languages for Monte Carlo simulations are not new [11, 18,
17], the novel aspects of Neb include the following:

• It adopts a Literate Programming [12] style in capturing
Monte Carlo models. The benefits of this approach will
be explained in Section III.

• It enables the development of Multilevel Monte Carlo
simulation to reduce the computational cost for a given
accuracy. Note that this is different from the multilevel
customisation framework [11].

• It supports automatic generation of CPU, GPU and FPGA
implementations from a single high-level description;
Section VI shows the experimental results comparing the
performance and efficiency of such implementations.

To capture the essence of a Monte Carlo simulation, each
Neb model is split into the following components (with
examples in Table I):

A. State Variables
The set of variables whose path should be simulated.

B. State Initialisations
The initial values assigned to these state variables.

C. State Updates
The functions that calculate new values for the state vari-

ables at each simulation step. These functions can range from
simple increments of previous values to complex updates using
a mix of other state variables and random numbers.

D. Model Parameters
A set of constant values used throughout the model.
For path generation, the number of paths and the desired

number of time steps should be specified here. For payoff
convergence, the desired accuracy level should be specified.

E. Random Sources

The distributions and correlations of random numbers that
are used in State Updates. Random sources can be dis-
tributed normally with a given mean and standard deviation
(r ∼ N [µ, σ]), or uniformally between two numbers (for
random floats: r ∼ R[low, high]).

F. Output or Payoff

Simulations that specify an Output will return the gen-
erated paths, allowing further analysis by other tools. On the
other hand, simulations that specify a Payoff will reduce the
paths and return the aggregated result.

TABLE I
NEB COMPONENT EXAMPLES

Component Examples

State Variables randomWalk
blackScholes

State Initialisations randomWalk0 = 100

logspot0 = 100.0

State Updates randomWalkt+1 = randomWalkt + rIntt
logspott+1 = logspott + driftt

+ vol ∗ rt ∗
√

∆

conditionalt+1 = conditionalt
+ conditionalt > 100 ? 5 : 1

Random Sources r ∼ N [0, 1]

rFloat ∼ R[−1.5, 1.5]

rInt ∼ Z[0, 2]

ρ(r, rFloat) = 0.5

Model Parameters Simulations = 10000

Strike = 105

drift = [0.5, 0.6, 0.7]

df = −0.05

Output randomWalkt
Payoff edf max(elogspott - Strike, 0)

III. NEB MODELS

Neb models are concise descriptions of problems to be
solved. Void of implementation details, each model is essen-
tially a mathematical description of a simulation rather than
a typical sequential program that instructs hardware how to
calculate a solution. Instead, the implementation details and
optimisations are left to the Neb compiler (Section IV).

Descriptions of Neb models are captured in a strict subset
of LATEX. This offers several advantages:

• The syntax is familiar to many researchers and develop-
ers. One of the major barriers to entry for learning a new
language is having to face a strange, unfamiliar syntax.
LATEX provides a warm welcome.

• The LATEX syntax can clearly express equations. The most
complex part of a Neb model is typically the State
Updates. Expressing these equations becomes simpler
when using a syntax designed for such scenarios.

• Neb models are a strict subset of LATEX, so they can be
compiled into PDFs using standard LATEX compilers. This
allows models written for Neb to be, in a sense, self
documenting. Models can be viewed and analysed in a
format where square roots and fractions are visualised.
Furthermore, other tools that support LATEX development,
such as syntax highlighting editors, can be utilized.

% S t a t e I n i t i a l i s a t i o n s
wave {0} = 100 .0

% Model Parame ter s
S i m u l a t i o n s = 10
S t e p s = 16

d r i f t = [−0.8 , −0.8 , −1.0 , 2 . 0]
\ sigma = [0 . 2 , 0 . 2 , 0 . 2 , 0 . 4]
\Del ta = [0 . 1 , 0 . 2 , 0 . 3 , 0 . 4]

% Random S o u r c e s
r \ sim N[0 , 1]

% S t a t e Updates
w = t \bmod 4

wave { t + 1} = wave { t } + d r i f t {w}
+ \ sigma {w} * r { t } * \ s q r t {\Del ta {w}}

% Outpu t
wave { t }

Fig. 2. Array parameters and mathematical function calls in Neb.

Fig. 1 illustrates one of the simplest Neb models, a random
walk. The model specifies that 100 paths should be generated,
each with 100 steps. At each time step, a random number
should be added to the accumulator from a uniform real
distribution of numbers between -1 and 1. After the simulation
completes, the paths are forwarded to a graphing tool. As we’d
expect from a symmetrical walk, the paths generated spread
out over time, with a mean value approximately equal to the
initial value.

Fig. 2 demonstrates the use of array parameters. As a path
takes a new step, it accesses the next element in any referenced
arrays. Here we define a wrapped index w to reuse elements
once the arrays are exhausted, forming a cycle (Fig. 4).

% State Initialisations

spot0 = 100.0

% Model Parameters

Accuracy = 0.05

T = 2.0 r = 0.05 σ = 0.3 K = 100.0

% Random Sources

random ∼ N [0, 1]

% State Updates

h = T/Steps ∆ = randomt

√
h

spott+1 = spott (1 + rh+ σ∆)

% Payoff

e−rT max(0, spotfinal −K)

Fig. 3. Pricing a european call option in Neb (compiled with LATEX).

Fig. 3 highlights a more practical model, pricing a european
call option using an euler discretisation. Rather than returning
a set of paths, this model uses the Multilevel mode of Neb
to solve a Payoff equation. While a fixed number of time
steps is used in Fig. 1 and 2, the number of steps here changes
at each level. This can be referenced to adapt the State
Updates. Fig. 3 also demonstrates the benefits of compiling
Neb to LATEX, providing a cleaner description of the models.
Features such as

√
square roots and symbols (∆, σ) are often

much more comprehensible in this format.

Fig. 4. Paths generated from the model in Fig. 2.

IV. DESIGN AND IMPLEMENTATION

Neb is an unusual DSL in the sense that it targets three
very different hardware architectures. To achieve this range
of outputs, the Neb compiler converts models into a high-
level language for each of the targets, rather than compiling
to low level implementations directly. Specifically, for CPUs
Neb compiles to C++, for GPUs Neb compiles to OpenCL
and for FPGAs Neb compiles to MaxJ. The Neb compiler
then delegates to another compiler to build the final binary
(Fig. 5).

To build these high level simulations, a skeleton implemen-
tation of Monte Carlo is defined in C++, OpenCL and MaxJ.
The Neb compiler reads models and generates the missing
pieces, slotting them into the skeleton to form a complete
simulation.

.neb ANTLR
Global

Optimisations

C++
Factory

OpenCL
Factory

MaxJ
Factory

HeaderKernel
Header

Kernel
Manager

GCCMax

Fig. 5. Compilation flow.

A. The Monte Carlo Skeleton

The skeleton varies from architecture to architecture, but the
general strategy remains the same:

1) Generate a stream of random numbers, distributed and
correlated according to Random Sources.

2) Feed the random numbers to the target accelerator.
3) Initialise a set of state variables as directed by the

State Initialisations.
4) Execute the simulation by repeatedly applying the

State Updates, recording the Output at each time
step.

5) Stream the resulting paths back to the CPU.
Generating the random numbers on the CPU allows a core

part of the skeleton to be shared amongst all accelerators,
reducing the implementation complexity. However, our ex-
periments (Section VI) revealed a great deal of time was

spent generating these numbers. The design of Neb will likely
evolve towards supporting random number generation on the
accelerators as well, increasing complexity in return for higher
performance; efficient hardware implementations of random
number generation for Monte Carlo simulation have been
proposed [16]. Generally, the performance of Neb-generated
designs will be improved as we push more stages to the
accelerators.

B. The OpenCL Kernel

To perform parallel path generation with OpenCL, the simu-
lation is split into several independent work items. The kernel
is executed once for each work item, effectively simulating
a single path. Fig. 6 illustrates a simple random walk kernel
produced by Neb. At line 1, the kernel calculates its work id.
This specifies a range in the flattened 2D array of random
numbers that it should read from, and similarly a range in the
2D array of outputs it should write to.

1c o n s t i n t i d = g e t g l o b a l i d (1) * S t e p s ;
2
3/ / % S t a t e I n i t i a l i s a t i o n s
4f l o a t p r i c e = 1 0 0 . 0 ;
5
6f o r (i n t i = 0 ; i < S t e p s ; i ++) {
7/ / % S t a t e Updates
8p r i c e = p r i c e + r [i d + i] ;
9
10/ / % Outpu t
11o u t p u t [i d + i] = p r i c e ;
12}

Fig. 6. Key parts of the OpenCL kernel generated from Fig. 1.

C. The MaxJ Kernel

Path generation with MaxJ is achieved by forming a feed-
back loop in the dataflow graph for each state variable. Counter
chains track the progress of the simulation, signalling whether
a new path should be started or an existing one fetched from
the feedback (via the ”newPath” flag in line 2). An illustration
of the key elements in a MaxJ kernel is shown in Fig. 7.

1/ / % S t a t e I n i t i a l i s a t i o n s
2DFEVar p r i c e = newPath ? 100 .0 : c a r r i e d ;
3
4/ / % S t a t e Updates
5p r i c e = p r i c e + r ;
6
7c a r r i e d <== s t r e a m . o f f s e t (p r i c e , −o f f s e t) ;
8
9/ / % Outpu t
10i o . o u t p u t (” o u t p u t ” , p r i c e , type , r e a d y) ;

Fig. 7. Key parts of the MaxJ kernel generated from Fig. 1.

D. Type Inference

In Neb, types for State Variables and Model
Parameters are implied by their initialisations, rather than
explicitly set. For example, a variable set to 100 would be read
as an integer, while a parameter set to [100.0, 50.5] would be
infered as an array of reals. Random Sources are typed by
their distributions. For calculations involving multiple types,
the resulting type is derived from the highest priority one
involved in the calculation, where real numbers have higher
priority than integers.

Implementation of these abstract types is performed by the
accelerator factories. For example, the real type maps to floats
in OpenCL, while arrays are converted to ROM tables in MaxJ.

E. Optimisation Phases

DSLs typically allow greater optimisations to be made
over general purpose languages simply because they restrict
their domain of use [15]. Having fewer use cases allows
stronger assumptions to be made when searching for potential
optimisations.

To improve the performance of models executed with Neb,
two phases of optimisation occur. Firstly, Global Optimisa-
tions identify platform independent improvements. For exam-
ple, a State Update function may contain some constant
calculations that can be lifted out of the simulation loop and
performed only once.

Secondly, Local Optimisations take place. These are plat-
form dependent improvements introduced by the three facto-
ries (Fig. 5). There are certain improvements that can only be
made on specific accelerators, for example utilising multiple
pipelines or mixing fixed and floating point calculations on
FPGAs [6].

F. Adding an Accelerator to the Neb Compiler

As discussed in the introduction, a great benefit to DSLs is
that when a new architecture is released it can be hooked into
the Neb compiler, allowing all existing models to benefit. The
general flow to adding a compilation target to Neb is:

1) Find an appropriate high level language for the desired
hardware accelerator.

2) Write a Monte Carlo simulation using the language.
3) Extract the model specific parts of the simulations (state

updates, parameters etc) into a separate header file.
4) Add a new factory to the Neb compiler that generates

this header file given some state objects.

V. MULTILEVEL OPTIMISATION

To implement Multilevel Monte Carlo, the skeleton and
kernel strategy discussed in Section IV is extended with
additional control steps (Fig. 8). The plan now resembles:

1) Decide on the number of paths and time steps to simulate
using the Multilevel Monte Carlo algorithm [8]. Initially,
a large number of paths with few steps will be generated.
As the simulation rounds progress, the number of steps
generated for each path will increase.

Optimise
Sample

Size

Generate
Random
Numbers

Simulate
Paths

Calculate
Payoffs

Check
Error
Rate

CPU

ACCELERATOR

Fig. 8. Multilevel execution of models.

2) Generate a stream of random numbers, distributed and
correlated according to Random Sources.

3) Feed the random numbers to the target accelerator.
4) Initialise a set of fine and coarse state variables as

directed by the State Initialisations.
5) Execute the simulation by applying the State

Updates. Fine state variables are updated twice at each
path step, whereas coarse variables are updated once.

6) Reduce the fine and coarse paths using the Payoff.
7) Return the fine payoff and the difference between the

fine and coarse payoffs to the CPU.
8) Calculate the error rate between the payoffs received so

far. If they’ve converged to the desired level, successfully
exit the program. Otherwise, loop back to step 1.

The Multilevel mode reuses much of the kernel logic used
in normal path generation. However, since the size of the sim-
ulation is no longer known at compile time, some assumptions
are broken. For example, in the MaxJ kernel (Fig. 7 line 7),
the offset is no longer known. The implementation must now
dynamically calculate the offset at runtime.

VI. EXPERIMENTAL RESULTS

To investigate the performance benefits of acceleration in
Neb, we executed a variety of models across the target archi-
tectures (Fig. 9). Simulating these different models reveals how
acceleration varies with the complexity of the state updates.
The random walk, a simple addition, is one of the cheapest
models conceivable. Slightly more complex is the Black
Scholes model, introducing multiplication and square roots.
Finally, the Heston model [1] adds multiple state variables and
random sources, array parameters, and further arithmetic. Each
implementation uses single-precision floating-point numbers.

TABLE II
ACCELERATION OF PATH GENERATION

Model Paths Paths generated per second Acceleration
CPU GPU FPGA GPU FPGA

Random Walk 216 2.57× 105 5.32× 105 8.53× 104 ×2.07 ×0.33

212 2.4× 105 5.04× 105 4.94× 104 ×2.1 ×0.21

28 5.67× 104 1.17× 105 7.80× 103 ×2.06 ×0.04

24 4.95× 104 4.32× 104 5.59× 102 ×0.87 ×0.01

Black Scholes 216 1.2× 105 5.24× 105 8.63× 104 ×4.36 ×0.72

212 1.2× 105 4.93× 105 5.21× 104 ×4.12 ×0.44

28 7.97× 104 2.06× 105 7.82× 103 ×2.58 ×0.1

24 3.74× 104 3.37× 104 5.53× 102 ×0.9 ×0.01

Heston 216 2.28× 104 3.29× 105 8.52× 104 ×14.43 ×3.74

212 2.23× 104 3.11× 105 5.45× 104 ×13.98 ×2.44

28 1.37× 104 1.36× 105 7.95× 103 ×9.96 ×0.58

24 7.09× 103 2.37× 104 5.62× 102 ×3.35 ×0.08

We also varied the desired number of paths to investigate
how the performance of the accelerators changes with the
amount of parallelism available. With a fixed number of time
steps (210), we executed the models using an Intel Xeon E5-
1620 CPU, the Nvidia GeForce GTX TITAN Black GPU, and
the Maxeler Vectis Dataflow Engine.

% Random Walk State Update

pricet+1 = pricet + rt

% Black Scholes State Update

logspott+1 = logspott + drift+ rtvol
√

∆

% Heston State Updates

logspott+1 = logspott +
1

2
v+t ∆t + rt

√
v+t ∆t

vt+1 = vt + κt(θt − v+t)∆t + εtr2t

√
v+t ∆t

Fig. 9. The Neb state updates used to test acceleration.

Table II shows the benefits of hardware acceleration becom-
ing more apparent as the complexity of the models expands.
For the simplest model, a maximum acceleration of 2.1 was
achieved using GPUs, whereas for the more complex model a
far greater increase of 14.43 times was achievable. Similarly,
the hardware accelerators were able to offer greater improve-
ments for highly parallel problems. Strangling the number of
paths down to just 16 caused many of the models to execute
slower on the accelerators than on the CPU.

The accelerators used in this experiment are not directly
comparable, since they are based on different technologies.
The FPGA system uses 40nm transistor technology, while the
GPU is built using 28nm transistor technology. Another metric
we can consider is energy efficiency, that is paths generated per
second per watt. To measure this we connected the hardware

to a power meter and recorded the mean consumption. Table
III highlights the normalised efficiency of path generation
with the Heston model using 216 paths with 210 steps, where
Efficiency = Paths per second

Load−Idle . FPGAs proved the most energy
efficient, providing 8.73 times the number of paths per watt.

TABLE III
EFFICIENCY OF PATH GENERATION

Accelerator Idle (W) Load (W) Efficiency Normalised

CPU 75 110 651 1.0
GPU 75 275 1645 2.52

FPGA 80 95 5680 8.73

We also investigated how the number of time steps impact
the acceleration. We fixed the number of simulations at 216,
then varied the number of time steps from 24 to 224 and
compared CPU and GPU results. Fig. 10 shows that the
acceleration gain was independent from the number of steps.

Fig. 10. GPU acceleration as the number of time steps increases.

% State Initialisations

v0 = −50.0 u0 = 10.0

% Model Parameters

Simulations = 1 Steps = 2000

a = 0.02 b = 0.3 c = 54.0 d = 1.0 I = 3.0

% Random Sources

r ∼ R[0.18, 0.2]

% State Updates

vt+1 = vt >= 30 ? c : vt +rt(0.04v2t +5vt +140−ut +I)

ut+1 = vt >= 30 ?ut + d : ut + rta(bvt − ut)

% Output
vt

Fig. 11. Izhikevich bursting neuron model [10] written in Neb.

VII. RELATED WORK

DSLs and their applications to Monte Carlo simulations
have been the subject of exciting research. Neb builds upon
this past work in several areas. DSLs designed prior to Neb
typically have at most one target architecture, such as FPGAs
for Contessa [18]. Since Neb models are written at such a
high level, essentially composed of equations written in LATEX,
there’s no constraint to a particular platform. The skeleton and
kernel architecture presented in this paper allows Neb to be
adapted to new accelerators easily. Existing DSLs typically
require users to write imperative code in a C-style language
[11] while Neb’s Literate style allows more concise and
mathematical models.

Several frameworks have been proposed for DSLs and for
Monte Carlo simulations. Inspiration for expressing simula-
tions by their mathematical components was found in the
Monte Carlo framework proposed by Thomas et al [17]. DSL
frameworks, for example Delite [15], help simplify the imple-
mentation of new languages. However, due to the Literate style
of Neb and the range of target platforms, it proved simpler to
implement the language using ANTLR rather than wrangling
an existing framework into an unusual use case.

Multilevel Monte Carlo has shown promising results with
FPGA accelerated designs [7]. Combining multilevel optimi-
sations with mixed precision improvements has also shown
strong results [2]. However, implementing these upgrades
remains challenging. By abstracting away the implementation
details from users, Neb simplifies the process of model devel-
opment while maintaining the optimisations these features can
bring. Research into the usability of high level abstractions
over hardware accelerators has shown developers can create
optimised programs despite not fully understanding the hard-
ware they’re using [9]. This is particularly promising news for
Neb since each model can run across a variety of accelerators.

VIII. FURTHER CONSIDERATIONS

The primary focus of this paper has been solving financial
stochastic equations, a role Neb is particularly suited to.
However, Neb can be extended to cover a range of other
interesting areas. For example, in simulating the spiking of
neurons, a task tackled by tools such as NeuroFlow [5]. Fig.
11 demonstrates how the Izhikevich bursting neuron model
can be expressed in Neb. Rather than being tied to a particular
scientific field, Neb can be used to generate paths or calculate
payoffs for a variety of equations. The domain of Neb extends
to any problem expressible through State Updates.

Looking forward, there are a range of interesting techniques
that Neb could be extended to support. We have demonstrated
Monte Carlo path generation and Multilevel optimisations, but
the language could be adapted to use other strategies. For
example, quadrature methods have proven useful for pricing
options [19], while finite-difference methods have shown use
in heat diffusion and fluid dynamics [13]. A common desire in
computational finance is to calculate Greeks or sensitivities to
instruments. Adjoint algorithmic differentiation can be used
along side Monte Carlo simulations to calculate such sensi-
tivities efficiently [3]. Expanding Neb to support algorithmic
differentiation would be an exciting direction to take. More-
over, many of these additional capabilities can be captured
as template libraries [14] facilitating their parametrisation and
adaptation.

Additionally, the existing strategies could be improved
through further optimisations. For example, currently Neb uses
standard floating point numbers in its FPGA designs. Research
into mixing floating point number representations with mul-
tiple levels of precision has shown promising performance
gains [6]. We would integrate similar ideas into Neb, using
reduced precision where possible and then falling back to
higher precision when appropriate. Another powerful optimi-

sation would be to introduce some of the variance reduction
techniques designed to support Monte Carlo simulations, such
as importance sampling. A great advantage to using a DSL
for modelling is that these optimisations can be layered onto
each other in the compiler, without forcing models to become
complex and incomprehensible.

IX. CONCLUSION

This paper has introduced Neb, a domain-specific language
for describing and executing Monte Carlo simulations. Neb
models are concise specifications of problems written in LATEX.
The Neb compiler takes these models and builds CPU, GPU,
or FPGA designs to generate stochastic paths. The resulting
paths can be reduced using a Payoff function or streamed to
other tools. We have demonstrated (Fig. 9, 11) how differential
equations written in LATEX for publication can be lifted directly
into Neb and solved via accelerated simulations.

To implement these features we have defined a skeleton
and kernel system (Section IV) for integrating multiple target
architectures into Neb. We have shown how this design can be
extended with Multilevel optimisations (Section V) to improve
convergence.

Through experimentation over a range of models, we have
found that hardware accelerators can be used to improve
the performance of Neb by a factor of 14.4 (Table II) with
efficiency gains up to 8.73 times (Table III). Future work will
look into further optimising the models generated by Neb and
expanding the range of strategies it uses.

ACKNOWLEDGEMENT

This research has received funding from European Union
Horizon 2020 Programme with project reference 671653. The
support by the UK EPSRC (grant references EP/I012036/1 and
EP/L00058X/1), the Maxeler University Program, Altera and
Xilinx is gratefully acknowledged.

REFERENCES

[1] L.B.G. Andersen. “Simple and Efficient simulation of
the Heston stochastic volatility model”. In: Journal of
Computational Finance 11.3 (2008), pp. 1–42.

[2] C. Brugger et al. “Mixed precision multilevel Monte
Carlo on hybrid computing systems”. In: IEEE Con-
ference on Computational Intelligence for Financial
Engineering & Economics (CIFEr). 2014, pp. 215–222.

[3] L. Capriotti. “Fast Greeks by algorithmic differen-
tiation”. In: Journal of Computational Finance 14.3
(2011), pp. 3–35.

[4] J. Cassidy, L. Lilge, and V. Betz. “Fast, power-efficient
biophotonic simulations for cancer treatment using FP-
GAs”. In: IEEE 22nd Annual International Symposium
on Field-Programmable Custom Computing Machines
(FCCM). 2014, pp. 133–140.

[5] K. Cheung, S.R. Schultz, and W. Luk. “NeuroFlow: A
General Purpose Spiking Neural Network Simulation
Platform using Customizable Processors”. In: Frontiers
in Neuroscience 9 (2015).

[6] G.C.T. Chow et al. “A mixed precision Monte Carlo
methodology for reconfigurable accelerator systems”.
In: Proceedings of the ACM/SIGDA International Sym-
posium on Field Programmable Gate Arrays (FPGA).
2012, pp. 57–66.

[7] C. De Schryver, P. Torruella, and N. Wehn. “A multi-
level Monte Carlo FPGA accelerator for option pricing
in the Heston model”. In: Proceedings of the Conference
on Design, Automation and Test in Europe (DATE).
2013, pp. 248–253.

[8] M.B. Giles. “Multilevel Monte Carlo path simulation”.
In: Operations Research 56.3 (2008), pp. 607–617.

[9] G. Inggs et al. “Is high level synthesis ready for
business? A computational finance case study”. In:
IEEE International Conference on Field-Programmable
Technology (FPT), 2014, pp. 12–19.

[10] E.M. Izhikevich et al. “Simple Model of Spiking Neu-
rons”. In: IEEE Transactions on Neural Networks 14.6
(2003), pp. 1569–1572.

[11] Q. Jin et al. “Multi-level Customisation Framework
for Curve Based Monte Carlo Financial Simulations”.
In: Reconfigurable Computing: Architectures, Tools and
Applications. Springer, 2012, pp. 187–201.

[12] D.E. Knuth. “Literate programming”. In: The Computer
Journal 27.2 (1984), pp. 97–111.

[13] X. Niu et al. “A Self-Aware Tuning and Self-Aware
Evaluation Method for Finite-Difference Applications
in Reconfigurable Systems”. In: ACM Transactions on
Reconfigurable Technology and Systems (TRETS) 7.2
(2014).

[14] M. Shafiq et al. “A template system for the efficient
compilation of domain abstractions onto reconfigurable
computers”. In: Journal of Systems Architecture 59.2
(2013), pp. 91–102.

[15] A.K. Sujeeth et al. “Delite: A compiler architecture for
performance-oriented embedded domain-specific lan-
guages”. In: ACM Transactions on Embedded Comput-
ing Systems (TECS) 13.4s (2014).

[16] D.B. Thomas. “The Table-Hadamard GRNG: An Area-
Efficient FPGA Gaussian Random Number Generator”.
In: ACM Transactions on Reconfigurable Technology
and Systems (TRETS) 8.4 (2015).

[17] D.B. Thomas, J.A. Bower, and W. Luk. “Automatic
generation and optimisation of reconfigurable financial
Monte-Carlo simulations”. In: IEEE International Con-
ference on Application-specific Systems, Architectures
and Processors (ASAP). 2007, pp. 168–173.

[18] D.B. Thomas and W. Luk. “A Domain Specific Lan-
guage for Reconfigurable Path-based Monte Carlo Sim-
ulations”. In: IEEE International Conference on Field-
Programmable Technology (FPT). 2007, pp. 97–104.

[19] A.H.T. Tse, D.B. Thomas, and W. Luk. “Design ex-
ploration of quadrature methods in option pricing”. In:
IEEE Transactions on Very Large Scale Integration
(VLSI) Systems 20.5 (2012), pp. 818–826.

