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Abstract—This paper presents a novel reconfigurable frame-
work for training Convolutional Neural Networks (CNNs). The
proposed framework is based on reconfiguring a streaming
datapath at runtime to cover the training cycle for the various
layers in a CNN. The streaming datapath can support various
parameterized modules which can be customized to produce
implementations with different trade-offs in performance and
resource usage. The modules follow the same input and output
data layout, simplifying configuration scheduling. For different
layers, instances of the modules contain different computation
kernels in parallel, which can be customized with different layer
configurations and data precision. The associated models on
performance, resource and bandwidth can be used in deriving
parameters for the datapath to guide the analysis of design trade-
offs to meet application requirements or platform constraints.
They enable estimation of the implementation specifications
given different layer configurations, to maximize performance
under the constraints on bandwidth and hardware resources.
Experimental results indicate that the proposed module design
targeting Maxeler technology can achieve a performance of 62.06
GFLOPS for 32-bit floating-point arithmetic, outperforming
existing accelerators. Further evaluation based on training LeNet-
5 shows that the proposed framework achieves about 4 times
faster than CPU implementation of Caffe and about 7.5 times
more energy efficient than the GPU implementation of Caffe.

I. INTRODUCTION

Convolutional Neural Network (CNN [1]) is one of the
most successful deep learning models. FPGA-based designs
[2]–[4] are proposed to accelerate CNN classification process
(forward computation) and achieve considerable speedup and
higher energy efficiency than CPU and GPU [5].

The training process of CNNs shares a similar computation
pattern with classification, which shows the potential for accel-
erating the training process on FPGA-based platforms. How-
ever, the training process involves much more computation
and more complicated workflow, which remains challenging
for designing and accelerating the whole training process
based on FPGAs. Specifically, the computation resources
on modern FPGAs are too limited to implement the whole
training process, which calls for improvements in task partition
and scheduling. Moreover, classification is mainly based on
specific pre-trained CNNs, while the training process should

be more flexible to support different network configurations,
which is challenging to FPGA-based hardware designs.

In this paper, we address the above problems and present an
FPGA-based CNN training framework. In summary, the main
contributions of this paper are as follows:

• A novel reconfigurable design for CNN training called
F-CNN. It involves reconfiguring a streaming datapath
at runtime to cover the training tasks for the various
layers in a CNN. The streaming datapath contains various
parameterized modules, which can be customized to
produce implementations with different configurations.

• Analytical models for performance, bandwidth and re-
source usage of the modules. Given certain network
configurations, these models can be used to estimate the
implementation specifications and maximize performance
under the constraints on bandwidth and hardware re-
sources.

• Evaluation of the proposed F-CNN prototype targeting a
Maxeler FPGA platform with Altera Stratix V FPGAs.
The convolutional modules for AlexNet achieve 62.06
GFLOPS for 32-bit float, outperforming most existing
accelerators. Overall evaluation based on training LeNet-
5 shows about 4 times speedup over CPU-based imple-
mentations of Caffe and is about 7.5 times more energy
efficient than GPU-based implementations of Caffe.

The organization of the paper is as follows. Section II
reviews the CNN training process and some existing FPGA-
based accelerators. Section III introduces the F-CNN design.
Section IV presents the design of computation modules and the
analytical models. Section V includes the experimental results.
Section VI covers conclusions.

II. BACKGROUND AND MOTIVATION

A. CNN Model
Figure 1 shows an typical LeNet-5 CNN [6] for handwriting

digit recognition, which is simpler than many modern CNNs,
but sufficiently representative for introducing the basic CNN
models. It has 2 convolutional layers, 2 max-pooling layers
and 2 fully connected multilayer perceptron (MLP [7]) layers.
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Fig. 1. A LeNet-5 CNN

TABLE I
CONFIGURATIONS OF LENET-5

Ni No Ri Ci Ro Co K S P
L1 1 20 28 28 24 24 5 1
L2 20 20 24 24 12 12 2
L3 20 50 12 12 8 8 5 1
L4 50 50 8 8 4 4 2
L5 800 500
L6 500 10

1) Convolutional Layer: We define the following symbols
to describe the layer, which are called configurations of a
layer. The numbers of input and output images are Ni and
No. The input image size is Ri ∗ Ci and the output image
size is Ro ∗Co. There are Ni ∗No convolutional filters, each
of which connects one input image to one output image. The
filter size is K ∗K and the stride of convolution is S.

The convolutional operation can be described as (1) and the
variables in the equation are defined as:

vmi,j = bm+

Ni−1∑
n=0

K−1∑
ii=0

K−1∑
jj=0

wm,n
(K−1−ii),(K−1−jj) · u

n
(i·S+ii),(j·S+jj)

(1)

• vmi,j : the value at position (i, j) in the mth output image
• un

ii,jj : the value at position (ii, jj) in the nth input image
• wm,n

ii,jj : the weight at position (ii, jj) in the convolution
filter which connects the nth input image to the mth
output image

• bm: the bias of output image m

In the LeNet-5 example, L1 and L3 are convolutional layers
and the configurations of them are shown in Table I.

2) Pooling Layer: Pooling layers, also known as the sub-
sampling layers, are designed to shrink the feature images
and reduce the redundancy in the features. We also define
the numbers of input and output images as Ni and No with
size Ri ∗ Ci and Ro ∗ Co. The pooling size is defined as P .
Max-pooling is the mostly used pooling layer in CNNs. In the
example, L2 and L4 are max-pooling layers. The output of a
max-pooling layer is calculated as (2), where v, u represents
the values in output and input images. The configurations of
L2 and L4 are shown in Table I.

vmi,j = max
0≤ii,jj<P,n=m

un
(i·P+ii),(j·P+jj) (2)

3) MLP Layer: In an MLP layer, the output images of the
previous layer are expanded to a feature vector. We define the

input vector as Vin and the output vector as Vout, with size
Ni and No. The weight matrix is W , which has a size of
No ∗ Ni. The output of an MLP layer is calculated as (3),
which is a typical matrix-vector multiplication and B is a bias
vector with size No.

Vout = W × Vin +B (3)

In LeNet-5, L5 and L6 are MLP layers. The configurations
are shown in Table I.

4) Activation Function: To involve nonlinearity into neural
networks, activation functions are utilized to process the output
data of each layer. Some typical activation functions are tanh,
sigmoid and ReLU . Softmax is commonly used to calculate
the posterior probability for logistic regression in the last layer.

The activation functions are monotone increasing, so if
a convolutional layer is followed by a pooling layer, the
activation function can be put after the pooling layer. In LeNet-
5, there is no activation function in L1 and L3. Tanh is used
in L2, L4 and L5. Softmax is used in L6.

B. Back-propagation Algorithm

The CNN model above is the forward computation. In the
training process, back-propagation algorithm is a common
method for weights adjustment in conjunction with an op-
timization method such as gradient descent. The basic idea
of the back-propagation algorithm is to propagate the error
(the gradient in gradient descent) back along the network and
adjust the weights to correct the error.

In general, we assume there is a L-layer MLP. For each
layer l (1 ≤ l ≤ L) in the network, al−1 is the input feature
vector, zl is the output vector before activation function, wl is
the weight matrix, bl is the bias vector and σ is the activation
function. The back-propagation algorithm for training this
neural network can be summarized into 3 steps.

1) Forward computation: For each layer l, calculate:

zl = wlal−1 + bl

al = σ(zl)
(4)

In layer L, aL represents the classification result.
2) Error propagation: In supervised training, each input a0

has a target result t. We define the loss function C, which is
a function of aL and t. The error of the output layer L is:

δL = ∇aLC ⊙ σ
′
(zL) (5)

where ⊙ is the element-wise multiplication, σ
′

is the derivative
function of σ.



Then, for each layer l (1 ≤ l < L), we can propagate the
error as the following:

δl = ((wl+1)T δl+1)⊙ σ
′
(zl) (6)

3) Weight update: Given the error δl for layer l, the partial
derivatives of loss function C with respect to weights wl and
bias bl are:

∆wl =
∂C

∂wl
= al−1δl

∆bl =
∂C

∂bl
= δl

(7)

Then we can update the weights as:

ŵl = wl + η∆wl

b̂l = bl + η∆bl
(8)

where η is called the learning rate, and ŵl, b̂l are the updated
weights and bias.

The back-propagation process above can be used for MLP
layers in CNN. For a pooling layer, we can easily replicate one
value in δl+1 to a P ∗ P field in δl, and no weights update
is involved. For a convolutional layer, we should change the
matrix multiplication in equations (6) and (7) to the cross-
correlation operation. The difference between cross-correlation
and convolution is a time reversal on one the input data.

In brief, the backward process shares similar computation
patterns with the forward process, but involves approximately
two-fold of computation operations for both error propagation
and weight update, which means we can use similar compu-
tation kernel design in both forward and backward modules
with differences on data scheduling.

In practice, the most commonly used optimization method
for CNN is called stochastic gradient descent (SGD) [8],
which randomly choose a subset of the training data, called a
minibatch, and update parameters based on the average error of
the it. Therefore, the input data of a layer in CNN can be stored
as a 4-dimension tensor, and the meaning of 4 dimensions are:
number of feature images in 1 training sample (N ), number
of rows in one image (R), number of columns in one image
(C) and the size of a minibatch (Bs).

C. Related Work

Most existing FPGA-based designs are focused on clas-
sification. Benkrid [9] proposed a 2D convolution core on
FPGA in 2002. Later, Zhang [10] explored the different
optimizations for FPGA-based convolution core on resource
utilization, bandwidth, energy efficiency and memory access
pattern. Recently, Chen [4] analyzed the design space and
performance of a convolution layer based on the roofline
model. Ovtcharov [11] demonstrated a 3x better performance
on convolutional accelerator than [4], but did not provide
more details on the design. Besides, implementations such as
[12] are focused on designing single neuron on FPGA. While
these works provide good ideas and results on optimizing the
computation kernels, they are still far from a practical solution
to perform CNN training.
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Fig. 2. The overall architecture of F-CNN

Some other works are more systematic. Work in [3] can
implement a complete feedforward CNN on FPGA and can be
used in some recognition applications such as face detection.
Cadambi [2] designed an accelerator called MAPLE, which
can handle matrix-multiplication based learning and classifi-
cation computations, including convolution and MLP.

A few works implement back-propagation on FPGAs [13],
[14]. However, they are designed for shallow neural networks
and MLPs, but none of them is applicable to train CNN.

To our knowledge, our work is the first integrated CNN
training framework on FPGA-based platform.

III. FRAMEWORK DESIGN

A. Design Principles
To design a framework for CNN training, we first consider

the following principles.
1) Modularity: The hardware resources on a modern FPGA

are far from enough to implement the whole training process.
Therefore, a modular design is adopted in our framework. We
partition the training process according to layers and provide
parameterized modules, which can be customized to produce
implementations with different configurations, for three kinds
of computation layers (convolution, pooling and MLP).

2) Unified Datapath: In order to reduce the cost of module
coupling and improve the efficiency of the whole framework,
we design the modules to support a unified streaming datapath.
As discussed, the data transferred between different layers
are 4-dimension tensors. In our design, all tensors are stored
in a consistent layout: N ∗ R ∗ C ∗ Bs. We put Bs as the
lowest dimension to increase data parallelism. To fit the unified
streaming datapath, we design all the modules to support the
same input and output data layout, so that we can access
memory in efficient patterns (such as linear access pattern),
which can maximize the utilization of the memory bandwidth.

3) Runtime Reconfiguration: Usually there are not enough
FPGA accelerators to pre-configure all modules before execu-
tion. Therefore, we adopt runtime reconfiguration technology
in the training workflow, which could make our framework
applicable to platforms with one or more FPGA accelerators.

B. Architecture of F-CNN
The overall architecture of F-CNN is shown in Figure 2.

The framework is designed based on a hybrid CPU/FPGA



platform, where CPU is the controller, FPGA is the compu-
tation accelerator and DRAM on the FPGA card is used for
storing the input and output data of each computation module.

Module controller is responsible for customizing different
computation modules based on the layer configurations and
reconfiguring the modules into FPGA cards following a spe-
cific order, which is also the order of a training cycle: first
the forward computation modules from the bottom to the top
layer, and then the backward computation modules from the
top to the bottom layer.

Data controller divides the training data into minibatches
and loads them into the DRAM for training. For a multi-FPGA
platform, the data controller also controls the data transfer
between different FPGA cards.

Running controller calls the configured module to do the
computation. The read/write addresses of data is passed as
parameters, so that the module can access the data in DRAM.
Besides the data, we also need to transfer the corresponding
weights to the module. Compared with the size of training
data, the size of weights is much smaller, and some of the
weights need to be reversed in the back-propagation process
according to the algorithm in Section II-B. Therefore, we store
the weights and bias in CPU and transfer them to FPGA
through PCI-E together with other parameters. This design can
reduce the I/O load of DRAM, take fully advantage of the
PCI-E bandwidth and make the module design independent
of the weights. As a consequence, CPU is also responsible
for the weight update (equation (8)) after receiving the partial
derivatives from the FPGA.

In summary, given a real CNN, F-CNN first implements
modules for each layer, then divides the training dataset into
minibatches in CPU data controller. After that, the following
iterative process is executed for training cycles:

1) Reconfigure a module into an FPGA card
2) Prepare data in DRAM, which contains three cases:

2a. For the first module, training data is loaded from
CPU to DRAM
2b. For the following modules in a single-FPGA imple-
mentation, the intermediate data are already in DRAM
and no transmission happens
2c. For the following modules in a multi-FPGA imple-
mentation, intermediate data are transferred from the one
FPGA card to another

3) Call the module to do the computation, with parameters
and weights

4) Read back the results and update weights in CPU (for
back-propagation modules) and goto step 1

IV. MODULE DESIGN

The overall architecture of parameterized modules is shown
in Figure 3. Input controller contains an address generator,
which generates addresses to read the input data in each clock
cycle, and a scheduler, which caches the input data and feed
the data into computation kernels. Output controller has an
address generator for storing output data into DRAM, and
transfers the updated weights back to CPU through PIC-E.
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To guarantee the resource usage can fit into one FPGA card,
we first design kernels for basic operations and implement
one or more kernels in each module. The kernels can run in
parallel, and the module performs the computation task by
reusing the kernels with different data and weights, which is
controlled by the scheduler in input controller. The resource
usage of the modules with one kernel can be guaranteed to
fit the hardware resources on one FPGA card. Increasing the
number of kernels Nk can improve the resource utilization and
the performance.

A. Forward Convolutional Kernel

Figure 4 shows the design of a convolutional kernel, which
computes a K ∗K convolution in each cycle.

A convolutional module requires 3 input streams (weights,
bias and input images) and 1 output stream (output images).
According to equation (1), there are three levels of accumu-
lation for a final output image. The design shown in Figure
4 can implement the inner 2-level K ∗ K accumulation. In
order to avoid wasting on-chip memory resources, we store the
intermediate values of output images to DRAM and read back
from DRAM to implement the outer accumulation. Therefore,
there is one more input stream for intermediate values.

Here we use a linear memory access pattern to access data
in DRAM. In order to get K∗K data in one image, a minimum
buffer with size

BuffSize = Ci ∗K ∗Bs ∗DataLen (9)



is required (for the gray area) in the scheduler, where
DataLen is the bit-width of data representation. By control-
ling the input data, we can guarantee the output data layout
and store them to DRAM without buffering.

Based on the design, the following specifications are re-
quired to customize a convolutional module: layer configura-
tions, size of minibatch Bs, data representation (DataLen),
number of kernels Nk and running frequency F . In particular,
Bs is usually a design parameter of a CNN. However, in FPGA
implementations, to achieve efficient DRAM access, the Bs is
chosen to meet the requirement of data alignment.

Given the specification definition, we build the analytical
model to show the relationship between performance, band-
width and hardware resource utilization.

1) Performance model: In each clock cycle, a kernel can
finish a K ∗K convolution operation (here we do not consider
the depth of the design pipeline). Each value in the output
image requires Ni convolution operations. Therefore, for a
module with Nk kernels, the total clock cycles and the running
time T under frequency F are:

Cycles = Ni×No×Ro× Co×Bs/Nk

T = Cycles/F

One convolution operation involves K ∗ K multiplication
addition (MA) operations. The total number of operations is:

Nop = 2×Ni×No×Ro× Co×K ×K ×Bs

If we use 32-bit float as the data precision, the theoretical
performance (FLOPS) can be calculated as:

Perf = Nop/T = 2×Nk × F ×K2 (10)

2) Bandwidth model: There are two streams from PCI-E
and three streams from DRAM connected to the module. In
each cycle of the fully-pipelined design, one value is read from
the weights and bias stream. Meanwhile, S ∗ Nk values are
read from the input data stream, Nk values are read from
the intermediate data stream, and Nk values are stored to
DRAM via the output image stream. Therefore, the theoretical
maximum bandwidth requirements of PCI-E and DRAM are:{

BWpcie = 2×DataLen× F
BWdram = (2 + S)×Nk ×DataLen× F

(11)

3) Resource model: There are four kinds of hardware
resources on FPGA: LUT, FF, Block-RAM (BRAM) and DSP.
We give an utilization estimation to each of them.

The resource consumption of address generator and stream
control units is independent of Nk. We can define them as
LUTio, FFio, BRAMio and DSPio.

The major resource of the scheduler is an input buffer,
which consumes BRAM, defined as BRAMbuff . According
to equation (9), if we define the size of a BRAM block as
Sblock, then BRAMbuff = ⌈Ci∗K ∗Bs ∗DataLen/Sblock⌉.

For a certain data precision and a certain FPGA platform,
the resource consumption of an MA operation can be con-
sidered as constant, defined as LUTma, FFma, BRAMma

and DSPma. In the convolutional kernel, K2 MAs are imple-
mented and K2 buffers are designed for caching the weights.

Therefore, the total resource usage of a convolutional mod-
ule can be estimated as:

LUT = Nk ×K2 × LUTma + LUTio

FF = Nk ×K2 × FFma + FFio

BRAM = Nk ×K2 × (BRAMma + 1)
+BRAMio +BRAMbuff

DSP = Nk ×K2 ×DSPma +DSPio

(12)

We put the equations (10), (11), (12) together as an analyti-
cal model for a forward convolutional module. Given the layer
configurations, we can find the optimal Nk to achieve best
performance, while not exceeding the limitation of bandwidth
and available hardware resources.

B. Backward Convolutional Kernel

A backward convolutional kernel has two tasks: to calculate
error δ and to calculate partial derivatives ∆w and ∆b, both
of which are cross-correlation operations. We can implement
the cross-correlation operation by reverse the data in the con-
volution kernel. Therefore, the backward computation kernel
can also be designed as figure 4, but the scheduler is different
from the forward module.

The difference on resource consumption is that we need
two input buffers for both δl and δl−1 when calculating the
derivatives. The direction of I/O streams changes in different
computation tasks. For example, when calculating the error,
the weights need to be transferred from CPU to FPGA, but
when calculate the derivatives, we need to transfer the ∆w
and ∆b from FPGA to CPU. However, that will not affect the
bandwidth.

In summary, we can build the analytical model for a
backward convolutional module as follows:

Perf = 2×Nk × F ×K2

BWpcie = 2×DataLen× F
BWdram = (2 + S)×Nk ×DataLen× F
LUT = Nk ×K2 × LUTma + LUTio

FF = Nk ×K2 × FFma + FFio

BRAM = Nk ×K2 × (BRAMma + 1)
+2×BRAMbuff +BRAMio

DSPconv = ×Nk ×K2 ×DSPma +DSPio

(13)
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C. Pooling Kernels

The design of a forward max-pooling kernel with pooling
size P is shown in Figure 5. To support the data layout, a
buffer for the input data with the size P ∗Ci ∗Bs ∗DataLen
is required in the scheduler. Besides, P 2 − 1 comparators are
implemented in a pooling kernel. Two DRAM streams are
required for the input and output data. The backward pooling
kernel replicates an input value to a P ∗P field. A Co ∗Bs ∗
DataLen buffer and two DRAM streams are required.

A forward pooling layer usually followed by an activation
function. To implement an activation function in the pooling
kernel, one more DRAM stream for the function output (al

in equation (4)) is required. Similarly, we implement the
derivative function (σ

′
(zl)) in the backward pooling module

and a stream for zl (equation (6)) is required. Therefore, there
are three DRAM streams in pooling modules.

Usually, the resource consumption of comparison and acti-
vation functions is not high (see Table III), and it is obvious
that bandwidth is the bottleneck of pooling modules.

BWdram = (2 + P )×Nk ×DataLen× F (14)

D. MLP Kernels

As discussed in II-B, the major computation of both forward
and backward MLP layer is vector-matrix multiplication. Be-
cause we use a minibatch for training, the real computation
executed in MLP layer is a matrix-matrix multiplication (MM).

To deal with MMs with varied size, we design the MLP
module based on a blocked matrix multiplication (BMM)
algorithm [15] (Algorithm 1).

Algorithm 1 Blocked Matrix Multiplication (BMM)
1: Transform input matrix A (M × N ), weight matrix B

(N ×O) and output matrix C (M ×O) into R ∗R blocks
2: Let A(i, j), B(i, j) and C(i, j) be the ith row block and

jth column block in A, B and C
3: for i from 1 to M/R do
4: for j from 1 to O/R do
5: Initialize B(i, j) with 0
6: for k from 1 to N/R do
7: C(i, j)k = A(i, k)×B(k, j)
8: C(i, j) = C(i, j)k + C(i, j)
9: end for

10: Output C(i, j)
11: end for
12: end for

In our module, the computation kernel is an R∗R MM unit.
It is worth noting that to support the unified data layout, which
is considered as a row-major layout for the matrix in DRAM,
we adopt 2D-stride memory access pattern in the address
generator to access the blocks. Besides, we add activation
functions in the module to accomplish a complete MLP layer.

Two input buffers with size N ∗R∗DataLen is required in
the scheduler to cache one row of blocks in matrix A and one
column of blocks in matrix B. One output buffer (line 8) with

size R2∗DataLen is required in each kernel. In forward MLP
module, there are two PCI-E streams for weights and bias and
three DRAM streams for input data, output data and results
of activation functions. The streams in backward module have
the same number but different direction.

In summary, the analytical model for MLP modules is:

Perf = 2×Nk × F ×R2

BWpcie = 2×DataLen× F
BWdram = 3×Nk ×DataLen× F
LUT = Nk × LUTkernel + LUTio

FF = Nk × FFkernel + FFio

BRAM = Nk ×BRAMkernel

+2×BRAMbuff +BRAMio

DSP = Nk ×DSPkernel +DSPio

(15)

where

LUTkernel = R2 × LUTma + LUTact

FFkernel = R2 × FFma + FFact

BRAMkernel = R2 ×BRAMma +BRAMact

+⌈R2×DataLen
Sblock

⌉
DSPkernel = R2 ×DSPma +DSPact

BRAMbuff = ⌈N×R×DataLen
Sblock

⌉

(16)

E. Model modification

1) Data Reuse: In bandwidth analysis, we consider the
bandwidth required by all kernels, which is an upper bound
and can be significantly reduced in practice by designing
data reuse in the scheduler. For example, with the buffer
size in equation (9), one input data is used in K2/S2 MA
operations during its lifetime in the buffer. However, we can
see from equation (1) that one input data can be used in at
most No ∗ K2/S2 MA operations. Therefore, if a specific
implementation is bandwidth bounded, we can extend the
lifetime of the data by designing larger buffers (consuming
more BRAM), so that to improve the data reuse and reduce
the bandwidth.

2) Runtime Reconfiguration: In performance analysis, we
only consider the execution cycles of a module. However, as
we use runtime reconfiguration in the framework, the actual
execution time is: Texec = T+Treconfig+Tdatatrans. If using
one FPGA accelerator, we do not need to transfer data between
FPGAs, so Texec = T +Treconfig . If there are multiple FPGA
accelerators, we can do the reconfiguration on one FPGA
while others are working. On the other hand, we need to
consider the data transfer, then Texec = T + Tdatatrans. The
implementation strategy is chosen based on hardware platform
(Treconfig) and problem size (T and Tdatatrans), which will
be discussed in Section V.

V. EXPERIMENT RESULTS

A. Platform-specific implementation

We develop a prototype for F-CNN based on Maxeler
technology [16]. The MaxCompiler tool chains allow us to
do hardware programming with a high-level language and the
CPU controller is programmed in C++.



TABLE II
ANALYSIS AND IMPLEMENTATION RESULTS OF ALEXNET (32-BIT FLOAT, Bs=96, F=150MHZ, TIME IN ms, PERFORMANCE IN GFLOPS )

Layers Analysis FPGA Implementation CPU Implementation (Caffe) FPGA2015 [4]
N̄k Performance Resource bound Nk Time Performance Time Performance Performance

L1 2.4 81.76 BRAM 3 113.6 89.04 1082.1 9.34 27.50
L2 13.9 79.08 BRAM 12 321.9 66.79 2267.3 9.48 83.79
L3 21.3 43.36 BWDRAM 36 262.8 54.62 1801.1 7.97 78.81
L4 21.3 43.36 BWDRAM 36 198.6 54.20 1415.1 7.61 77.94
L5 21.3 43.36 BWDRAM 36 133.0 53.98 986.5 7.27 77.61

Overall 1029.9 62.06 7552.1 8.46 61.62

TABLE III
RESOURCE CONSUMPTION AND LIMITATION ON STRATIX V

LUT FF DSP BRAM
Stream ctrl units 57700 77600 0 460

32-float ADD 600 650 0 3
32-float MUL 150 400 1 2
32-float CMP 60 30 0 0
tanh (32-float) 5600 6400 10 22
tanh′(32-float) 5400 2500 12 23

Available 524800 1049600 1963 2567
PCI-E maximum bandwidth 8 GB/s
DRAM maximum bandwidth 38.4 GB/s

TABLE IV
CONFIGURATION OF CONVOLUTIONAL LAYERS IN ALEXNET

Ni No Ri Ci Ro Co K S
L1 3 48 227 227 55 55 11 4
L2 48 128 31 31 27 27 5 1
L3 256 192 15 15 13 13 3 1
L4 192 192 15 15 13 13 3 1
L5 192 128 15 15 13 13 3 1

The experimental platform is a Maxeler MPC-X dataflow
node which has 8 Maia accelerator cards. Each Maia card
has an Altera Stratix V (5SGSD8) FPGA and 48GB DDR3
DRAM. The maximum bandwidth of DRAM is 38.4 GB/s.
The FPGA cards are connected to the CPU via PCI Express
2.0 and the maximum PCI-E bandwidth is 8 GB/s.

All software results in our experiment are obtained by Caffe
[17] running on an Intel Xeon E5-2680 v3 CPU (12 cores,
2.50GHz) with an NVIDIA Tesla K20X GPU accelerator
(2688 CUDA cores). The Stratix V FPGA and K20X GPU
use the same 28nm transistor technology and Xeon E5-2680
CPU uses 22nm transistor technology.

B. Module Customization

To validate the analytical model, we first test some basic
resource consumption on Stratix V, shown in Table III. Based
on the model, we calculate the optimal N̄k for different
convolutional layers in AlexNet [1] (Table IV shows the
configurations). We use 32-bit float data precision, Bs is 96
and the frequency is 150 MHz.

In practice, some hardware implementation issues should be
considered, such as timing issues, data alignment and compiler
optimization. Therefore, the actual Nk is chosen to be able to

implement on hardware and as close as possible to N̄k. Table
II shows the analytical results and the implementation results
of the AlexNet layers.

In L1, Nk is bigger than N̄k because of the resource
optimization in the compiler. Nk in L2 – L5 are chosen to meet
the requirement of data alignment for the input/output streams.
On Maxeler platform, the data-width of a stream should be
either a divisor or a multiple of 1536 bits. Otherwise, extra
resources will be consumed in the stream control units and
will affect the efficiency of the hardware design. According
to the analysis results, L3, L4 and L5 are bounded by the
DRAM bandwidth. So we adopt data reuse by doubling the
buffer size. The final resource bound is BRAM.

Compared with a multi-thread CPU implementation, our
convolutional module can achieve about 7 times speedup on
average. Compared with a recently proposed FPGA-based
convolution design on Xilinx Virtex 7 [4], our module can
achieve slightly better performance with no need for extra
memory control units.

C. Framework Evaluation

We implement and train the LeNet-5 CNN with the con-
figurations in Table I. We use 32-bit float data precision,
Bs is 384 and running frequency is 150 MHz. There are 6
layers in LeNet-5, so 12 modules are implemented in the
training datapath. To achieve better performance for small size
problems (No = 10 in L6), we set the MLP kernel size R to
4. The dataset is MNIST for handwriting digits recognition,
which has a training set of 60000 examples and a test set
of 10000 examples. We divide the training dataset into 150
minibatches. The training process runs for 200 iterations.

The execution time (running and data transfer time) per iter-
ation of each module is shown in Table V. The reconfiguration
time (Treconfig) on Maia accelerator is not uniform (varying
from 100ms to 1sec) and single-FPGA implementation is
inefficient as discussed in Section IV-E2. We use two FPGA
cards in our implementation to overlap the reconfiguration time
on one card and the execution time on the other.

As shown in Table V, F-CNN achieves around 4 times
speedup over a CPU-based implementation and is comparable
to a GPU-based implementation on overall performance. Since
we use a heterogeneous platform, we compare the power
consumption of FPGA and GPU accelerators. The average
power consumption (27.3Watt) of FPGA is obtained by the
Maxeler performance monitoring tools. That is approximately



TABLE V
AVERAGE EXECUTION TIME (SEC) PER ITERATION OF LENET-5 ON F-CNN, CPU, AND GPU

Layers Nk F-CNN Caffe (CPU) Caffe (GPU)
Forward Backward Forward Backward Forward Backward Forward Backward

L1(Conv) 12 12 0.59 1.21 6.84 7.70 2.55 7.19
L2(Pool) 24 24 0.53 0.57 1.85 0 0.04 0
L3(Conv) 12 12 4.67 10.32 36.37 33.11 5.33 3.38
L4 (Pool) 24 24 0.17 0.18 1.05 0 0.01 0
L5 (MLP) 24 24 0.92 1.82 2.04 2.02 0.05 0.4
L6 (MLP) 24 24 0.18 0.20 0.08 0.07 0.03 0.02

Total (Speedup) 21.4(4.3×) 91.1 (1×) 18.7 (4.9×)
Power (Energy Efficiency) 27.3Watt (7.5×) 235Watt (1×)

equal to the power consumption of one FPGA because at any
given time, only one of the FPGAs is running and the other
is reconfiguring or waiting. The power of K20X GPU is 235
Watt. By multiplying time and power consumption, we can see
that our FPGA-based design is 7.5 times more energy efficient
than the GPU implementation of Caffe.

According to Table III, floating-point MA operation con-
sumes more BRAM on Stratix V, which restricts the perfor-
mance in our current implementation. Improvements can be
made by using fixed point data precision and by targeting
our design to more advanced FPGAs like Arria 10 (which
has hardened floating-point DSPs) and Stratix 10 (which has
more available hardware resources). Moreover, we can make
higher resource utilization with better runtime reconfiguration
technologies to achieve higher performance.

VI. CONCLUSION

We propose F-CNN, a novel reconfigurable framework
for training convolutional neural networks. F-CNN involves
reconfiguring a streaming datapath at runtime to cover the
training cycle for the various layers in a CNN. The datapath
of F-CNN contains various modules, which are designed to be
customizable. Analytical models are developed for customiz-
ing modules to maximize performance under the constraints
of bandwidth and hardware resources. We implement AlexNet
and LeNet-5 to evaluate the modules and framework. Exper-
iment results show higher performance than CPU and higher
energy efficiency than GPU, which illustrates the advantages
of employing FPGA technology as heterogeneous accelerators
on HPC platforms.

As a prototype, F-CNN shows the feasibility of training
CNNs on FPGA-based platforms deploying runtime reconfig-
uration. There are many opportunities for further work, for
example, to explore further optimizations of modules with
different data precisions, to achieve more effective software-
hardware co-design.
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