
Knowledge Transfer in Automatic Optimisation of
Reconfigurable Designs

Maciej Kurek, Marc Peter Deisenroth, Wayne Luk and Timothy Todman

Abstract—This paper presents a novel approach for automatic
optimisation of reconfigurable design parameters based on knowl-
edge transfer. The key idea is to make use of insights derived
from optimising related designs to benefit future optimisations.
We show how to use designs targeting one device to speed
up optimisation of another device. The proposed approach is
evaluated based on various applications including computational
finance and seismic imaging. It is capable of achieving up to 35%
reduction in optimisation time in producing designs with similar
performance, compared to alternative optimisation methods.

I. INTRODUCTION

Previous research on automatic optimisation of reconfig-

urable designs involves optimising both design parameters

and Computer Aided Design (CAD) tool parameters. Machine

learning can be used to tune CAD tools or design parameters for

faster optimisation [1], [2]. Bayesian optimisation can be used

to treat noise in benchmark outputs [3], allowing parallelism to

speedup optimisation time. Yet, no matter how refined, all of the

above approaches are wasteful: When an optimisation finishes,

the gathered knowledge is discarded. Manually embedding

designers knowledge within an optimisation algorithm is a

possibility [4]. However, how can we directly use insight,

actionable information derived from previous designs, to

optimise new designs? Our solution, presented in Figure 1,

is to capture the re-usable information from design synthesis

and benchmark outputs for optimising future designs with

our novel Auto-Transfer algorithm. The algorithm is based on

knowledge transfer, which is related to transfer learning [5].

Transfer learning tackles the problem of transferring knowledge

from one problem onto another. The difference between our

approach and transfer learning is that we only transfer old data.

In transfer learning, the knowledge learned, such as optimised

hyperparameters, is also transferred. Our contributions include:

• Statement of the problem of knowledge transfer in

reconfigurable design optimisation, inspired by related

work [3], [6]. (Section III)

• Presentation of an Auto-Transfer algorithm for knowl-

edge transfer in automatic optimisation of reconfigurable

designs. The Auto-Transfer algorithm is based on Bayesian

optimisation [3]. (Section IV)

• Evaluation of the Auto-Transfer algorithm using two case

studies: a quadrature design for financial computation [7]

and a seismic imaging design [8]. (Section V)

II. BACKGROUND

Developing reconfigurable designs usually starts with coding

in a language which can be compiled into hardware descriptions.

This is followed by design parameterization, along with

constraint and optimisation goal specifications. Lastly, either

a set of analytical models are constructed and the design is

manually optimised [7], [8] or an automatic tool is used [1],

[2], [3]. The manual approach the has advantage of being

tailored to a particular problem and making use of designer’s

experience, while a tool has the advantage of being generic

and automated. The main problem in automatic optimisation of

reconfigurable designs is hardware generation time. Bayesian

optimisation addresses this problem by modeling the target

fitness using a Gaussian Process (GP) [9], and has shown

promise in the context of reconfigurable designs [3]. In case of

GP regression, the target function f : X → R is used to obtain

noisy observations y. The goal is to obtain for an unseen point

x∗ ∈ X the predictive distribution of the modeled function

p(f |x,X,�, θ), where θ are GP models hyperparameters and

the observed data is X = {xi}n1 and � = {yi}n1 . The designer

chooses a suitable model, and its hyperparameters are typically

optimised by maximizing the marginal likelihood [9].

��������	
�
���
���
��

��������	

�
�����

��
�������

����	
�
��������

����	
���
���
���
��
�������

����	
���
���
���
��

����	
���
���
���
��

����	
���
���
���
��

�����������	�
�
������
�����
���
�

����
��

��
��������
����

�
��

��
��������������
�
����������
���

���������� !�
�"#��$�%&

�������	
���
�����������������
���
������	�����������������

Fig. 1: Knowledge transfer approach.

The advantage of GP over probabilistic regression techniques

in the global optimisation context is the prediction uncertainty

encapsulated in the predictive distribution. In Bayesian op-

timisation, this information is used to define an acquisition

function a : X → R, which is used to determine designs to

evaluate. It automatically manages exploration and exploitation

of the parameter space. Exploration happens when areas of

high uncertainty are evaluated, and exploitation when areas

with high expected utility are evaluated. Parallel asynchronous

Expected Improvement (EI) can be used as an acquisition

function, E[I(μ,λ)(Xλ)] [10]. At any given time μ nodes

are busy and λ nodes are idle. The goal is to find a set of

designs Xλ = {xi}λi=1 with highest expected improvement

I(μ,λ)(Xλ) over the currently best found solution and to

evaluate them using the idle nodes, while μ designs are

being evaluated on the busy nodes. Automatic Reconfigurable

Design Efficient Global Optimization (ARDEGO) uses a

constrained acquisition function E[I
(μ,λ)
v (Xλ)] [3], based on

the constrained improvement function:

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5090-2356-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FCCM.2016.29

84

2016 IEEE 24th Annual International Symposium on Field-Programmable Custom Computing Machines

978-1-5090-2356-1/16 $31.00 © 2016 IEEE

DOI 10.1109/FCCM.2016.29

84

I
(μ,λ)
v (Xλ) =

{
I(μ,λ)(Xλ), ∀xi ∈ Xλ : d(xi) = 0

0, otherwise
,

where the decision function d : X → T predicts constraint

failures, and d(xi) = 0 indicates a valid design. A support

vector machine (SVM) classifier is suggested to build d [3],

trained using X and the target labels �, where � = {ti}n1 .

III. PROBLEM STATEMENT

The problem of optimizing reconfigurable design can be

considered as the optimisation of noisy black box functions

defined over the design’s parameter space X . The parameter

space is a discrete metric space with D parameters X ⊆ R
D.

A design configuration x resides in the design parameter space

x ∈ X . A benchmark function f : X → R is used to obtain

noisy observations of design performance y = f(x)+ ε, where

ε ∼ N (0, σn
2) is Gaussian i.i.d. noise with variance σ2

n. A

reconfigurable deign can fail to meet various constraints, like

accuracy, timing or resource limitations. Constraint violation

is encoded in an exit code using the constraint function

c : X → T , where T is the set of possible exit codes.

For example, exit code t = 0 indicates that all constraints

are satisfied, while t = 1 indicates inaccurate design and

t = 2 failed timing constraints. For simplicity, due to the

effect of random processes like Place and Route (PAR), it is

assumed that c is a random process that consists of a number

of nonidentical independent random variables, each following

a distribution with an unknown probability density function

px(t) = p(c(x) = t). Exit code depends on a set of latent

constraint functions: the functions hi : X → R, i = 1, .., k,

such as resource consumption or accuracy, and the binary func-

tions gj : X → [0, 1], j = 1, .., r, for example PAR or timing

success. The region of the parameter space that has a non-

zero probability of satisfying all constraints is called the valid

region V = {x|∃x ∈ X : [px(1) > 0]}. The configurations,

which have a 0% probability of meeting constraints, belong

to the invalid region I = {x|∃x ∈ X : [px(1) = 0]}. A good

example is a configuration that overmaps on resources. The

goal is to find the configuration xopt that satisfies all constraints

and has the highest possible fitness xopt = argmax
x∈V

f(x).

A designer often has the opportunity to create a design

similar to an existing one, using their prior experience to

improve its efficiency. The same process can be adopted in

automated optimisation. There are two designs, an old design

and a new one. Can both the information learned and the old

data be used to speed up new design optimisations? Three

challenges have to be addressed to transfer knowledge: (a)

“what to transfer”, (b) “when to transfer” and (c) “how to

transfer” [5]. The old design was optimised with an old design

benchmark function fold and old valid region Vold. It is based

on the old latent constraint functions hold,i and gold,j .

IV. AUTO-TRANSFER ALGORITHM

The goal of the Auto-Transfer algorithm is to enable faster

optimisation of reconfigurable designs by extracting valuable

information from a previous optimisation attempt. The approach

is illustrated in Figure 1. It requires two inputs. The first input

is an old design optimisation result. The task of selecting an

old design from the database suitable for knowledge transfer is

not currently automated, an old design believed to be related

to the new design is manually selected. The second input is a

script. For a given parameter configuration of the new design,

the script builds the design for a specific Field Programmable

Gate Array (FPGA) device, compiles benchmarks to assess

performance of that configuration. Depending on the outcome,

the script outputs an exit code indicating whether the design

with a given configuration meets all the design constraints

or not. Those constraints range from resource constraints to

design specific constraints such as output accuracy. The script

produces performance metrics — like execution time or power

consumption. This packaging of the design generation and

assessment processes allows parallel optimisation of a range

of designs with different toolchains and test data.
1. KNOWLEDGE TRANSFER

2. GP + SVM TRAINING

3. FIND CONFIGURATION(s)
argmax
Xλ∈Xλ

E[I
(μ,λ)
v (Xλ)]

4. EVALUATE
y0 = f(x0)

4. EVALUATE
y1 = f(x1) ...

TERMINATE

Fig. 2: The Auto-Transfer algorithm.

The Auto-Transfer algorithm (Figure 2.) starts with the

knowledge transfer step, during which an initial GP and

Support Vector Machines (SVM) surrogate model of the design

behavior is constructed, based on the old design experiments.

Then the algorithm iteratively improves the surrogate model

through experiments indicated by the acquisition function

E[I
(μ,λ)
v (Xλ)], driving optimisation. The function accounts

for constraints and allows for asynchronous parallelism during

optimisation.

The knowledge transfer step has three phases, each address-

ing one of the previously mentioned challenges. An example

is shown in Figure 3 and the step is presented in Figure 4. The

step tests if there is a relationship between performance f and

each of the latent constraint functions hi, such as accuracy

or resource utilization. If any are identified, the previously

collected data are reused accordingly. For example, it is likely

that if a design is ported across devices, the Lookup Table

(LUT) utilization is going to grow in a similar fashion on both

devices. If the relationship between utilization is uncovered, it

can be possible to predict resource overmapping on the new

device more accurately.

8585

(a) Phase 1 (b) Phase 2 (c) Phase 3 (d) Optimisation

Fig. 3: Knowledge transfer step. There are six designs in Xold, of which three are used for hypothesis testing (a). In (b) three

new configurations are evaluated taking substantial amount of time, and the relationship hypothesis is tested. As hypothesis is

not rejected, and cheap regression ẑ is constructed, old data are mapped and treated as if they come from new experiments (c).

The benefit is clear when an accurate model is constructed with six data points, after only three configuration evaluations (d).

Phase 1
1 Choose a random set XH of designs from Xold for hypothesis testing
2 Evaluate XH designs using benchmark

Phase 2
3 for f , all g and h do
4 Test Hl using old,i and i

5 Test Hm using old,i and i

Phase 3
6 for f , all g and h do
7 if Hl not rejected at significance level α then
8 Calculate linear least square regression ẑi
9 Map old or old,i using the regression ẑi

10 a.) If f , insert the results into the vector
11 b.) If hi, evaluate constraints using the mapping and insert exit

codes into the vector
12 else if Hm not rejected at significance level α then
13 Calculate Isotonic regression ẑi
14 Map old or old,i using the regression ẑi
15 a.) If f , insert the results to the vector
16 b.) If hi, evaluate constraints using the mapping and insert exit

codes into the vector

Fig. 4: Knowledge Transfer, Step 1 of Auto-Transfer algorithm.

1) Phase 1: “What to Transfer” – The goal is to identify

the relationship between the old and the new design using as

few design evaluations as possible. There are two relatively

easily verifiable relationships. The algorithm allows for either

linear or monotonic relationships between the old and new f
and hi. The process starts by re-evaluation of a random subset

of nH parameter settings XH, which are present in Xold; they

can be evaluated on the new platform. This subset is used for

hypothesis testing. If there is no such subset, then knowledge

transfer cannot proceed. The information re-used will typically

consists of LUT, flip-flop, Block RAM (BRAM), Digital Signal

Processor (DSP) block utilization and design performance.

2) Phase 2: “When to Transfer” – First a test is performed to

verify if there is a linear relationship between any of the old and

new functions f and hi. To test the linear relationship hypothe-

sis Hl, the Pearson product-moment correlation coefficient [11]

is calculated between old and new data sets for a given function.

For example, accuracy of the results for the same configuration

on two devices might be linearly mapped between each other.

If the linear relationship hypothesis Hl is rejected at an α-

significance level or indicates a weak correlation, a monotonic

relationship hypothesis Hm is tested. To test the hypothesis

Hm the Spearman rank correlation is calculated [12]. Similar to

the Pearson correlation, the double sided p-value is calculated.

If Hm is rejected at an α-significance level or there is a weak

correlation, it is assumed that the null hypothesis H0 holds

and that there is no relation between the two tested functions.

Each function f and hi is tested separately, as for example it

is possible that two devices follow a similar flip-flop utilization

pattern but not LUT.
3) Phase 3: “How to Transfer” – Knowledge is transferred

differently depending on which hypothesis holds. If the linear

relationship hypothesis Hl is accepted, the old data collected

for one of the function f or hi are mapped to the new design.

This is done by calculating a least-squares linear regression to

recover a mapping function zi for either f or hi. The mapping

function regression ẑi ≈ zi becomes ẑj(v) = av + b, which is

then used for the mapping ẑj(vold,i) = vi treating the data from

previous optimisations as if they originated from the new design.

If the linear relationship hypothesis Hl does not hold, but the

monotonic Hm does, isotonic regression is performed [13].

For example, if flip-flop consumption grows slightly differently

between the two related designs, vold = [0.1, 0.2, 0.3] and

v = [0.1, 0.4, 0.9] the trend is similar but Hl does not hold.

At the same time Hm holds and an isotonic regression is used

to map the old data.

V. EVALUATION

To assess the benefit of knowledge transfer, a comparison is

made between the new Auto-Transfer algorithm and ARDEGO

[3]. Two benchmarks are used: a quadrature-based financial

design with customizable precision [7] and a high performance

Reverse Time Migration (RTM) design with seven parameters

[8]. Each design is first optimised for the Maxeler MPC-X1000

system with Xilinx Virtex-6 XC6VSX475T FPGA. Afterwards,

optimisation for Maxeler MPC-X2000 with an Altera Stratix

V GS 5SGSD8 FPGA follows. The Auto-Transfer algorithm

uses up to 5 D parameter settings to construct XH. α is set to

1%, and correlations weaker than ±0.95 are rejected.
4) Quadrature-based Financial Computation: The

quadrature-based financial design [7] has three parameters

and an associated throughput benchmark. It can be used

to compute integrals for various financial applications. The

design offers a trade-off between accuracy and throughput.

The parameters are mantissa width mw of the floating point

8686

operators, the number of computational cores κ and the density

factor df . A larger number of mw bits increases computation

accuracy, but limits κ due to the increased size of an individual

core and the resource constraints. The number of quadratures

used for integral estimation is regulated by df . By increasing

the parameter a larger number of quadratures is used for an

estimation of an integral. This increases both the computation

cost and the accuracy of the results. The optimization goal

is to find the design with the highest throughput using the

provided benchmark. A latent constraint accuracy function

exists which specifies the maximum acceptable error εrms.

Fig. 5: Optimisation of the quadrature-based financial design

throughput benchmark for εrms = 0.001.

Transfer knowledge speeds up optimisation in nearly all

of the cases during the early stages of optimisation as seen

in Figure 5. This is due to transferred knowledge induced

inaccuracies. When εrms = 0.001 and P = 4 the average

optimization time reduces by 35%, from 133 hours to 86

hours. The reduction for P = 2 and P = 1 is 33% and 35%

respectively. Although both designs run at the same clock

frequency, and the accuracy constraint functions of the design

on both platforms are identical, this is not the case for the

fitness function. As the df parameter is decreased, the problem

becomes communication bound instead of compute bound. This

is especially prominent when εrms = 0.1 or εrms = 0.01 as

transfer knowledge does not offer as big an improvement.

5) Reverse Time Migration: The RTM design [8] is a stencil-

based design used for seismic imaging and it involves seven

parameters. The parameters determine parallelism, numerical

precision and balancing of computation and communication

through changing of the design architecture. They are bit-width

optimisation ratio B, dimension and kernel parallelism Pt, Pknl

and Pdp as well as blocking ratios α and β and arithmetic

operation transformation ratio T . Depending on the device

there are 20 or 81 million possible configurations. The globally

optimal configuration offers execution time over 100 times

shorter than the basic configuration. Latent constraint functions

involve resource utilization and communication bandwidth.

Figure 6 shows there is a clear benefit from using information

derived from the old designs. The improvement is most

prominent when P > 1. The improvement when P = 4 is 45%

in design performance, as well as 11% shorter optimization

time. The initial large benefit comes from reevaluation of old

designs, which are all built on the old platform, and from

knowledge transfer.

Fig. 6: Optimisation of execution time of the RTM design.

VI. CONCLUSION

We present a new Auto-Transfer algorithm, which offers

substantial reduction in optimisation time. For the quadrature-

based financial design and the reverse time migration designs

we observe a reduction in optimisation time of up to 35%

compared to [3]. For the quadrature based design, the knowl-

edge transfer step helps improve optimisation speed despite the

large amount of noise introduced by the new platform. Current

and future work includes automating the selection of related

previous designs, and extending the evaluation of the proposed

approach by a wide range of applications.

Acknowledgement. This research has received funding

from European Union H2020 Programme with project ref-

erence 671653. The support of UK EPSRC (grant references

EP/I012036/1 and EP/L00058X/1), HiPEAC NoE, the Maxeler

University Program, Altera and Xilinx is gratefully acknowl-

edged. MPD has been supported by a Google Faculty Research

Award.

REFERENCES

[1] N. Kapre, B. Chandrashekaran, H. Ng, and K. Teo, “Driving timing
convergence of FPGA designs through machine learning and cloud
computing,” in FCCM, 2015.

[2] A. Mametjanov, P. Balaprakash, C. Choudary, P. Hovland, S. Wild, and
G. Sabin, “Autotuning FPGA design parameters for performance and
power,” in FCCM, 2015.

[3] M. Kurek, T. Becker, T. C. Chau, and W. Luk, “Automating optimization
of reconfigurable designs,” in FCCM, 2014.

[4] M. K. Papamichael, P. Milder, and J. C. Hoe, “Nautilus: Fast automated
IP design space search using guided genetic algorithms,” in DAC, 2015.

[5] S. J. Pan and Q. Yang, “A survey on transfer learning,” TKDE, vol. 22,
no. 10, pp. 1345–1359, 2010.

[6] M. A. Gelbart, J. Snoek, and R. P. Adams, “Bayesian optimization with
unknown constraints,” in UAI, 2014.

[7] A. H. Tse, G. C. Chow, Q. Jin, D. Thomas, and W. Luk, “Optimising
performance of quadrature methods with reduced precision,” in ARC,
2012.

[8] X. Niu, Q. Jin, W. Luk, Q. Liu, and O. Pell, “Exploiting run-time
reconfiguration in stencil computation,” in FCCM, 2012.

[9] C. Rasmussen and C. Williams, Gaussian Processes for Machine
Learning. MIT Press, 2006.

[10] J. Janusevskis, R. Le Riche, D. Ginsbourger, and R. Girdziusas, “Expected
improvements for the asynchronous parallel global optimization of
expensive functions: Potentials and challenges,” in LION 12, 2012.

[11] K. Pearson, “Note on regression and inheritance in the case of two
parents,” Proc. Roy. Soc., vol. 58, pp. 240–242, 1895.

[12] D. Zwillinger and S. Kokoska, CRC standard probability and statistics
tables and formulae. CRC, 1999.

[13] N. Chakravarti, “Isotonic median regression: A linear programming
approach,” Mathematics of Operations Research, vol. 14, no. 2, pp.
303–308, 1989.

8787

