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NeuroFlow is a scalable spiking neural network simulationlgtform for off-the-shelf
high performance computing systems using customizable haware processors such
as Field-Programmable Gate Arrays (FPGAs). Unlike mulihe processors and
application-speci ¢ integrated circuits, the processor achitecture of NeuroFlow can
be redesigned and recon gured to suit a particular simulatin to deliver optimized
performance, such as the degree of parallelism to employ. Teh compilation process
supports using PyNN, a simulator-independent neural netwd description language, to
con gure the processor. NeuroFlow supports a humber of comnonly used current or
conductance based neuronal models such as integrate-and+e and Izhikevich models,
and the spike-timing-dependent plasticity (STDP) rule fdearning. A 6-FPGA system can
simulate a network of up to 600,000 neurons and can achieve a real-time performance
of 400,000 neurons. Using one FPGA, NeuroFlow delivers a sjgelup of up to 33.6 times
the speed of an 8-core processor, or 2.83 times the speed of GRJ-based platforms. With
high exibility and throughput, NeuroFlow provides a viale environment for large-scale
neural network simulation.

Keywords: FPGA, spiking neural network, neuromorphic, hard ware accelerator, large-scale neural simulation,

PyNN, STDP

INTRODUCTION

Reverse engineering the brain is one of the grand engineetialienges of this century. Various
projects have been working on a number of aspects of this probleatuding characterizing
neuronal types and their genetic transcripticrgwrylycz et al., 20)2developing genetic tools for
targeting individual cell types for probing or perturbatioklfdisen et al., 2010; Kohara etal., 213
recovering neural connectivity (“the connectomelyet et al., 2007; Oh et al., 2Q1developing
tools and computational infrastructure for large-scale rawsimulations (larkram, 2006; Plana
et al., 2007; Ananthanarayanan et al., 2009; Markram &iCdl]). With the development of neural
simulators, neural modeling contributes to the advance impater science research including
the elds of arti cial intelligence, computer vision, robias, and data mining. The computational
capability of brain-style computing is actively being investégl by several projectsi{asmith et al.,
2012; Furber et al., 20)Ldnd new algorithms inspired by the principle of neural compigatare
being developedQtitig and Sompolinsky, 2006; Sussillo and Abbott, 2009; Stthuber, 2011
Recently there is growing interest in building large-scaledais using spiking neural networks
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(SNNs), which can achieve higher biological accuracy aniflemory) modules to enable simulation of networks in the order
more comprehensive functionality than smaller scale modelsf 100,000 neurons on a single FPGA. The size of network that
(Izhikevich and Edelman, 2008; Eliasmith et al., 2012; Reimarcan be simulated on a single processor is larger than a number
et al., 2018 As a result, a number of computing platforms of previous FPGA neural simulators such as those described by
targeting SNNs such as SpiNNakeétu¢ber et al., 2013; Sharp Graas et al. (20044nd Thomas and Luk (2009hich store all
et al.,, 201% FACETS &chemmel et al., 20),0Neurogrid parameters using fast but small on-chip BRAM (Block Random
(Silver et al., 20Q7 and TrueNorth (Merolla et al., 20l¢have  Access Memory) modules. This system also has greater eyibilit
been developed to make large-scale network simulationrfastéhan approaches optimizing a speci c class of neurons such as
more energy e cient and more accessible. Neural simulationCassidy et al. (201&ndMerolla et al. (2014)
platforms generally make use of processors such as multi- Our platform has a number of novel aspects in comparison to
core processors, Application-Speci ¢ Integrated Circuit (BBl existing simulators:
chips, or Graphics Processing Units (GPUs), and o er various
degrees of programmability, from programmable parameters
to complete instruction level control. While ASICs have high
performance and low power consumption, their architecture is
xed during fabrication and thus they lack the exibility tadopt
new designs or modi cations according to user needs, such as
precision of parameters, type of arithmetic representationd, a
the neuronal or synaptic models to be used. On the other end,
GPUs provide some speedup over multi-core processors, and
have good programmability and exibility, but they tend tove
large power consumption.

FPGAs have previously been used as an accelerator for
neural simulation, both for conductance-based modélsa@s
et al., 2004; Blair et al., 2013; Smaragdos et al.,)2éid

We use PyNN to develop a high-level APl which provides
users with a model description and simulation environment.
It is the rst FPGA-based simulator to support the use of
PyNN to con gure the hardware processor and to automate
the hardware mapping of neural models. This means that
users do not need special hardware knowledge to use the
accelerator, allowing them to benet from exibility and
performance of specialized hardware with only software e ort
without the need to understand the details of the low-level
implementation.

NeuroFlow can automatically determine hardware design
parameters based on the neural model used in the simulation
to optimize the hardware resources, such as the degree of
for point-neurons Cassidy et al., 2007: Cheung et al., 2009: parallelism and the number of FPGAs to be used. It increases

Rt o, 205 mas an ik 2605 ot . 202 e PTomATES 2 educes e crad e o e e
Cong et al., 2013; Wang et al., 2D18ligh customizability, P P

high scalability and ne-grained parallelism make FPGAs a \Ij\r/]g\;vrlnedlgrign?zrdikweaiiemsgzt:n;.dent lasticity (STDP) usin
good candidate for the development of a neural simulation P P P P Y 9

platform. However, so far FPGA-based accelerators lackydesi the ho_s_t Processor as a Co-processor. I demonstrate; the
automation tools, and support only a limited range of models, poss@hty of v_vorkload allocation based on the C(_)mputatlon
. . . to achieve optimal performance for neural simulation.
thus the resulting platforms often have relatively low eikiy.
To provide neuroscientists a exible neuromorphic hardware
platform to simulate large-scale biological models usingiagik
neurons, we develop NeuroFlow, a recon gurable FPGAMATERIALS AND METHODS
based spiking neural network simulator with a high-level API ]
(Application Programming Interface) suitable for users with ~ Overview of Neuro ow
prior knowledge of hardware or FPGA technology. It providesThe aim of NeuroFlow is to simulate large-scale SNNs with
high speed-up in comparison to traditional multi-core or GPU exible model options. We develop the simulation platform
simulators, while allowing developers and neuroscienttsts based on FPGA systems from Maxeler Technology. It has
implement models in a conventional software environment. @ number of advantages over existing hardware accelerators,
Compared to several other neural simulators which aréncluding high portability, exibility, and scalability oimg to the
implemented with customized hardware, NeuroFlow targetslesign of the hardware system. We develop a compilation ow to
easy-to-maintain o -the-shelf systems and makes the neurdranslate a neural network description in PyNN to that used by
platform more accessible and portable. It allows the developé¥euroFlow as an abstraction layer for the underlying hardwar
to focus on optimizing the implementation of models and The high level description also aids in automatically deteimg
computations instead of building and maintaining the hardware parameters such as the degree of parallelism, the
underlying hardware and system. Moreover, it is portabl@iumber of FPGAs to use, and the optimizations that require
to other platforms. Thus, as newer and faster platforms becomdditional hardware resources. As in previous work, we use
available, the performance of the platform can be increasegpftware synapses written in memory as look up tables instead
without additional development eort by upgrading the of physical wiring between moduleSiieung et al., 2012; Moore
hardware. etal., 2012; Wang et al., 2Q1®&hich allows large-scale networks
Unlike hardwired processors, using an FPGA provides thé be simulated at high speed. We also employ a number
exibility to change the models and computations in the nelura of hardware design strategies to speed up and parallelize the
simulation, allowing the platform to suit the needs of a largecomputations in NeuroFlow as described iheung et al.
group of researchers. NeuroFlow stores neuronal and symapti2012) such as time-multiplexing, pipelining, event-based spike
parameters in large o -chip DRAM (Dynamic Random Accessprocessing, and low-level memory optimizations, in the design
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of NeuroFlow. Currently users are required to use system® fr hinder their adoption for demanding applications such as neural
Maxeler Technologies, but the design principles of the sysgm simulation. Recently, high-level synthesis (HLS) tools clkgpab
be applied to other FPGA-based systems with su cient memoryof translating high-level languages into lower level digsions

storage. have enabled faster development time, less e ort for design

modi cations, and cross-system portability. For instanicepur
Hardware System system we use Java to describe the high level computation to be
FPGAs for Recon gurable Computing implemented on the chip.

FPGAs are recon gurable hardware processors consisting of
arrays of congurable and xed logic resources such adigh-Performance FPGA-Based Computing Platform
multipliers and on-chip memory modules. The logic resourceWNe choose systems provided by Maxeler Technologies as the
blocks are connected via connection wires and switch boxetargeted platform to develop NeuroFlow. The vendor o ers a
The architecture of a typical FPGA is shownRigure L FPGAs number of FPGA-based high-performance computing platforms.
allow user-de ned logic and computational operations to beThe FPGAs are con gured as streaming processors, delivering
implemented by con guring the logic resources and the citcui high computing power with large external memory capacity.
paths linking the input and output of the logic blocks, thus Dierent form factors are available including standalone
making the FPGA a customizable electronic chip with theigbil desktops, multi-node server-scale systems, and on-demand
to be recon gured as desired. This exible structure alsokes cloud-based servicefigure 2 shows the system board and
it easier to parallelize the computations with lower perforroan two of the available platforms. Similar to software platforms
overhead than general purpose processors. Although FPGAise simulator can run on any of these form factors without
typically operate at a much lower clock frequency than generahodi cation if the underlying FPGA system board is of the
purpose processors, customized computations implemented tyame model. The various form factors have their own pros and
the recon gurable logic blocks mean that it may take onlyw& fe cons and suit researchers with di erent needs: a standalone
cycles to nish what may take a multi-core processor tens talesktop provides a ordable and exclusive access for resaarche
hundreds of cycles to process. to simulate their own models; a server-scale system has a nrumbe
FPGA oers a number of benets for neural simulation of FPGAs in the same node and can be used for simulation
compared to other processor types. The architecture of FPG#f larger networks; cloud-based service on the other hand is
supports hardware recon guration which is capable of exiblemore convenient and potentially cost less than the other options
functional descriptions. FPGAs have a large number of lowsince it does not require ownership of physical systems, and is
latency interconnects ideal for connecting processor nades  thus suitable for short-term deployment. In this work, we use
high performance computing system. They also enable greatarstandalone desktop with 1 FPGA (Virtex 6, 40 nm process)
control for memory access and ne-grained parallelization.and a rack server with 6 FPGAs (Altera Stratix V, 28 nm process)
Researchers have used FPGAs to develop neurocomputers iiorour experiments. Since the compiler tools and the system
spiking and non-spiking arti cial neural networksMaguire  architecture are customized for data ow computing, Neur@k|
et al., 200y. However, the di culty of programming FPGAs can cannot be run directly on other standalone FPGA boards witho
modi cation.

Switch block Logic

block

=
I.F
N

Interconnect

FIGURE 1 | Simpli ed architecture of a typical FPGA. An FPGA is made ° : . @
up of a number of recon gurable logic blocks, which implemens arbitrary logic
functions, and they are connected by switch blocks and intezonnect wirings,
which routes the input and output of logic blocks to desired e@stinations. The

con guration of logic blocks and switch blocks is compiled bybackend FIGURE 2 | Sample Maxeler systems the NeuroFlow neural simulato  r
software using the functional descriptions written in handare description run on. Upper left : A single system board containing one FPGALIpper
language. right : workstation with a single FPGA card; bottom: a 1U server uhi
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Simulator Architecture and Computation the Neuron State Kernel and the Synaptic Integration Kernel.
Computation Phases and Core Structure Each of them is responsible for a phase in the two-phase
The architecture of the computation core is shown in the botto computation. We use time-driven model for updating the state

part of Figure 3 The FPGA has two major hardware kernelsof neurons and each of the two-phase computation represents
which are synthesized from the high level descriptions, Hgme a time step of 1 ms. They communicate with the host processor

FIGURE 3 | Compilation pipeline and runtime le loading of Neur oFlow. The pipeline receives neural model code written in Python vith is then compiled into
hardware con guration, host side con guration and memory da@ le. The resulting data les and con gurations are loaded intothe host processor (CPU) and FPGA
of the system during runtime.
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node during the initial setup at the beginning of the simigeit by the FPGA during the simulation. The neuron state update
and during the read-out of the simulation results (spiking modules update the dynamics of neuronal states in parallel using
output) at the end of the simulation. During the initial setup, ordinary di erential equations-based neuronal models, whach
the architectural parameters and neuron model descriptiom arcomputed in oating-point arithmetic. The number of parallel
passed on to the hardware synthesis compiler, which initiateseuronal modules, typically ranging from 2 to 32, is deterndine
the compilation pipeline (Section Compilation Pipeline). Theby the number of neuronal parameters and memory bandwidth
neuronal and synaptic parameters are then compiled and loadeavailable. These customizable modules are implemented in a
onto the external DRAM on the FPGA card. During the time-multiplexed, parallelized and pipelined manner to optimize
simulation, the parameters to be retrieved for subsequealysis  the throughput with a range of model options to choose from.
designated by the user, such as spiking data and neuronakstat In the second phase (ii), the FPGASs retrieve and store the
of speci ed neurons, are stored on the external DRAM, and aréncoming synaptic data into the fast on-chip BRAM memory
transferred to the host after the simulation. storage. The Synaptic Integration Kernel retrieving syragéita

Figure 4 shows the detailed computation ow of NeuroFlow from o -chip memory and subsequently computes the synaptic
in the simulation phase. The main computation phases foinputforthe neurons. The computation is carried out by up to 48
SNNs are (i) neuronal state update and (ii) synaptic weighparallel synapse modules, constrained by the available batidwid
accumulation. and timing delay of hardware logic resources. Accessingsiyna

In the rst phase of the process (i), FPGAs update thedata from memory and subsequent synaptic processing is
neuronal parameters and spiking record stored in large o -triggered by spikes hence the overall processing time is igugh
chip DRAM memory storage. They are retrieved and updategroportional to the activity level of the network. The synaptic
data are preprocessed and packed in a specic format in xed
precision before being stored in the o -chip memory to speed up
the simulation.

Nearest-Neighbor STDP
Our simulator also supports nearest-neighbor STDP using both
the FPGA and multi-core processors in a coordinated fashion.
It demonstrates that conventional multi-core processons ba
used along with the FPGA during a neural simulation in this
system. Nearest-neighbor STDP is a common plasticity dtgari
for learning in SNNsBenuskova and Abraham, 2007; Babadi and
Abbott, 2010; Humble et al., 20)L4t is an e cient and good
approximation of the STDP with all-to-all spike interaction as
shown inFigure 5. It computes the change in synaptic weights
using only the closest spike-pairs, instead of all spike-pairs,
order to reduce the computation complexity while remaining
biologically accuratehikevich and Desai, 2093n accordance
with Izhikevich and Desal (2003we only take into account
presynaptic-centric interactions such that only the rst post-
synaptic spike before or after a presynaptic spike can cause
depression or potentiation, but nonetheless the system isitapa
of implementing other forms of interactions. We implement an
additive model of STDP in NeuroFlow, and other types of more
complicated models, such as a multiplicative synaptic model,
can be incorporated, at the expense of requiring additional
hardware resources. The hardware resource required would be
proportional to the degree of parallelism of the synapse modules
To compute STDP, the FPGA sends the spiking data to the
multi-core processor which updates a table of relative spike
timing stored on the host side with size proportional to the
FIGURE 4 | Simpli ed computation ow and architecture of maximum axonal delay. The memory cache at the host side is
NeuroFlow. The system consists of two major kernels corresponding to té more e cient for fetching and updating data in random memory

two main computation phases: Neuron State Kernel, which caesponds to | . | ; h K fEPGAS in thi
Neuron Update Phase and calculates the updated neuronal stas using the ocations, complementing the weakness o GAs in this respect

synaptic and neuronal models at each time step; and Synaptitntegration The relative timing information is used to access change in
Kernel, which propagates the neuronal spikes to own and otheFPGAs in synaptic weights in a lookup table, which are accumulated and
Synaptic Accumulation Phase. Neuronal and synaptic paranters are stored sent back to the FPGA. The communication for the update

in high-capacity off-chip memory while the others are store in high-speed

) - of synaptic weight table occurs at a xed interval of time
on-chip memory to optimize the overall memory latency.

steps specied by the user (e.g., 100ms and 1000 ms in the
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required is estimated from previous builds. Together with
the FPGA used and the network size to be simulated, the
information can determine whether this mechanism can be
accommodated in the design.

3. Synaptic organization method to use based on density of

FIGURE 5 | (A) All-to-all spike interactions between pre- and post-synafic neuronal connectivity. A densely-connected network can

neurons for STDP learning. Since the number of interactioris proportional to be paCked In a more compact format which can lead to
the square of ring rate, this paradigm is computationally egensive. reduction in hardware resources.

(B) Presynaptic-centric spike interactions between pre- and pst-synaptic i . X .

neurons for STDP learning adopted in NeuroFlow. This method Dynamlc parameters are runtime simulation parameters
computationally ef cient and can approximate the all-to-dlparadigm with high read by the host processor which do not need hardware
biological plausibility. recompilation. The parameters cannot be modi ed during a

simulation but can be changed between di erent simulations
in the same program. The parameters include the number of
FPGAs to use, the allocation of simulated neurons and the
number of neurons handled by each FPGA.

examples from the Section Results) to reduce the communitatio
overhead.

To e ciently implement the STDP rule, we use a scheme
similar to the deferred event modeRést et al., 2009which
minimizes the number of memory accesses by batch processibjodel Speci cation
the weight changes. The scheme stores spikes in previous tiRgNN for Neural Model Speci cation
steps and calculates the corresponding weight change omly afPyNN is an open-source, Python-based neural simulation
a certain time window, typically a few tens of millisecondseT package for building neuronal network models developed by
time window is set to ensure that no further spikes can causBavison et al. (2008)It oers an easy and standardized
changes to the synapses for a neuron spiking at the beginning lsihguage for neural simulation and allows the results to be

the window. cross-checked between various simulation environmerttsowi
o ) o the need to rewrite the code. Furthermore, users can also use
Automated Customization using PyNN Description visualization and analysis tools compatible with PyNN. Cutien

Since the FPGA platform is recon gurable and has limitedpyNN has API interfaces with a number of popular standard
hardware resources, ideally one would simulate SNNs with geyral simulation software such as NEURON, NEST, and Brian
customized design for each specic neural model in order tqpayison et al., 2008 which can be installed along with the
optimize resource utilization. The high-level descriptioh&  goftware packages. Hence the results from NeuroFlow can be
network in PyNN facilitates automated customization tout  ¢rossed-checked with software simulators. A number ofdarg

a set of parameters for hardware design. We have identi edcale simulators have also implemented high-level bindivitfs

a number of design parameters that can be determined biyNN to facilitate the use of the simulators such as SpiNNaker
the simulation requirements and hardware constraints. FSuc(Galjuppi et al., 2010and FACETSRriiderle et al., 2091
customization provides further speedup at the expense of Taking advantage of its popularity, we adopt PyNN to provide
additional hardware resources. When the customization@®i 5 standardized interface for building neuronal modé@ade 1

are on, the compilation will attempt to compile the designshows an example that can be used for declaring neuronal
with the highest hardware resource utilization, then prat®e populations, creating neuron connections and setting hargwar
to designs with lower resource requirements when there argarameters in NeuroFlow. The user can de ne populations
insu cient hardware resources or the timing constraint i®N  of neurons which share the same neuronal parameter(s) and
met. The variables are divided into two types: connect them using various projection methods to add synapses

Static parameters are compile-time parameters for thdNe user can also set hardware con guration parameters such
computation engine code, and recompilation of the hardwaréS clock speed and degree of parallelism by using the setup
is needed whenever these parameters are changed. Sincgogimand. If not explicitly speci ed, default values are used.

typical recompilation of an FPGA hardware design reqmre%ompilation Pipeline

10-20h, these parameters are not changed frequently for_l% automate the process of running neural models and deteemin

given model and con guration. The static parameters arenardware arameters, we develop a pipeline of compilation
determined by analysis of the PyNN description and available P ’ P apip P

hardware resources on the system. The parameters include: Processes to translate a high-level speci cation to hardware
’ “con guration for the FPGA system.

1. The number of parallel neuronal state update modules. The general compilation ow is depicted ifrigure 3. In
In general the parallelism is calculated as the memoryhe rst step of the pipeline, the PyNN interface, extracts,
stream bit width divided by the precision (single or doubleand converts the neuronal and synaptic parameters into a
precision) and the number of neuronal parameters perspecic format as described iheung et al. (2012p facilitate
neuron. parallelization of neuronal state update and synaptic input

2. Additional weight caching mechanism for synapticaccumulation, which is then written into memory data lesnO
memory access. It makes use of extra on-chip BRAMhe other hand, the compilation tool also determines a number o
bu ers to store the data. Currently the additional resourcesdesign parameters based on simulation conditions and harelwa
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// Import NeuroFlow PyNN interface

from pyNN.neuroflow import *

// Set design parameters (static)

setup(max_delay=16.0, parallel pe=12,
clock_frequency=150)

// Define populations of IF neurons

pl = Population(5, IF_curr_alpha)

p2 = Population(3, IF_curr_alpha)

// Set neuronal parameters to randomly distributed

values

10 pl.rset('v_thresh',

11 ... RandomDistribution('uniform',[-55,-50])

12 // Define synaptic connections

13 prj = Projection(p2, pl, method=AllToAllConnector())

14 // Define current injection

15 currentIn = DCSource(amplitude=0.3, start=10.0,

16 ... stop=100.0)

17 currentIn.inject_into(pl)

18 // Specify parameters to record

19 pl.record() // record spike times

20 p2.record_v() // record membrane potential

VWoONOOTUTEA WN R

21 // Define simulation duration
22 run(1000.0)
23 end()

Code 1 | Sample NeuroFlow PyNN interface code.  The usage is the same as the standard PyNN format. The code cetes a number of integrate-and- re neurons
and connects them using an all-to-all connector method proided by PyNN. The user can supply external stimulation to theeurons and record the activity of
neurons. The user can change the hardware con gurations suclas parallelism, maximum axonal delay, and FPGA clock frequey using the setup function.

constraints to allow for customization and optimization of simulation back-end, the actual hardware implementatioowst
hardware resource (Section Automated Customization usinge abstracted from the user. We use PyNN and Maxeler tools
PyNN Description). to implement a number of abstraction levels for running ndura
In the next step, we make use of tools provided from Maxelesimulations.
to compile code written in Java describing the computation Using multiple levels of abstraction, NeuroFlow allows users
and architecture into hardware descriptions readable by thé& write in a domain-speci ¢ language they are familiar with
FPGA. The compiler reads in the static parameters and choosé&s obtain hardware speedup without extensive knowledge of
which models to implement in the synthesis phase accordingardware. As shown inFigure 6, each description level of
to user specications. Instead of soft processors which arbleuroFlow describes a separate aspect for simulating neural
used by a number of other FPGA approach&&(uire et al., network on FPGAs. Each level can be modi ed independent of
2007, the dierential equations are compiled into data ow other levels and enable easier maintenance and developrent f
path representations for building pipelined computations on thethe platform.
circuitry level. Although this approach is area-e cient, aefh The top application level describes the neuronal types,
hardware compilation is required when a di erent neuronal network connectivity, and experimental setup. The descriptio
model is used. The compilation tool then calls vendor-speci owill be portable to various back-ends for checking and
software which carries out conversion of lower-level handwa veri cation. It corresponds to the user code in Python in
language descriptions in VHDL format, hardware resourceNeuroFlow, where user species the neuronal model and
mapping and place and route (PAR) which determines thehe customization parameters, and the translation work for
actual hardware implementation. At the end of this process, agxtracting the description in Python to the subsequent stage
FPGA bitstream le is generated which describes the haréwarin the pipeline. Next, the electronic system level describes t
con guratlon for the simulator. The host processor then read behavior of Computation ow (d| erential equationsy Synaptic
in the host code generated from the compilation process a”ﬁwtegration and STDP) and the system con guration, such as

simulation process. di erent system is used, only the system con guration needs
to be changed, rather than the entire computation engine
Levels of Description code, thus facilitating portability across various systemse T

To build a generic neural simulation system that enabletardware is also automatically customized based on the high-
the neural modeling community to use this accelerator as &evel description, meaning that performance gain is obtained
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TABLE 1 | Summary of functionalities supported by NeuroFlow.

Module type * Implemented models

Neuron models Leaky integrate-and- re
Adaptive exponential
integrate-and- re
I1zhikevich model
Hodgkin-Huxley model

ODE integration methods Euler method
Runge-Kutta method (4th order)

Synaptic input current lters Exponential decay function
Alpha function
Custom lter
Plasticity Pair-based nearest-neighbor
STDP
FIGURE 6 | Levels of description for neural simulation in Neuro Flow.
The description of the system of NeuroFlow consists of a numér of levels: Simulator functions Neuronal population declaration
Application level, electronic system level and registeransfer level. Users of Neuron monitor (spikes and
the system only codes in the application level and use funaths provided from membrane potential)
the levels below, without the need to know the hardware detd. Changes to Synaptic coupling strength
the actual implementation of neural models are made at elemnic system retrieval (per presynaptic neuron)
level which is hardware independent. The register-transfdevel is the External current injection
implementation at the hardware level and is handled by softare provided by Random number generator
the vendor, thus reducing the maintenance effort for the syem. (Gaussian/uniform)

*Planned support for non-linear synapse dynamics and ball-and-stick neon model.

without compromising the usability of the system. At the
lowest FPGA-speci ¢ hardware description level, the program i ) ) o
translated to a hardware description language such as VHDL, The user can specify arbitrary external current injection to

which is then compiled to the actual FPGA bit stream using/'€ neurons, and the parameters such as amplitude, time, and
back-end vendor speci ¢ synthesis tools. target neuron index are stored in on-chip memory. A number

of random number generators are available to generate noise
Supported Simulator Functions input to the neurons, including uniform and normally distrilbed
NeuroFlow oers a number of common models and random number generators. The user can also monitor the
functionalities used in neural simulation which is sumnzd in ~ spiking and membrane potential of speci ed neurons, which are
Table 1 Currently a number of neuronal models are supportedstored on FPGA during the simulation, and are sent back to the
by NeuroFlow, and the process of adding new models to thbost processor after the simulation is completed.
simulator is relatively simple, by adding the needed neurona The current implementation of the system maps the neurons
options in the PyNN backend and writing the correspondinginto hardware by sequentially assigning the neurons to the
di erential equations in the Java functional description. &h FPGAs according to their indices. While this approach is simple
models currently supported include the leaky integrate-ared- and e cient, the communications between the FPGAs may not
model Gerstner and Kistler, 2002the adaptive exponential be optimized and could lead to longer simulation time when
integrate-and- re @rette and Gerstner, 20))5the Izhikevich  using more than one FPGA. In theory the connectivity between
model (zhikevich, 200} and the Hodgkin-Huxley model the FPGAs and the mapping can be done in a similar manner as
(Hodgkin and Huxley, 1952 Furthermore, the simulator Furber etal. (2013 hich introduced a virtual mapping layer for
can use various ordinary di erential equation (ODE) solvers e cient spike transmission.
currently, Euler and Runge-Kutta methods are implemented
in NeuroFlow to demonstrate this capability. The neurons carRESULTS
be divided into neuronal populations and neuronal parameters
that are common in a population can be declared through theTo evaluate the performance of the platform, we simulate a
PyNN interface, and thus reduce memory usage by removingumber of models to test the accuracy, speed, and power
duplicated parameters. consumption of our platform. The models vary in size and

The current scheme assumes synaptic weights are linear andmplexity to test the full range of capability oered by

additive for both excitatory and inhibitory synapses, whiaxte ~ NeuroFlow.
accumulated in the on-chip memory, and can be changed if
required. The user can de ne various synaptic current inputTwo Neurons with Paired Stimulation
functions, such as exponential decay function, alpha-faum;tor  In the rst set of experiments, we test the precision and accyrac
delta-function. of the computations by simulating two adaptive exponential
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integrate and re neurons (aEIF) with external stimulation shown that the model is able to replicate the precise temporal
and STDP Figure 7A). The membrane potential dynamics is dynamics of biological neurons.
described by the following equations: We test the eect of STDP on the synaptic strength
by simulating two neurons ring alternately for duration
dv V Vr of 250ms, using an external input current of 10mA with
C—— D a(v B)Cgdrexp = wCIl (1) spiking time di erence of 10 ms. A common STDP pro le with

dt T temporal causality is applieigure 7B). The weight is modi ed

twdlv DaV E) w (2) according to the following rules:

dt

41t
) ) ) _ ) ) 4wc D Acexp — ford4t>0 3

The model is a system with two di erential equations, which tc

Ives f b tential V and adaptati iable w. Th 4t
solves for membrane potential V and adaptation variable w. The aw DA exp X' forat<o (4)

model receives input current |, and has parameters membrane t
capacitance C, leak conductangemversal potential E spiking ~ with parameters 8 D 0.1, A D 0.12,and¢c Dt D 20ms,
threshold 4, slope facto# 1, adaptation coupling parameter a, where only the closest spikes for each ring from presynaptic
and adaptation time constanyy. Brette and Gerstner (2006ave  neurons are considered.

FIGURE 7 | Simulation using NeuroFlow with STDP enabled under  the paired stimulation protocol. (A)  The simulation consists of two aEIF neurons which
are mutually connected. Each of them receives an alternatetisulation of 10 mA for 250 ms.(B) The STDP pro le used for the simulation, with & D 0.1, A D 0.12
andtc Dt D 20ms (C) Traces of membrane voltage of the two neurons with spike timélifference of 10 ms. The neurons spike upon receiving the egtnal
stimulation, where blue (red) arrows correspond to the timevhen neuron a (neuron b) receives external stimulation ingrdiagram. (D) Evolution of the strength of
synaptic coupling between the two neurons across time in therial described in(C).
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Figures 7C,Dshow the results of the simulation. The neuronsto the locality of synaptic connections, the neurons connect t
are stimulated externally to force the neurons to re at tira¢s targets on the same or neighboring FPGAs, thus the hardware
denoted by the red and blue arrows. The two neurons producmapping of neurons facilitates the retrieval of synaptic data.
excitatory post-synaptic potentials (EPSPs) in the other oeur Neurons that are closer to the border, such as neuroim
when they spike, with an initial synaptic strength of 0.1. Dae t Figure 8 require slightly more time to gather synaptic data than
the e ect of STDP learning, neuron B receives stronger syoaptineuronj.
input from neuron A, and conversely neuron A receives weaker Figure 9shows the performance of the system for simulations
synaptic input from neuron B. The synaptic strength is boundedusing two metrics: speedup with respect to real-time and spike
to user-de ned values, in this case<Ow < 0.25, thus w, is  delivery rate. Speedup with respect to real time is a ected by the
settled at O after learning. The update of synaptic strength isumber of FPGAs required and the number of synapses. The
delayed for the routine to take into account the timing ofdue  spike delivery rate, suggestedfyjeland and Shanahan (2010)

spikes, in order to update synapses in batch. as a measure of performance which measures the throughput
of the system irrespective of the ring rate, is obtained from
Large-Scale Spiking Network calculating the number of spikes delivered per second by the

To test the performance of NeuroFlow for simulation of largeSystem. o _ _ _
networks, we simulate large-scale networks of size up 8289 For simulations involving STDP, we simulate a network with
neurons with excitatory and inhibitory neurons as shown in55,000 neurons with STDP applied to excitatory synapses using
Figure 8 The network is similar to the one used Bigjeland and  the STDP prole in Section Computation Phases and Core
Shanahan (2010With neuron parameters taken fromhikevich ~ Structure. The inhibitory synapses are set as non-plastic as
(2003) for evaluation of their neural simulator. The following described in previous literaturé>ioka et al., 20)2We test two
table shows the hardware and simulation details. The sétnp t Cases with di erent synaptic strength update frequency, 1 and
and readout time stated increases with the size of the ndgwor10 Hz, and measure the performance. The frequency determines

while the readout time increases with the simulation time. the interval between the batch update of synaptic weights, and
hence a lower update frequency incurs less overhead. Théteig

changes are batched and then updated to the FPGA DRAM

FPGA Model Stratix V (5SGSD8)  in every xed interval (1s and 100 ms, respectivelyigure 10
DRAM Memory DDR3 48 GB shows the performance of NeuroFlow in comparison with multi-
FPGA Clock Frequency 145 MHz core and GPU simulators. Since the total number of synaptic
DRAM Clock Frequency 533 MHz updates is proportional to the update frequency of STDP and the
Power (per FPGA card) 30-40W synapse numbers, the computation time is heavily in uenced by
Hardware Compilation Time 17-20h these two parameters. Updating the synaptic weights in FPGA
Setup time (for network inFigure 8) <2min also require a large bandwidth for the data transfer between
Readout time (for network inFigure 8) <1min the host processor and the FPGA, which limits the update

frequency of the weights. We compare the performance of
The network has a toroidal structure and the connectionNeuroFlow to those of software simulator NESFgwaltig and
probability is spatially constrained. Each neuron connects tDiesmann, 200/on an 8-core i7 920 processor and GPU-based
varying number of post-synaptic neurongyq with either static ~ simulator Richert et al., 20)Ion a Tesla C1060 GPU. Using an
or plastic synapses, to test the e ect of synapse numbers arpdate frequency of 1 Hz, NeuroFlow is on average 2.83 times
the platform performance (in this case without STDP, i.e., fofaster than a GPU and 33.6 times faster than a conventional
static synapses), whergyp ranges from 1000 to 10,000 in the processor.
simulations. The synaptic strength values are set to random
values between 0 and 0.5, and are adjusted by a scaling factor
Nsyn in order to produce a similar level of network activity
across scenarios of di erentgph. The connection probability
follows a Gaussian probability of the synaptic distance, with
standard deviation (S.D.) of varying for connections from
excitatory neurons, and S.D. of 16 for inhibitory neuronseW
tests ranging from 32 to 512 to evaluate the e ect of connection
sparsity on the performance of the system. Conductance defays o
the synapses are proportional to the distance between neurons,
with a maximum of 16 ms delay for excitatory synapses and
1ms delay for inhibitory neurons to ensure fast inhibition
from the inhibitory neurons and rhythmic activity of the | FiGURE 8 | A toroidal neuronal network.  Each dot represents the position
network. of a neuron. Synaptic connection probability depends on thelistance
When mapping the network onto FPGAs, each FPGA handlgsbetween the neurons which has a Gaussian distribution. Dogd circles denote
the computation of 98,304 neurons with close spatial proximity connection probability within 1 and 2 S.D. One FPGA handleshe computation
and a maximum of six FPGAs are used for the simulations. DueOf 96,304 neurons.
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than the number of neurons in the network, showing the
potential computational capacity spiking neurons have over
the traditional rate-based neuron models. The network also
exhibits a range of rhythmic activity and a balance of exicita
and inhibition similar to biological networks. Due to therlg
simulation required to demonstrate the e ect of STDP on the
ring patterns, it is a good example to demonstrate the need for
neural simulation platforms such as NeuroFlow and other FPGA
based implementations such as thatliying et al. (2013pr such
experiments.

In the experiment, we simulate a network of 1000 Izhikevich
neurons each with 100 plastic synapses. The simulation runs
for 24 h in model time with 1 ms temporal resolution. At each
millisecond, one neuron is randomly chosen in the networklan
receives a random input of amplitude 20 mV. The connection
probability is 0.1 between neurons and STDP is enabled
for excitatory synapses. Each synapse has a random 1-20ms
conductance delay. The simulation takes 1435s to complete in
NeuroFlow, which is 15 times faster than the 6h reported in
the original study using a PC with a 1 GHz processor. Various
combinations of presynaptic anchor neurons in the absendeef t
random input are tested after the simulation to nd out possbl
FIGURE 9 | (A) Speedup of NeuroFlow with respect to real-time and neuronal groups.

(B) perform{an‘ce of NeuroFIowlin terms of spike delivery rate. Ehspeedup of Figure 11 shows the raster plot of the simulation to
NeuroFlow is inversely proportional to the size of the netwik, and networks .

with smaller number of synapses per neuron run a number of tigs faster. Due demonstrate the e ect of STDP on the neuron dynamlcs. A2
to overhead of distributing the computations to different pocessors, the to 4 Hz rhythm is seen in the network when the simulation rst
speedup of network is not linear to the size of the network. started, which disappears during the simulation and is reglace
by a gamma rhythm of 30—100 Hz after a simulation time of L hin
model time. Figure 12Bshows a sample neuronal group after the
simulation. The neurons spontaneously self-organize intaigso
and generate time-locked patterns. Post-simulation analysis
520 neuronal groups which is consistent throughout the whole
simulation after the rst modeling hour. The simulated dedee

in agreement with results from the original study, givingeito a
similar distribution of group sizes.

DISCUSSION

In light of the increasing interest of simulating large-gcaeural
networks, there is a need for platforms with such capabilityolvh
are powerful but easy to use and exible. Targeting custoniezab
FIGURE 10 | Comparison of performance of various simulators. The FPGAs, we deve|0p NeuroFlow which o ers a exible, portab|e
performance of NeuroFlow is compared against that of a CPU-&sed software and scalable simulation environment for SNNs that is avéélan
simulator NEST and a GPU-based simulator CarlSim. NeuroRdois faster than . . .

GPU and CPU platforms by 2.83 and 33.6 times respectively, wn simulating various form factors, ranging from multi-node supercompuster
networks of 55,000 neurons using 100, 300 and 500 synapses, \ith STDP to standalone desktop systems. NeuroFlow seeks to Il a gap
enabled using an update frequency of 1 Hz. in terms of exibility and scalability across the spectrum of
customized SNN accelerators. At one end of the spectrum,
ASIC-based systems have the highest speedup and lowest power
consumption amongst all forms of neural computing systems
Polychronous Spiking Neural Network (Silver et al., 2007; Schemmel et al., 2010; Merolla et ak),201
We simulate a network that exhibits polychronization asbut they lack exibility and are not widely available due to
demonstrated inlzhikevich (2006)as a form of functional high manufacturing cost. At the other end of the spectrum,
veri cation. Making use of the interplay between conductanc accelerators based on multi-core processor and GPU systems
delay and STDP, the model displays a large number of selupport a wide variety of synaptic, neuronal and plasticity niede
organized neuronal groups which exhibit reproducible and(Fidjeland and Shanahan, 2010; Richert et al., 2011; Hoarg et a
precise ring sequences depending on a specic activatiorr013, but the power consumption is high for a large GPU
pattern (igure 12A). The number of patterns can be larger cluster. FPGA-based systems o er a middle ground which may
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SpiNNaker uses xed-point number representation instead of
oating point arithmetic as the default representation, which
leads to programming di culties and constraints such as theka
of native division operation and precision issuési(ber et al.,
2013.

Integrating of PyNN into the design of NeuroFlow simulator
o ers a number of advantages in terms of model development
and performance gain. PyNN shortens the time in model
development, allowing model builders to port the simulation
to a new simulation environment with less time and cross-
check the correctness of their models in other simulators.
It also allows automated customization of hardware which
can optimize the utilization of hardware resources. Curhgnt
development with the PyNN framework faces a number
of challenges, such as backward incompatibility, minor
defects, and the lack of technical support; but the idea of
integrating a high-level neural description language with a
hardware platform for accelerating simulation is attractamed
useful.

Neural networks for dierent purposes require various
levels of abstractions and precisions. To date there is no
consensus on what is the optimal level of abstraction to

FIGURE 11 | (A) Raster plot of the network activity with 1000 neurons at the d_escrlbe a blO|(_)gIC:’:l| neura_l network. Gfeneral_ly mOdeI_S with
beginning of the simulation.(B) Raster plot of the same set of neurons after a hlgher complexny have a richer dynamlcs which contributes
3600 s simulation with STDP enabled. It shows oscillations d#—4 Hz before to their higher computational capacity. For example, non-

the simulation and 30-100 Hz after the simulation which is aflose

et ! linear dendrites can solve linearly non-separable classona
resemblance of the original implementation.

problems Cazé et al., 20)3and extending point neurons to
include one or more dendritic compartments can dramatically
change the ring dynamics of the neuron, which can account
be of great utility for large scale brain simulation prograesn for observations from experimentsRfspars and Lansky,
Following on from the rst initial FPGA implementations of 1993; Vaidya and Johnston, 20130 changes to the model
spiking neural system<Cheung et al., 2012; Moore et al., 2012descriptions will a ect the need for computational capability of
Wang et al., 2013, 20),5here we report in detail the rst a neurocomputer. While these properties are generally ignored
FPGA based, exible, general-purpose implementation of alarg when designing a neurocomputer, they are sometimes crutial i
scale spiking neural network that includes “full” Izhikevistyle  neural simulations. Given the large variety of neuronahagptic,
neurons and STDP. and plasticity models used in neuroscience, in exible neural
In the design of customized neurocomputers, exibility is simulation platforms would have limited value for computata
sometimes sacri ced to achieve higher speedup, but it makeseuroscientists.
the platform less useful for neuroscientists who usuallyycar  In this regard, one possible use of NeuroFlow is for
out speci ¢ and rapid model modi cations. ASIC designs haveprototyping of neurocomputers. Engineers can test various
the lowest programmability and exibility. The spiking neuro con gurations using FPGA-based neurocomputers and nd the
models are xed during fabrication and synaptic connectionsoptimal precision for a given application and use the minimal
are often non-plastic, low precision and have constraints ircomplexity and precision as system con gurations. Similar to
the number and patterns of connections. In comparison theASIC prototyping using FPGAs, prototyping using NeuroFlow
SpiNNaker system, based on ARM processors, o ers a higtan reduce the cost of chip modi cation and can bene t future
degree of exibility, but due to the small number of neurons neural-based computation systems.
handled by each processor (at the order of* Iifleurons) As illustrated in the experiments, NeuroFlow demonstrates
and the requirement of long communication paths for largegood performance and exibility, but it has a number of issues
networks, the platform does not handle well cases with a large address in order to broaden its appeal. While changes
number of events, such as dense connectivity, STDP, or ia neuronal, synaptic and simulation parameters only require
highly active network Kurber et al., 2004 These situations generating new data les, FPGA requires considerable syisthes
are commonplace in neural simulations but are often nottime to recompile the hardware con gurations. However, ther
considered when building neuromorphic systems. Furtherepor have been a number of attempts to reduce the synthesis time
customized hardware platforms have to be redesigned anuly using precompiled modules, such as hard macro stitching
fabricated when there is a need to replace or incorporaté.avin et al., 201)land modular recon guration £edcole et al.,
additional models, such as plasticity, neuronal compartmgnt 2006. While the current system is e cient in handling a large
ion channels, gap junctions, or higher precisions. As an eptam network size of 18-1F neurons using simple interconnect,
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FIGURE 12 | (A) The working principle of polychronizationlzhikevich (2006)proposed this mechanism, which shows that the various spik&onductance delay can
produce time-locked spiking patterns which are triggered ly certain initial activation pattern. The pattern occurs spntaneously during long simulations of network

with STDP. The dotted line represents the propagation of sges in the network. (B) Polychronous network simulated produces a number of timedcked patterns upon
activation of certain neurons.

more work has to be done on the neural mapping scheme Currently there is a major gap in our understanding between
and intercommunication between nodes, such as similar workmall neuronal networks and the neural system as a whole.
on SpiNNaker Khan et al., 2008to extend the scalability of Models such as the work bizhikevich and Edelman (2008)

the current system to support simulation of larger networksincorporate the dynamics of individual neurons in a large-

Another issue is power consumption of the system. NeuroFlowcale human brain model, which can be used to compare
make use of external DRAM and hence is not as poweagainst whole-brain imaging data and can potentially lead
ecient as standalone FPGA platforms, but replacing themto development of personalized diagnosis and treatments.
with faster and more power e cient SRAM can solve the Development of neural simulators such as NeuroFlow enables

problem. neuroscientists to study neural dynamics in high speed and
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