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Abstract—This paper introduces cycle-reconfigurable modules
that enhance FPGA architectures with efficient support for
dynamic data accesses: data accesses with accessed data size and
location known only at runtime. The proposed module adopts
new reconfiguration strategies based on dynamic FIFOs, dynamic
caches, and dynamic shared memories to significantly reduce
configuration generation and routing complexity. We develop
a prototype FPGA chip with the proposed cycle-reconfigurable
module in the SMIC 130-nm technology. The integrated module
takes less than the chip area of 39 CLBs, and reconfigures
thousands of runtime connections in 1.2 ns. Applications for large-
scale sorting, sparse matrix-vector multiplication, and Mem-
cached are developed. The proposed modules enable 1.4 and
11 times reduction in area-delay product compared with those
applications mapped to previous architectures and conventional
FPGAs.

I. INTRODUCTION

There have been many advances in FPGA technology which

make them effective for hardware acceleration. However,

current FPGAs have not been able to provide resource-efficient

acceleration for dynamic operations: operations with execution

states known only at runtime. For applications such as stencil

computation [1], execution state in each clock cycle is known

at design time, and thus the corresponding circuits can be

optimized. For applications with dynamic operations, such as

Memcached [2], sparse matrix [3], and large-scale sorting [4],

an operation has multiple possible execution states every cycle.

Designers need to implement extra resources to support all

possible execution states. For example, in Figure 1(a), the

accessed data position depends on runtime data column[j],
and the 32 data-paths read memory data in parallel. With

each memory port connected to a specific memory region,

a single data-path may connect to any of the memory ports

during runtime. Therefore, the 32 data-paths require a crossbar

with 1024-to-1024 connections (we assume the design uses

32-bit data). This medium-scale example cannot be routed in a

Virtex-6 SX475T FPGA, while recent sparse matrix designs [5]

contain 128 parallel data-paths.

The EURECA architecture [6] adopts a new reconfiguration

flow that generates configuration on-chip and reconfigures

connection network cycle by cycle to support all possible

runtime connections with linear area complexity. As shown

in Figure 1(b), a EURECA module is inserted between data-

paths and memory ports. A Configuration Generator (CG),

implemented in user logic, generates configurations based
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Fig. 1: An example application with dynamic data accesses, imple-
mented with (a) conventional FPGAs, and (b) EURECA architecture.

on runtime variable column[j]. In each cycle, the generated

runtime configurations update the connection network based on

the memory port each data-path is accessing. This significantly

reduces the resource usage to support parallel dynamic data

accesses.

The EURECA architecture uses conventional routing fabrics

to connect CG outputs to module configuration input, and

implements CGs with user logic. However, the solution shown

in Figure 1(b) is only required for the most complex runtime

scenarios: the data accesses from parallel data-paths are

independent of each other, and each address and data port needs

separate configurations. Using the same strategy to support all

applications with dynamic data-paths will bring large overhead

in resource usage and routing, since more configurations

need to be connected and routed to module input. This work

examines possible reconfiguration scenarios and proposes

novel reconfiguration features for each runtime scenario, to

address the shortcomings of the EURECA architecture. The

contributions include:

• Categorised runtime data access scenarios and novel

runtime reconfiguration strategies for each of the scenarios,

see Section III

• With the new strategies, architecture design space ex-

ploration to define an optimized cycle-reconfigurable

architecture, see Section IV.

• With the optimized architecture, circuits and implementa-

tion details for the cycle-reconfigurable modules to support

the new strategies, with a prototype 6.44 mm x 7.8 mm

chip developed in the SMIC 130-nm technology, see



Section V.

• Three benchmark applications targeting the prototype

chip, showing large improvements compared with appli-

cations mapped to FPGAs and EURECA architectures,

see Section VI.

II. RELATED WORK

Support for communication operations has been explored

in reconfigurable architectures. Coarse-grained architectures

such as Matrix [7], Tilera [8] and Ambric [9] implement

distributed general-purpose processors and dedicated com-

munication networks on-chip. General-purpose processors

can support dynamic data accesses, enabled by local caches

and global communication network. To coordinate multiple

processors, hardware designs executed on these architectures

need new programming models, and often cannot exploit

fine-grained parallelism in applications. For existing FPGA

architectures, previous work proposes memory abstractions

such as CoRAM [10], and optimization tools such as polyhedral

models [11], to improve data access efficiency. However, these

approaches are limited by the underlying hardware architectures,

and cannot efficiently support applications with dynamic data

accesses, such as the motivating example in Section I. In

contrast, this work enhances existing FPGA architectures with

cycle-reconfigurable modules, providing efficient support for

dynamic accesses while preserving fine-grained parallelism in

existing reconfigurable designs.

Since not all possible connections of dynamic accesses are

active at the same time, reconfigurable designs can use runtime

reconfiguration to only implement the active connections.

In [12], partial reconfiguration is applied to update a wide

crossbar by reusing the routing multiplexers. It takes 220 µs

to reconfigure a crossbar running at 150MHz. As discussed

in the motivating example, dynamic data accesses often

require reconfiguration within each clock cycle, so the 220 µs

reconfiguration time reduces the effective clock frequency to

4.5 KHz. DPGA [13] and time-multiplexed FPGAs [14] store

multiple configuration sets on-chip to reduce reconfiguration

time to a single clock cycle, at the expense of replicating

on-chip configuration memories. The 3D programmable archi-

tecture from Tabula [15] replicates the configuration of logic

blocks as well as interconnect. The replicated configuration

memories, however, introduce large area and power overhead.

The EURECA architecture [6] generates configurations on-chip,

demonstrating the potential to efficiently support dynamic data

accesses with small area overhead. However, the experiments

are based on simulation, and on-chip configuration requires a

large amount of user logic and routing fabric to process the

generated configuration cycle by cycle. In this work, we propose

new reconfiguration strategies to remove these limitations, and

derive optimized architecture organisation with a prototype

cycle-reconfigurable chip.

III. RECONFIGURATION STRATEGIES

In this section, we categorise data access operations based on

the changes in accessed locations during runtime, and propose

the corresponding reconfiguration strategies for each access

pattern.

A. Data Access Patterns

Data access patterns reflect the regularity of data access

operations. We express a data access operation as a mapping

from loop indices to memory locations. For the example

application in Figure 1, the vector and matrix data access

operations can be expressed as:

loop{i, j}− > accessSetvector{f(j)} (1)

loop{i, j}− > accessSetnonZero{j} (2)

Implemented in hardware, loop indices indicate clock cycles,

and the corresponding data access set contains the accessed data

location in each clock cycle. Within the same data access set,

the distance between two consecutive data access operations

indicates the stride value of this access set. In this work, as

shown in Figure 2, we use the stride value to divide data access

operations into four categories:

• Static: accesses with fixed strides.
• Dynamic size: linear accesses with variable vector size.
• Dynamic offset: vector access with dynamic offsets.
• Random: each access with a dynamic offset.
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Fig. 2: (a) static-access, (b) dynamic-size, (c) dynamic-offset, and (d)
random-access patterns.

Challenge 1: variable vector size. In each clock cycle, the

increase in accessed locations depends on runtime variables.

Figure 2(b) shows an example with dynamic-size patterns.

While data are accessed in streaming manner, due to the non-

deterministic data size, the mapping between memory ports and

data-paths becomes dynamic. During runtime, the challenges

include: (1) Data re-alignment. Runtime connections need to

be adapted to the dynamic mapping between memory ports

and data-paths. For the example in Figure 2(b) and Figure 3(1),

the data mapping changes in the second clock cycle. (2) Data

management. Accessing data with dynamic mapping and non-

deterministic size requires generating proper memory control

signals.

Challenge 2: dynamic offset. The accessed vector data have

an internal stride value of 1, with the starting address changing

randomly. Dynamic pointers typically have dynamic-offset

patterns, as shown in Figure 2(c) and Figure 3(2). Implemented

in hardware, the dynamic data accesses often span multiple
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Fig. 3: A CRM operates as (1) dynamic FIFOs, (2) dynamic caches, and (3) dynamic shared memories, in correspondence to data access
patterns (b), (c), (d) in Figure 2, respectively.

columns. Besides data re-alignment, the challenge to efficiently

support dynamic-offset patterns includes the mapping of input

address data.

Challenge 3: random accesses. In a data access set, each

data access operation depends on different runtime variables.

Therefore, the stride value of the data access set remains

unknown, as shown in Figure 2(d). For the dynamic-size

and dynamic-offset patterns, while runtime reconfiguration

is required to map the dynamic connections, the fixed stride

values ensure the parallel data access operations will not conflict

during runtime. However, for the random-access patterns, there

are possibilities that multiple data access operations point to

the same memory port with different addresses. This leads

to invalid hardware configurations during runtime. Supporting

the random-access patterns requires (1) providing independent

configurations for each access operations, and (2) resolving

runtime data access conflicts.

B. Runtime Reconfiguration Strategies

A Cycle-Reconfigurable Module (CRM) supports the dy-

namic data access scenarios with optimized reconfiguration

strategies. Previously, EURECA architecture relies on user

logic to support all different data access patterns. This increase

the design resource usage. Furthermore, since a large number of

configurations need to be updated during runtime, the routing

overhead to connect EURECA’s CG outputs and configuration

input of CRMs limits design scalability. In this work, we

enhance the CRMs to support a new runtime reconfiguration

strategy for each of the challenges listed above. This enables

applications to efficiently support dynamic data accesses while

minimizing resource usage and routing complexity.

Dynamic FIFOs support dynamic-size patterns. As shown

in Figure 3(1), memory blocks grouped with CRMs are

configured as FIFOs. To address Challenge 1, we add two

features in the CRM. (1) Reconfigurable connections inside the

CRM are pre-aligned such that vector access with fixed stride

value can be supported with the same runtime configuration,

instead of preparing configurations for each memory ports.

(2) Connections for FIFO enable signals are also runtime

reconfigurable, such that variable size of data can be fetched

from FIFOs every clock cycle.

We use the example in Figure 2(b) and 3(1) to demonstrate

the use case of dynamic FIFOs. For the example problem, in

the first cycle, data-paths read (dat[3], dat[4], dat[5]), which

start from the third FIFO memory ports. As the module

internal connections are pre-aligned, the runtime reconfiguration

value 2 is applied to all the reconfigurable connections. The

reconfigured connections resolve the data re-alignment issue

discussed above. In this example, (dat[3], dat[4], dat[5], dat[6])
appear at the CRM output ports, while FIFO outputs are

(dat[5], dat[6], dat[3], dat[4]). The enable signals share the

same reconfiguration. As shown in Figure 3(1), data-paths set

the enable signals to be (1, 1, 1, 0) as three data are read from

FIFOs. The same offset applies to the enable signals since the

read starts from the third memory ports. After reconfiguration,

the enable signals are properly mapped into the FIFOs.

Dynamic caches support dynamic-offset patterns. The

grouped memory blocks are configured as a shared memory

architecture, where each port accesses a certain region in

memory space. For dynamic-offset patterns, both starting

address and accessed data size could vary from cycle to cycle.

As shown in Figure 3(2), the replicated data-paths access

four data starting from dat[6]. The accessed data span the

second and the third columns of the shared memory. To address

Challenge 2, (1) the accessed data can use the same strategy

to be re-aligned. (2) To support more flexible data access,

address inputs need to be connected to the grouped memory

blocks, with each memory port connecting to one address input.

While runtime configurations are calculated as the modulo of

address offset, the address input is calculated as the depth in

each memory region. For example, the address for the first data

dat[6] is 2 (6/4). As shown in Figure 3(2), the CRM pre-aligns

the address connections similar to the data connections, and

share the same configuration at each cycle. Due to the one-cycle

delay between address input and data output, the configuration

is buffered internally to provide one-cycle delay in connection



reconfiguration. In this work, we limit the number of supported

memory ports to be powers of 2, such that the modulo and

division operations can be implemented as shifting operations.

Dynamic shared memories support random-access patterns.

With unknown stride value, each data access operation in a data

access set is independent, and needs to be supported separately.

To be consistent with dynamic FIFOs and dynamic caches, the

shared memories adapt pre-aligned connections. Figure 3(3)

shows the arrangement of data and address connections for a

shared memory. To address Challenge 3, we add two module

features. (1) Inside a CRM, we add control units to enable

configurations to be distributed from the same configuration

input, or updated in parallel from independent configuration

inputs. (2) Enable signals are added for address connection

blocks to prevent data access conflicts, which occur when two or

more data-paths try to access the same memory port. As shown

in Figure 3(3), the first and the forth data-paths try to access

the first memory port within the same cycle, with address 1
and 5 respectively. An access scheduler is implemented in user

logic to decide which address connection will be enabled, and

buffer the address inputs that are not enabled. We do not harden

this scheduler in the CRM so that various scheduling strategies

can be customized based on application requirements.

IV. ARCHITECTURE EXPLORATION

In this section, we explore the design space of a CRM,

including network implementation and memory group size,

where memory group size M defines the number of BRAMs

coupled with a CRM. For the examples in Figure 3, M = 4
and each BRAM has one data output port. In this work, we

use dual-port BRAMs. The explored results are verified with

application performance in the following section.

Connection network in a CRM includes runtime reconfig-

urable connections for data, address, and enable signals. In

hardware, this can be implemented with either multiplexers or

permutation network [16]. While multiplexers enable simple

reconfiguration strategies, permutation network leads to smaller

CRM area. Given a CRM with memory group size M , we

model the impact on CRM area, additional module pins to

input configurations, and CG complexity in Table I.

Multiplexer-based connections have O(M2) area complexity,

since the underlying multiplexers provide all possible connec-

tions in a single step. As a consequence, the runtime connec-

tions are highly regular, and can share runtime configurations

extensively as discussed above. This leads to O(Mlog2M)
complexity for the required additional configuration input pins

and CG logic. In Table I, log28M indicates the maximum

number of configuration bits required to define one runtime

connection.

Permutation network is an all-to-all network with multiple

layers. Each layer only needs to cover parts of possible runtime

connections. Given 8M -to-8M connections, a permutation net-

work requires 2log28M − 1 layers, with each layer containing

4M 2-to-2 selection units. This reduces area complexity to

O(Mlog2M). However, such multi-layer network makes it

difficult to share configurations among the selection units.

In order to generate runtime connections within a clock

cycle, we consider 8M -to-8M connections as logic input, and

configurations to each selection unit as logic output. This

leads to a CG complexity of O(M3). Figure 4 shows CRM

properties as memory group size increases. For a CRM based

on permutation network, its number of configuration pins and

CG area rapidly increase with M .
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Fig. 4: CRM properties as group size increases.

Memory group size determines the scale of a CRM and the

number of CRMs on chip, given a number of available BRAMs.

As the memory group size M increases, the CRM can support

higher data access parallelism, at the expense of increasing

CRM area and CG complexity. We define architecture efficiency

Rarc as the product of application area reduction and chip area

overhead.

Rarc =
Static

CRM + CG
·
Areaorg
Arearec

(3)

where area reduction Static
CRM+CG

refers to the ratio between

area usage of statically implementing dynamic accesses in

user logic and using CRMs, and
Areaorg

Arearec

accounts for the chip

area overhead for integrating CRMs. We measure Static with

Verilog designs describing all possible runtime connections,

and calculate CRM as the number of CLBs that consume

the same layout area. The CRM area is calculated based on

measured layout area (discussed in Section V) and area models

in Table I. Similarly, CG is calculated with measured CG

resource usage and area models in Table I.

The architecture efficiency, as shown in Figure 5, reaches

a maximum for memory group size 32. While area reduction

for dynamic accesses improves as group size increases, the

area overhead starts to have a large impact on static designs

that do not use CRMs. CRMs based on permutation network

cannot efficiently support dynamic accesses due to the large

CG complexity. Given sufficient on-chip resources, a cycle-

reconfigurable architecture contains multiple CRMs to support

(a) dynamic accesses to different arrays, and (b) dynamic

accesses that require more than 64 memory ports. These

CRMs can be connected to construct larger cycle-reconfigurable

memory architectures.



TABLE I: Modelled CRM properties with memory group size M . CG stands for Configuration Generator.

Topology area1 configuration pins2 CG complexity

runtime connection configuration memory controller

Multiplexer 2(8M · 8 · (8M − 1)) 7(log28M · 2M ) 28(log28M · 2M ) log28M · 2M + 2M 2M · log24M
Permutation 4((2log28M − 1) · 4M ) 7((2log28M − 1) · 4M ) 22((2log28M − 1) · 4M ) (2log28M − 1) · 4M + 2M (8M)3 · (log28M − 1/2)

1 We represent area with transistor count; a 2-to-1 multiplexer, an SRAM cell, and a register respectively consume 2, 7 and 22 transistors.
A multiplexer-based CRM needs additional 2-to-1 multiplexers to share configurations.
2 Configuration pins indicate the number of additional pins required to update connections cycle by cycle.
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V. IMPLEMENTATION AND PROTOTYPE

A CRM contains three major components: connection

network, configuration storage, and operation control. Given

the optimal architecture suggested by architecture exploration,

we present implementation details to support new strategies,

describe the prototype chip, and discuss the experience in

implementing the chip layout.
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Fig. 6: Byte-level and word-level connection network organisation.

Connection network integrates pre-aligned byte and word

connections to enable configurations to be better shared. As

shown in Figure 6, a word connection contains 4 byte connec-

tions, and each byte connection contains 8 N -to-1 multiplexers,

where N is the number of bytes in the incoming wires. For

the example CRM with 512 input wires, N = 64. To handle

dynamic accesses with stride value 1, every two consecutive

byte connections have a 1-byte offset, and thus two consecutive

word connections have a 1-word offset. In Figure 6, the input

wires for byte1 are aligned as < 8 : 511, 0 : 7 >. Therefore,

dynamic accesses with fixed stride value can be supported with

the same runtime configuration. For the examples in Figure 3(1)

and (2), memory ports (a, b, c, d) share the same configuration

value 2 to support dynamic data accesses starting from the

second memory port.
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word 3
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6T SRAM

CG<90:95>
CG<0:5>
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dyn

CG

Fig. 7: Array of SRAM cells. sh determines whether a single
configuration is shared in CRM, dyn select SRAM inputs from CGs
or initialisation ports, and WLCG control the write enable signals of
SRAM cells.

Configuration storage and operation mode control enable

CRMs to support different reconfiguration strategies. Figure 7

briefly shows the internal organisations of the SRAM cells and

associated control units. Compared with EURECA [6], our

enhanced design has three features: module-level configuration

sharing, data-address synchronisation, and improved connection

parallelism. (1) With the pre-aligned connection, for dynamic

FIFOs and dynamic caches, the whole CRM can share a single

reconfiguration to re-align data read with non-deterministic

starting addresses. The share selection signal sh determines

whether the configuration inputs for different word connections

are from the same ports or updated in parallel (to support

dynamic shared memories). (2) When grouped memory blocks

are not configured as FIFOs, it takes an extra cycle for

output data to appear at data ports. If configured in the same

cycle as address connections, data connections are updated

before accessed data appear at output ports. Inside a CRM,

configuration input for data connections can be selected from

direct input or registered input. The registered input is used to

cooperate with the 1-cycle delay. We discuss in more detail

in the execution timing part. (3) Given a memory group size

M with 2M 32-bit data ports, a CRM provides up to 8M
different input connections, with each 32-bit port considered

as four 1-byte ports. This provides high data parallelism for

applications involving byte-level data accesses, and enables

offset address to start at any of the 8M ports. Previously, such

parallelism can only be achieved with off-chip data, and a

memory group provides up to 2M connections, with each

BRAM port configured to be 1-byte in width. Furthermore,

with the pre-aligned connections, the improved parallelism



does not require additional configuration inputs.

Execution timing of a cycle-reconfigurable design includes

configuration generation, circuit reconfiguration, and data

processing. Figure 8 shows the timing diagram of a cycle-

reconfigurable design. At the beginning of a clock cycle, CGs

generate circuit configurations based on runtime variables, and

reconfigure the connections in CRMs. Once connections are

updated, data appearing at the memory ports of dynamic FIFOs

are read are read into data-paths. For dynamic caches and

dynamic shared memories, data-paths first input addresses, and

wait for data appear at memory ports. The data configuration

outputs are registered to align with the additional one cycle

delay. BRAMs connected to a CRMs can be configured to load

address at the rising edge or the falling edge of a clock. In cases

that one cycle delay is required (e.g. the CG inputs depend

on loaded data), we configure BRAMs to load addresses at

falling edges, as shown in Figure 8.

clk

reconfigure

{dat[6], [7],[8],[9]}

address (rising edge)

address (rising edge) {dat[6], [7],[8],[9]}

address (falling edge)

address (falling edge) {6,7,8,9}

CG

{6,7,8,9}

CG

address read

ReconRecon

data available

data available

address read

Fig. 8: Timing diagram of the runtime execution of a cycle-
reconfigurable design.

Prototype architecture. To evaluate the proposed features,

we develop a prototype FPGA integrated with a CRM, in the

SMIC 130-nm technology. Bounded by the tap-out budget,

the prototype chip array size is 17 x 32, with 17 and 32

respectively indicating 17 columns of on-chip resources, with

each column containing 32 CLBs Figure 9 shows the chip

layout, and Table II summarises the chip properties. Given the

32 column height and the BRAM height of 4, the group size

is bounded to be M = 8 with 16 32-bit output ports. With the

supported features and basic circuits integrated, the area usage

of a CRM mainly comes from the horizontal long wires that

connect output ports to connection network. As M increases,

the CRM area is proportional to M2 since both the number

and the length of horizontal wires double as M doubles. This

aligns with the area model in Table I. For M = 8, the module

width is 300 µm. In contrast, the width of a CLB is 250 µm,

and the width of a BRAM is 680 µm. In other words, the CRM

takes the same area as 38.4 CLBs (4.7% of the prototype chip

area). The measured delay for connection reconfiguration is

1.15 ns, which is small compared with the 20 ns to 50 ns chip

clock period. The prototype chip is under the tape-out process,

and the circuit delay properties used in the next section to

calculate critical-path delay are based on simulation results

from Cadence.

VI. CASE STUDIES

Experiment Methodology. We study the benefits of the

proposed architecture with three applications. We prepare

three designs and three corresponding architecture files for
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Fig. 9: Cycle-reconfigurable chip layout, with a column of CLB, CRM,
and BRAM group labelled.

TABLE II: Cycle-reconfigurable architecture properties.

baseline FPGA
CLB: 384 BRAM: 8
DSP: 24 array size: 32x17

architecture area
chip width: 6.44 mm chip height: 7.8 mm
CLB width: 250 µm BRAM width: 680 µm

CRM properties
width: 300 µm delay: 1.15 ns
group size: 8 additional pins: 82

each application. We present the application performance in

Table III, when mapped into the prototype chip with M = 8.

Static designs (static in Table III), with dynamic connec-

tions statically implemented in user logic, maps to baseline

FPGA architectures. EURECA designs (eureca Table III)

and dynamic designs (dynamic Table III) refer to cycle-

reconfigurable designs based on the EURECA architecture [6]

and the proposed architecture. The synthesis tool uses Design

Compiler (DC) for circuit synthesis, ABC [17] for mapping,

a graph matching algorithm for packing, simulated annealing

algorithm for placement, and path-finder [18] for routing.

Architecture files are modified to recognise a CRM as a hard

block connected to a BRAM column. We map the applications

into the prototype chip. For Memcached, due to its relatively

large application scale, the architecture array size is doubled

to accommodate the design blocks.

Large-Scale Sorting. Sorting large-scale data sets [4] often

uses sorting networks [19], [20] to sort small chunks of

data, and use mergers to combine the sorted small chunks.

Figure 10(a) shows a parallel merger that merges N data per

iteration from sorted arrays A and B. We assume ascending

order in the sorting algorithm. At each iteration, the algorithm

reads the N smallest data from both arrays, and commits the

N smallest data (in this example, 1, 3 from A and 2, 3 from

B). Therefore, the starting address of read accesses in the next

iteration depends on the number of committed data in the



TABLE III: Benchmark application performance.

Large-scale Sorting Memcached SpMV
static eureca [6] dynamic static eureca [6] dynamic static eureca [6] dynamic

slices (total) 8676 1174 1054 11763 3082 2684 3549 900 876

slices (CG) 0 126 6 0 31 8 0 43 19

DSP 0 0 0 0 0 0 16 16 16

BRAM 16 16 16 8 8 8 8 8 8

CRM 0 1 1 0 1 1 0 1 1

critical-path delay (ns) 25.72 23.87 18.9 60.4 60.0 52.1 15.1 14.9 13.9

area1 8.23x 1.1x 1x 4.38x 1.15x 1x 4.05x 1.03x 1x

CG area1 n/a 21x 1x n/a 3.9x 1x n/a 2.26x 1x

area-delay product 11.2x 1.39x 1x 5.08x 1.32x 1x 4.4x 1.1x 1x

throughput (per cycle) 16 sorted data 64 bytes 16 partial results
1 We compare the resource usage with the number of used CLBs. A CLB contains 4 slices, and a CRM is considered as 38.4
CLBs based on layout area.
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Fig. 10: Cycle-reconfigurable designs for (a) large-scale sorting (dynamic FIFO), (b) Memcached (dynamic cache), and (c) SpMV (dynamic
shared memory).

current iteration, and changes from time to time. In previous

designs [4], N is limited to 1 or 2 due to non-deterministic

starting addresses.

We support dynamic accesses in large-scale sorting with

two CRMs implemented as dynamic FIFOs. As shown in

Figure 10(a), each CRM shares a single configuration for all

enable inputs and data outputs. In each cycle, up to 16 data

can be committed in parallel. In each clock cycle, the CG

takes the number of committed data and the starting address

in the current cycle to calculate the starting address for the

next cycle, and generates runtime configurations based on

the calculated starting address. The proposed reconfiguration

strategy significantly reduces the CG complexity. As shown in

Table III, the CG area is reduced by 21 times. Furthermore,

since fewer configurations need to be routed to a CRM, the

critical path delay is reduced. The dynamic sorting design

achieves 1.39 times improvement compared with the EURECA

design, and 11.2 times improvement compared with the static

design, in terms of area-delay product. In practice, the dynamic

FIFOs can efficiently support streaming database applications,

especially in-memory database applications.

Memcached is a distributed memory caching system widely

used in the servers of web service companies (Facebook,

Twitter, YouTube, Wikipedia, etc.). A Memcached server stores

frequently accessed data in memory to provide quick responses

to web requests. Memcached uses hash tables to index stored

data. Once receiving a new packet, Memcached hashes the key

in the packet, and use the generated hash value to search for

a match in stored data. As shown in Figure 10(b), the search

process iterates through all linked hash entries until a match

is found. In each search, the starting address depends on the

hash value or the fetched next entry address, and the matching

operations check the fetched key value and key length.

We support dynamic accesses in Memcached with a CRM

implemented as a dynamic cache. As shown in Figure 10(b),

a memory group buffers loaded off-chip data. As the search

module loads a hash entry, the CG takes the address of the

linked next hash entry to generate runtime configurations.

Operating as a dynamic cache, the runtime data and address

connections in a CRM all share the same runtime reconfig-

uration. For the prototype chip with M = 8, a Memcached

design can fetch up to 64 bytes of data per clock cycle, and

iterates through the search operations with dynamic pointers

with the efficiency of hardware and the flexibility of memory

management. The dynamic design reduces the application

area-delay product by 1.32 and 5.08 times, compared with

EURECA and static designs. Besides Memcached, applications

that use hash tables can benefit from the proposed architecture.

For example, a Gzip design [21] loads hash table data in

parallel to compress more than one datum per clock cycle,

with dynamic connections between hash tables and parallel

data-paths statically implemented. Applying the dynamic cache



will significantly reduce design area.

Sparse Matrix-Vector Multiplication. Sparse Matrix-

Vector multiplication (SpMV) is widely used in scientific

computing and industrial development. SpMV multiplies a

sparse matrix with a dense vector. In this work, we store

the non-zeros of the sparse matrix in Compressed Sparse

Row (CSR) format. As shown in Figure 10(c), the CSR data

contain three vectors: non-zeros nonZero, position of non-

zeros column, and vector data vector. In the multiplication

process, SpMV multiplies nonZero[j] with corresponding

vector[column[j]]. To avoid the M2 area complexity

discussed in the motivating example, conventional SpMV

architectures [3] replicate vector memories. This limits the

size of vector data can be stored on-chip, and leads to idles

cycles for matrix with low sparsity. In [3], the idle cycles

reduce the average efficiency to 42%.

We support dynamic accesses in SpMV with a CRM

implemented as a dynamic shared memory. As shown in

Figure 10(c), we implement a conflict scheduler to resolve

data accesses that point to the same memory port at the same

clock cycle. The scheduler buffers conflicted data accesses,

and enables the access with pre-defined priority order. Each

data-path has a separate CG to generate configurations for the

address input and data output of a memory port, based on

vector data address column[j]. The access conflict rate,

simulated with 10 sparse matrices from [22], reduces to

15% when M = 32. As N increases, the memory conflict

ratio will further decrease. Inside a CRM, the configurations

for data connections are buffered to align the 1-cycle delay

between address input and data output. For dynamic shared

memory, since configurations cannot be shared, the resource

saving compared with EURECA designs comes from shared

configurations between data and address connections, and

simplified enable signal distribution. As shown in Table III, the

dynamic design reduces area-delay product by 1.1 to 4.4 times,

compared with EURECA and static designs. The dynamic

shared memory can benefit applications with indirect data

accesses, such as graph problems.

VII. DISCUSSION AND CONCLUSION

This work presents the first prototype chip for cycle-

reconfigurable architectures that generate configurations on-

chip with user logic. We propose new runtime reconfiguration

strategies to minimize the logic and the routing complexity to

generate and apply runtime configurations on-chip, and explore

the design space of a cycle-reconfigurable architecture to derive

the optimal architecture organisation. Experimental results show

integrating cycle-reconfigurable module brings small overhead

in chip area (the area of 1.2 columns of CLBs). For applications

with dynamic data accesses, the prototype chip targeting the

benchmark applications achieves up to 1.4 and 11.2 times

reduction in application area-delay product, compared with

applications mapped to EURECA architectures and baseline

FPGA architectures respectively. Current and future work

includes developing tools to automatically detect categorised

data access scenarios and generate optimized designs, and

exploring cycle-reconfigurable on-chip network to connect

CRMs.
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