
Int. J. Signal and Imaging Systems Engineering, Vol. x, No. x, 1

An Automated Framework for General-Purpose
Genetic Algorithms on FPGAs

Abstract:
FPGA-based Genetic Algorithms (GAs) can effectively optimise complex applications,

but require extensive hardware architecture customisation. To promote these accelerated
GAs to potential users without hardware design experience, this paper proposes an
automated framework for creating and executing a general-purpose GA system on
FPGAs. This framework is a scalable and customisable hardware architecture while
providing a unified platform for different chromosomes. At compile-time, only a high-
level input of the target application needs to be provided, without any hardware-specific
code being necessary. At run-time, application inputs and GA parameters can be tuned,
without time-consuming recompilation, for further good GA executions configuration to
be found. The framework was tested on a high performance FPGA platform using six
problems and benchmarks, including the Travelling Salesman problem, a locating problem
and the NP-hard set covering problem. Experiments show the system’s flexibility as well
as an average speed-up of 29 times compared to a multi-core CPU.

Keywords: Genetic Algorithms; FPGA; Automated Framework.

1 Introduction

Genetic algorithms (GAs) are a common population-
based generic meta-heuristic in artificial intelligence.
These algorithms generate solutions to problems
using bio-inspired techniques, including reproduction,
selection, crossover and mutation, all of those which
are similar to natural evolution. Genetic algorithms
are effective in the optimisation problems where other
methods experience difficulties, including combinatorial
optimisation and real-valued parameter estimation.

With the increasing requirement for high-
performance computing and low-energy consumption,
genetic algorithms need to be accelerated or adapted
in embedded systems. For example, complex problems
often require a GA to evolve many generations to
produce a satisfactory solution, meaning CPU-based
GAs are often too slow to handle those problems. In
addition, real-time applications also require GAs to
produce solutions with low latency (31).

In order to accelerate GAs, researchers have adapted
them to hardware, such as field programmable gate
arrays (FPGAs) (3) and graphics processing units
(GPUs) (34). GPUs involve a massive parallel processing
elements and are suitable for the algorithms with high
parallelism. FPGAs take advantages of flexibility of
software and high-performance of hardware, becoming
a promising platform for acceleration. The existing
hardware-based GA systems are faster than CPU-
based GAs in solving many real-world applications and
benchmarks. In particular, FPGA-based GA systems are
commonly used due to their flexibility (6).

Most existing hardware GA systems are written
in low-level hardware description languages such as
VHDL and Verilog which require an in-depth knowledge
of FPGA architecture and hardware programming.

Another issue present in the current state-of-the-art
tools is that most existing FPGA-based GA systems only
support one type of chromosome, either binary, real-
valued or permutation, which limits their applicability.
To address these issues, this paper proposes an
automated unified framework to create and execute GA
systems on FPGAs, with the following contributions:

• A framework which could create and execute
general-purpose GA systems on FPGAs: based
on the user-defined high-level description and
hardware template, the framework automatically
generates the whole system.

• A novel FPGA-based GA architecture: the design
is both scalable and customisable, supporting
binary, real-valued and permutation chromosomes,
and also enabling a user to change the parallelism
of the architecture.

• A run-time tuning framework: GA parameters and
application inputs are changeable without time-
consuming recompilation, thus a user can freely
tune GA parameters to find good configuration for
future executions.

We qualitatively compare our work with existing
FPGA-based systems, showing improved flexibility
in hardware architecture and functionality in run-
time tuning, as well as increased ability to support
complex applications. We also quantitatively compare
the accelerated FPGA framework with a multi-core
CPU and a third party GPU, including all I/O and
initialisation costs, showing an average speed-up of 29
times over the CPU and 5 times over the GPU system.
We find the same solutions for six different applications
and benchmarks.

Copyright c© 2008 Inderscience Enterprises Ltd.

Copyright c© 2009 Inderscience Enterprises Ltd.

2

The arrangement of the paper is as follows:
section 2 describes the background and related work;
section 3 presents the proposed work of automated
framework; section 4 demonstrates the user inputs
for the framework; section 5 compares our work
with previous FPGA-based systems quantitatively; and
section 6 presents the experimental results of our work.

2 Background and Related Work

2.1 Genetic Algorithms

Genetic algorithms (GAs) are increasingly popular
search-based algorithms which emulate the natural
evaluation process making use of three genetic operators
(selection, crossover and mutation) which follow the
principles first laid down by Charles Darwin of “survival
of the fittest”. While being randomised, GAs are not
behaving in a random manner, but they make great
use of historical information in order to generate better
performance within the search space.

Genetic algorithms are used in solving many different
complex problems. During recent research, it has been
shown that in searching a large state-space or an
n-dimensional surface, this heuristic technique may
offer significant benefits over more typical search of
optimisation techniques such as: depth-first/breath-first
search or linear programming.

The genetic algorithm is based on iteratively
updating a collection of individuals, called the
population. During each iteration, all of the current
population members are evaluated according to the
selected fitness function.

A new population is being created by probabilistically
selecting the best performing individuals from the
current population. Those best performing individuals
are then forming the basis for creating new offspring
individuals by applying a number of different genetic
operations, such as crossover, mutation, reproduction,
on them. The individuals to be included in the new
generation are being selected probabilistically and this
can be done in a number of different ways. For example,
the probability for an individual to be selected can be
proportional to its own fitness while in the same time
being inversely proportional to the other individuals’
fitness from the current population.

Once the best performing individuals have been
selected to be included in the next generation, additional
members are generated using a crossover operation (this
operation takes two parents, again using a probabilistic
approach, from the current generation and creates two
offspring individuals by recombining portions of both
parents). At this point, some members are chosen
and random mutations are performed on them, thus
obtaining new altered individuals. Also, some of the best
performing individuals are being selected to be cloned
(a copy of them is being added in the next generation),
again with a given probability.

Once the new generation has been created it is
then becoming the new population which will go
through the same process again (its individuals are
evaluated, selected for the offspring and a new generation
is being generated) until satisfying a termination
condition, for example reaching maximal generation
number (gen max), or finding acceptable solutions.

The code for a typical genetic algorithm is the
following:

Algorithm 1 : A t y p i c a l g e n e t i c a lgor i thm

Input : random seed //random nunmber seed
gen max //maximum g e n e r a t i o
n i //number o f i n d i v i d u a l s

1 . gen n = 0 //The number o f g ene ra t i on s
2 . whi l e (gen n < gen max)

// evo lu t i on s t a r t s
3 . f o r each i in [0 n i) begin
4 . oldpop [i] = (gen n == 0)?

i n i t [i] : newpop [i]
// i n i t i a l or new populat ion

5 . f i t n e s s [i] = eva luate (oldpop [i])
// f i t n e s s eva lua t i on

7 . end
8 . f o r each i in [0 , (n i /2)) begin
9 . s e l e c t (oldpop , oldtwo , f i t n e s s)

// s e l e c t ’ parents ’ i n to oldtwo
10 . c r o s s o v e r (oldtwo)

// exchange in fo ramt ion
11 . f o r each j in [0 , 2) begin
12 . mutation (oldtwo [j])

// in t roduce d i v e r s i t y
13 . newpop [2∗ i + j] = oldtwo [j]

// s t o r e the o f f s p r i n g s
14 . end
15 . end
16 . gen n ++ // ente r next gene ra t i on
17 . end

The data flow of the typical genetic algorithm is
presented in Fig 1. When applying a genetic algorithm
to a specific problem, a user should first design the
structure of chromosomes and define a fitness evaluation
function for the solution domain. The chromosome is
often represented in a binary encoding format (a vector
of bits), with the evaluation function re-interpreting
sub-sequences of the binary chromosome as booleans,
permutations, integers, or real components. Except
for the problem-dependent parts (chromosome and
evaluation function), the other parts in a typical GA
such as genetic operators, are problem-independent.
Therefore, it is possible to build a general-purpose
library, which can offer various methods of genetic
operators for different types of chromosomes.

The generational GAs work as follows: First, a
population of individuals is randomly generated, so
that each of those individuals can then be evaluated
using a problem-specific fitness function (this step

An Automated Framework for General-Purpose Genetic Algorithms on FPGAs 3

1 0 0 1 0

1.5 0.8 1.1

or

Crossover

Mutation

Selection

20 10 30 9

Fitness
Evaluation

Figure 1 Data Flow of a Typical Genetic Algorithm

involves assigning fitness values to all individuals
present in the population in a current time). Next, the
genetic operators (crossover, mutation and selection)
are performed in order to produce a new generation of
individuals (offspring). After offspring are produced, the
new generation will replace the previous generation and
the above steps are then repeated. The algorithms then
stops when a convergence criterion is met.

2.2 Reconfigurable Computing

Many applications require high performance, and
the current solutions come from Microprocessors,
application-specific integrated circuites (ASICs) and
FPGAs. Application-specific integrated circuits (ASICs)
are customised based on a specific application for
high performance, but they are inflexible after
manufacture. Microprocessors provide high flexibility
but the performance is limited because of the fetch-
decode-execute process. FPGAs combine the flexibility
of microprocessors and efficiency of ASICs. The FPGAs
contain logic gates and small random-access memories.
The platform can be configured many times for specific
applications during the compilation process, including
synthesis, map, place and route.

FPGA systems also have drawbacks and challenges.
Unlike software, the compilation process is time
consuming and often takes hours to finish, so it is
not practical to frequently modify hardware designs.
The programmability in FPGAs is also not easy, as all
algorithms need to be written in a low-level hardware
description language (HDL) such as VHDL or Verilog.
The HDL programs are based on the registers and

logic gates. Recently, high-level compilation tools are
proposed to reduce the programming effort (18). Even
with these tools, it is still difficult for a non-expert user to
create fast and efficient FPGA systems. However, these
tools can provide a good intermediate-level target for
customisable frameworks, such as our GA system.

2.3 Previous hardware-based GAs

With the increasing demand for GA performance,
researchers use hardware platforms such as FPGAs and
GPUs to accelerate the evolution process. For example,
a generational GPU-based GA system combined with
local search for the maximum satisfiability (MAX-SAT)
problem is proposed in (34). Pedemonte et al. propose
a non-generational GA system called systolic genetic
search, which places the genetic operators into a fixed
array (35). The individuals in the system go through
the network in a fixed way, thus the systems may
not be suitable for all the problems. While GPU-based
GA systems can be faster than software, there is a
large communication and synchronisation cost between
processing elements, and existing work is limited to a
restricted set of problems.

FPGAs are thus a promising platform to improve
performance. Existing FPGA-based GA systems are
effective in real-time applications (22; 23; 20; 27; 7; 6; 3;
31). There are two types of FPGA-based GA systems:
the application-specific ones tailored to one specific
application, with fixed chromosomes and specific genetic
operators and the general-purpose ones supporting a
wide range of chromosomes and genetic operators for
different applications. For example, a GA system for
the set covering problem is demonstrated in (20),
with problem-specific settings. The general-purpose GA
systems are the focus of this paper, we describe some
examples below.

The first FPGA-based GA system HGA was proposed
in 1995 (3) and its design is based on a typical GA.
The system has a small speedup over the CPU-based
GA work. A general-purpose GA engine is demonstrated
in (6), it has speed-ups of 5 times over CPU for
several GA benchmarks with binary chromosomes. The
work supports a limited number of run-time changeable
parameters, and has a general-purpose engine which
could be embedded in other systems. However, the
tuning of parameters needs hardware experience and
performance is limited. We summarise the features of
these previous work in the first 7 rows of Table 2.
However, these previous FPGA-based systems suffer
from one or more limitations:

1. The FPGA-based GA systems require a user to
have significant hardware architecture knowledge
before applying them to an application;

2. The systems support only one type of chromosome,
binary, real-valued or permutation, which is not
suitable for different applications;

4

3. It is hard to tune the structure and resource usage,
even for an expert, as most of the architecture is
fixed;

4. Modifying either GA parameters or
application parameters requires time-consuming
recompilation, which usually needs many hours to
complete.

To address these issues, we propose an automated
unified framework for creating and executing FPGA-
based general-purpose GA systems, with run-time
parameters and compile-time architecture parameters.

3 Automated Framework for General-
Purpose GAs

Genetic algorithms have the potential to process
information faster on the FPGAs than CPUs, but the
existing FPGA GA systems do not well support all the
features of the algorithm. We develop the automated
framework under the following considerations:

1. GA is slow for complex problems, as it needs
many generation to produce good solutions. High
performance is the first requirement for the system.

2. Genetic algorithm is a non-deterministic algorithm
with various parameters. Frequent tuning of
parameters should be not time-consuming in order
to find a proper configuration in a short time.

3. The FPGA is a platform demanding a deep
hardware knowledge, which is a barrier for software
users. Easy customisation for the hardware is
helpful to non-export users.

4. The resources in hardware are limited, thus the
customisation of the architecture being necessary
in order to make it possible to fit the complex
problems in the platform.

Most existing work meets the first requirement, while
our proposed work builds on all considerations. In our
framework, a general-purpose GA architecture combines
with high-level user-defined chromosome and fitness
function. The framework then produces a custom GA
system which can be executed in hardware, providing
high performance while retaining functional flexibility.
A user without hardware design experience can easily
create an FPGA-based GA for an application with
pre-defined chromosomes while changing both GA
and application parameters at run-time without time-
consuming recompilation.

3.1 Automated Framework

Figure. 2 provides an overview of the proposed
automated framework, showing compile-time inputs
with software on the left, and run-time inputs with

Hardware
Generator

Library

Compile-
time Inputs

Run-time
Inputs

HLS

Software
Generator

B
R

A
M

Host Software
Hardware

Figure 2 Automated Framework

hardware on the right. The compile-time inputs control
the scale of architecture in the hardware, while the run-
time inputs carry the application and GA parameters.

The framework requires no hardware programming
from users, who only need to provide the high-level
inputs for application (App.) and GA.

The customisation engine, written in Python,
automatically combines them and a number of existing
templates into the following:

• Hardware code with the compile-time parameters;

• Software code with the run-time parameters.

In the hardware generation process, a high-level
compilation tool Maxcompiler compiles the hardware
code to low-level implementation. At run-time, the
software transfers GA and application parameters to
FPGAs, via input streams and on-chip memories. In this
way all the requirements are met.

In the following sections, we will first describe the
architecture of custom GA, and then demonstrate the
reports of framework.

3.2 Custom GA

Our framework provides a scalable hardware architecture
for FPGA-based GA systems improved from (20),
which is referred to as a “custom GA” in this
paper. Each custom GA contains all the hardware and
configuration data in order to solve instances specific to
a user’s problem. Once compiled, the custom GA can
repeatedly execute with different application parameters
without time-consuming recompilation, and allows GA
parameters, such as crossover rate, mutation rate and
random seed, to be varied during execution.

Our custom GA is functionally flexible and scalable,
allowing the user to customise the architecture for
hardware resource constraints. In the custom GA,
the steps of a typical GA are converted into

An Automated Framework for General-Purpose Genetic Algorithms on FPGAs 5

B
R

A
M

B
R

A
M

Setup()

Run()

Recv()

Initilisation

Evolution

Setup()

Run()

Recv()

Figure 3 Custom GA

hardware functional units, which are then pipelined and
parallelised.

The dataflow of a custom GA is shown in Fig. 3,
labelled by the parameters described in Table 1.

3.2.1 Chromosome Configuration

To create a custom GA for a new application, a user
needs to define the chromosome as an individual in one
population, which can be constructed in many different
forms for various applications, such as: integers, floating-
point representations or bit-strings.

Unlike the previous FPGA-based systems supporting
only one type of chromosomes, our custom GA
system supports different kinds of chromosomes. The
chromosome can be configured as a set of booleans,
permutations, integers or real components. Although we
could use a fixed point to represent a floating point
parameter, it might be more natural to use a floating-
point encoding. Our custom GA provides different
genetic operators for the selected chromosome type.

3.2.2 Population Initialisation

The initial population represents the start of the
evolutionary points in a genetic algorithm, as it may need
many generations to produce high fitness individuals
from low fitness ones. In our custom GA, there are two
approaches to generate the initial population:

1. We can use random numbers, which means the
initial fitness depends on the random seeds;

2. We can load a population previously generated by
heuristics on a CPU, which is likely to mean a
higher starting fitness.

The custom GA receives the initial population via
on-chip RAM before execution begins.

3.2.3 Fitness Evaluation

The evaluation unit returns a fitness value for an
individual which guides the exploring processes. In the
custom GA, there are parallel evaluation units to reduce
execution time. To simplify the hardware design effort,
the fitness function is written in a high-level description
language according to simple rules, described in section
4. Section 6 also gives some working examples for
different functions.

3.2.4 Selection, Crossover and Mutation (SCM)

Selection, crossover and mutation units present in a
custom GA link together into a SCM unit due to
their close data coupling, making it easier to instantiate
replicas for spatial parallelism. Our automated platform
provides an extensive library containing different
methods of selection, crossover and mutation, allowing a
user to customise them for a specific application.

As shown in Table 1, a user can choose the selection
method from random, roulette wheel or tournament
selection. For binary chromosomes, a user can select one-
point or multi-point crossover to combine different parts
from parents, and then choose binary mutation inverting
bits in a chromosome. For real-valued chromosomes, a
user can select blending method, which generates a new
value based on a linear mixture of two parents (29), and
use real-valued mutation to generate a random value in
the range of variables. For the permutation chromosome,
a user can apply a permutation crossover and an swap
mutation, which ensures to generate correct individuals.

It is usually necessary to tune crossover and mutation
rates for high convergence speed, but in most previous
FPGA-based GAs the adjustment requires hardware
modification and recompilation, which takes many hours
to complete. In contrast, our framework allows users to
modify these rates at run-time without recompilation
(see the examples in section 6).

3.2.5 Random Number Generator (RNG)

The Random Number Generator (RNG) plays an
important role in many steps, including initial
population generation, selection, crossover and mutation
operations. Therefore, the quality of random numbers
may affect the convergence of the algorithm.

There are two types of RNG: “True” random numbers
generator (TRNG) which uses a non-deterministic source
such as clock jitter in digital circuits; and a Pseudo-
random number generator (PRNG), which uses a
deterministic algorithm to generate random numbers.

It is common to use a PRNG on FPGA-based genetic
algorithms as it is faster and smaller than a TRNG
(6). Ref. (28) defines a combined Tausworthe generator,
which provides a simple but effective way to generate
pseudo-random numbers on the FPGAs. The random
seeds can be configured by users at run-time, to explore
different number sequences dynamically.

6

Table 1 The Parameters of User Input

Architecture Parameters GA Parameters

Ne number of evaluation units Ng maximal generation
Ns number of SCM units Ru mutation rate
Mc crossover method: “one-point”,“multi-point”, Rc crossover rate

“blending”,“permutation” Rs random seed
Ms selection method: “roulette wheel”, “random” Ip initial population

“tournament” Np population size
Mu mutation method: “bit-flip”,“constraint”,“swap”

3.2.6 SCM Parallelism in Custom GA

Parallelism in architecture reduces the execution time
of GAs. As shown in Fig. 3, the number of parallel
evaluation units is controlled by NE , while that of
parallel SCM units is changed by NS . A user can adjust
the amount of parallelism by simply modifying the
two parameters in the input, and the framework will
automatically compile them to an appropriate hardware
design.

In Fig. 3, Np is the population size. If all the
individuals in a population are evaluated in the cycle
after filling the pipelines, there will be NE = Np parallel
evaluation instances. The feedback latency will be L =
LE + LS , which is labelled on the left of Fig. 3. In this
case, the resource usage will be very large when Np is
large. To solve this problem, we allow evaluation units
to process a population over n cycles after filling the
pipeline. Therefore, NE is reduced to Np/n, and the
feedback latency for one generation will be L′ = LE +
LS + n− 1, which slightly decreases the performance if
(n− 1) is far smaller than LE + LS .

In the same way, we can also adjust NS to balance
the resource usage of SCM units with performance. By
tuning NE and NS according to the complexity of the
evaluation and SCM units, our platform can support
complex applications. An example in section 6 shows how
this flexibility affects resources and performance.

3.3 Hardware Construction

The hardware implementation is different with software
systems and in this section we show the hardware
construction of random selection, one-point crossover
and exchange mutation.

The random selection is a simple selection method.
First the random number generator produces a random
number, and slices the first logIP2 bits to generate a
selection signal. We use the signal as the access address
of the individual pool, as shown in Fig. 4.

In the one-point crossover, we cut one part of a
chromosome and combine it with the remaining part of
the other chromosome. On hardware, we use a bit-vector
as the mask for the recombination, as shown in Fig. 5.

In the swap mutation, we exchange the two items
containing different positions in a chromosome. On
hardware, we use two bit-vectors as the masks, and do

I0[0] I0[1] I0[Ip-1]…...

RNG2I0[0] I0[1] I0[Ip-1]…...

I0[0] I0[1] I0[Ip-1]…...

I0[0] I0[1] I0[Ip-1]…...

…
...

Figure 4 Hardware Construction of Random Selection

& &

0..0 1..1 1..1…...I0[0] I0[1] I0[Ip-1]…... I1[0] I1[1] I1[Ip-1]…...

1..1 1..1 1..1…...

>> RNG2

& &

|

|

Figure 5 Hardware Construction of One-point Crossover

the logic computation for the exchange, as shown in Fig.
6.

3.4 Compilation and Execution Reports

The framework produces two reports automatically
during the compilation and execution stages.

The compilation report presents the results of
hardware implementation to the user, such as overall
resource usages, clock frequency and any errors. Errors
may be related to the syntax of the input specification,
or due to resource exhaustion. Based on the report, the
user can decide whether to change NE or NS , depending
on whether there are any free resources.

During execution, the FPGA platform outputs the
best fitness and solutions found over an FPGA-to-CPU
stream, making the current best solution immediately
available to the user. The execution report shows

An Automated Framework for General-Purpose Genetic Algorithms on FPGAs 7

& &

Ind[0] Ind[1] Ind[Ip]…...0 1...1 0…... 0 0 1..1…...

1..1 0 0…...

>> >>RNG 2 RNGNp - 1

& >> << &

| |

|

Figure 6 Hardware Construction of Swap Mutation

how different configurations and parameters affect
performance. It is essentially the “answer” to the
problem the user wants to solve, and also contains
information suggesting the best configuration for future
executions of the problems with different parameters. It
is useful when solving a series of problems.

4 User defined Input

To promote the framework to non-expert users, we
only require the users to provide specifications and
parameters for their applications and genetic algorithm,
as shown in Table 1. They are represented in a high-level
domain specific language, which uses a sub-set of C. We
describe the compile-time and run-time inputs in this
section, and present examples in section 6.

4.1 Compile-time Inputs

The compile-time inputs contain two parts, namely
application description and architecture parameters.

4.1.1 Application Description

There exists two compile-time sections in the application
description:

• CHROMOSOME which contains the names
and types of the data elements making up an
chromosome. This section is declarative, describing
data structures.

• FITNESS, which describes the fitness function
used to evaluate individuals. This section contains
imperative code, which uses input parameters and
a chromosomes to calculate a fitness value.

The fitness function uses a sub-set of C which
is then automatically compiled into a hardware
implementation. The fitness function could contain all
standard arithmetic operators (add,mul, etc.) as well
as mathematical functions such as sin, log and exp.

All components of the chromosome and application
parameters are available as implicitly declared variables,
which can be read either directly or as array look-ups,
depending on their types.

A user can declare additional temporary variables
within the fitness function of any type, and convert
expressions between types, for example from fixed-
point (int/uint) to floating-point (float/double). A user
also can also customise the width of an integer for
optimisation, for example, uint8 means unsigned 8-bit
width integer.

The fitness function can contain multiple statements,
which are executed sequentially. The statements can
be simple assignment, if-else, or for-loops. Due to the
underlying compilation strategy, we require that for-
loop bounds are statically determined, so that they
can later be converted into a streaming representation.
These restrictions mean that certain behaviour cannot
be expressed, but we show in section 6 that they can be
used to capture various common problems.

4.1.2 Architecture Parameters

Our framework supports five compile-time parameters
for the custom GA. At compile-time, the user can
balance the resource usage of evaluation and SCM
units, by changing NE and NS . Those architecture
parameters can make the system easier to fit different
scale problems. For the methods of selection, crossover
and mutation, Ms, Mc and Mm can be configured for
binary, permutation or real-valued chromosomes.

4.2 Run-time Inputs

Run-time inputs make it possible to change the GA
system quickly without long-time recompilation. There
are also two parts in run-time inputs, one are application
parameters, the other are GA parameters.

4.3 Application Parameters

Most applications have input parameters passed to the
fitness function, which represents a specific instance of
the problem, but in the previous FPGA-based GAs, a
user has to recompile the design to change any of them.
To save the long compilation time, our single custom
GA can support all input problems for an application by
changing the APP PARAM section at run-time.

4.3.1 GA Parameters

As seen from Table 1, we have six run-time parameters
for the GA. At run-time, Ng controls the number of
generations generated, while Np controls the size of one
population.

The framework can also try multiple combinations of
run-time parameters, for example trying a list of Rc and
Rm to maximise the convergence rate. Changing Ip is
also useful if a good prior population exists. These GA
parameters can help a user find a good configuration for

8

a type of application, and they all have sensible default
values if a user does not specify them.

5 Qualitative Comparison

We compare the features of previous FPGA-based GAs
to our framework in Table 2 (6). Our custom GA is more
flexible and easier to use than other FPGA-based GA
systems, with the following advantages:

1. Our framework provides a unified platform for
binary, permutation, and real-valued chromosomes
with a flexible structure. The selection, crossover
and mutation methods (Ms,Mc,Mm) can be
changed for different kinds of problems. There
exists six parameters changeable at run-time,
including crossover and mutation rates (Rc, Rm),
the population size(Np), generation number (Ng),
the random seed (Rs), in particular application
parameters and initial population (Ip), which
are supported only in our platform. Specifically,
the changeable application parameters make it
possible to execute different inputs for an
application without recompilation. Some platforms
also support several run-time parameters, but
require the user to have hardware knowledge to
change them (6; 31).

2. The framework allows a user to decide the number
of parallel evaluation (NE) and SCM units (NS)
at a high level to balance the resource usage with
performance, without any manual modification
of hardware code. Furthermore, as described
in subsection 3.2.6, the customisable parallelism
makes it possible to support complex applications.

3. The chromosome and the fitness function of a new
application are defined in a high level description
language, making it easy for a user to apply
our custom GA, without writing any low-level
hardware code such as VHDL or Verilog.

6 Experiments

The proposed general purpose framework can deal
with many problems. In our case, we choose just a
number of applications, including the locating problem,
maximum satisfiability problem, travelling saleman
problem, and six standard benchmarks to prove our
system’s functionality and behaviour.

We select an FPGA-based acceleration
platform containing Virtex 6-SX475T for hardware
implementation (18). We compare our FPGA-based
system with software and GPU-based solutions
quantitatively. We implement software counterparts
based on a third-party GA (25) on an 2.67GHz Dual
Intel Xeon X5650 CPU system, which has 12 physical
cores and 24 threads in total. The number of threads

used is optimised based on the communication cost. The
CPU code is well tuned with multi-threading techniques
including Pthread and SIMD, and the code is compiled
by Intel C compilier with highest optimisation level.

For the maximum satisfiability problem (MAXSAT),
we also compare our custom GA with a third-party
GPU-based work on an nVidia Tesla C1060 (21).
We have compared our system with other FPGA-
based systems qualitatively in the section 5, but it is
nearly impossible to compare quantitatively as they use
different platforms and do not provide enough details of
their execution time.

6.1 Locating Problem

The locating problem is dealing with finding an
emergency response unit, which has the best response
time to reach any emergency that occurs in a city.

The study presented in (29) provides a complex
example with a 10× 10 km city divided into 100 sections.
The response unit can be put at any place in the city, so
a solution (xf , yf) is a floating point coordinate.

The cost function is:

cost =

100∑
n=1

wn

√
(xn − xf)2 + (yn − yf)2 (1)

where (xn, yn) is the coordinate of the emergency centre
of square n and wn is emergency frequency in square n.

In our case, we use floating-point chromosomes, and
define high-level specification and parameters in Fig. 7
and Fig. 8. During compile-time, the chromosome and
application are defined according to the rules described
in section 4.

The number of parallel evaluation and SCM units
can be changed via Ne and Ns. As shown in Fig.
9, we can tune those parameters in order to improve
resource usage. For example, if we reduce theNe complex
evaluation unit from 4 to 2, we obtained a slightly
decreased performance (5% slower) due to pipelined
structure.

Fig. 8 shows the run-time parameters, array W is
defined as the application parameters. By changing W ,
we can use the same custom GA to solve multiple
input problems without recompilation, which always
needs several hours to finish. Then we choose selection,
crossover and mutation based on chromosome type.
Here we also define a series of run-time parameters to
tune convergence speed. Our framework will try a full
combination of them, including lists of mutation rates
(Ru), crossover rates (Rc), and random seeds (Rs).

The execution report helps users to find the best
configuration for the problem. To compare execution
time with the multi-core CPU, we let the custom GA run
1,000,000 generations for different population size (Np).

As shown in Fig. 10, our custom GA is 24 times
faster than on the multi-core CPU. Although the initial
compilation of the custom GA is slow, future executions
of the same GA with different parameters require no
compilation, and start evaluating immediately.

An Automated Framework for General-Purpose Genetic Algorithms on FPGAs 9

Table 2 Qualitative Comparisons of FPGA-based GAs (Chrome: Chromosome)

Year Chrome.
Run-time App. Parallel Initial App.

Platform
GA param. param. param. pop. level

(3) 1995 binary - fixed - rand low BORDG
(7) 1999 binary - fixed - rand low SFL
(22) 2001 binary - fixed - rand low AXB-MP3
(23) 2001 binary - fixed - rand low Xilinx V1000
(31) 2004 binary Np, Ng, Rc, Rm fixed - rand low PCI System
(27) 2009 binary Np fixed - rand low Virtex2 Pro
(6) 2010 binary Np, Ng, Rm,

Rc, Rs

fixed - rand, low Virtex2 Pro

ours 2013 binary, real-valued Np, Ng, Rm,
Rs, Rc, Ip

run NE , NS rand, high MAX3
permutation -time Ip (V6-SXT475)

Compile-time Input
Chromosome {float xf,yf;}
Fitness {
float cost = 0.0;

for (int i = 0; i ≤ 9; i ++){
for(int j = 0; j ≤ 9; j ++){
float xn = i + 0.5;

float yn = j + 0.5;

cost += W[i][j]*sqrt((xn - xf)*

(xn - xf)+(yn - yf)*(yn - yf)); }
}
return cost;

}
Arch Param{
Ne = 2;Ns = 8;
Ms: "tournament selection"

Mc: "blending crossover"

Mu: "real-valued mutation"

}
Figure 7 The Compile-time User Input for Locating

Problem

Run-time Input
App Param{ int8 W[10][10] =

{{0,6,...} {4...}...};
}

GA Param{
Ng = 1,000,000

Np = 32

Rc = 0.6, 0.5, ...

Ru = 0.01, 0.02, ...

Rs = 0x1234, 0xffff

Ip = {(3.1, 4.5),(2.3, 4.8)...}
}

Figure 8 The Run-time User Input for Locating Problem

6.2 The Set Covering Problem

The set covering problem (SCP) is a classic NP-hard
combinatorial optimisation problem which has many
practical applications (26). For example in hardware

Figure 9 Resources for various Ne and Ns

Figure 10 The execution time for various Np

verification, a suite with M programs can test or cover
N functions, and every program has a cost. The relation
between suite and functions can be represented by an
N ×M matrix. The aim of the SCP is to find the lowest
cost sub-suite of programs which tests all N functions.

For a candidate suite, the fitness is computed as:

Fitness = p× coverage(suite)− cost(suite) (2)

where p adjusts the fitness scale, and coverage represents
how many functions covered.

As shown in Fig. 11, in our case, the chromosome is
designed as an m-bit binary, and the i-th bit of the binary
determines the exist of i-th program in the suite. In the
fitness section, we define a function like countone() to
calculate the number of 1. The coverage array (cov[M]),
cost array (cost[M]) and p are supplied at run-time. We
also choose different methods of selection, crossover and
mutation from the locating problem.

10

We test an instance of Steiner triple systems (STS27),
which is considered as a hard SCP with a matrix of
117×27 (24).

Our custom GA is 45 times faster than the CPU.

Compile-time Input
Chromosome { uintM suite; }
Fitness{
uint cost = 0; uintN cov = 0;

for (int i = 0; i ≤ M-1; i ++){
cov |= suite[i] ? covs[i]: 0;

cost += suite[i] ? costs[i] : 0; }
uint covs n = countone (cov);

return (p * covs n - cost);

}
uint6 countone(uintN cov) {...}
Arch Param{
Mc: "multi-point crossover"

Ms: "roulette wheel selection"

Mu: "binary mutation"

}
Figure 11 The Compile-time User Inputs for Set

Covering Problem

Run-time Inputs
APP PARAM{ int p = 2,

uintN covs[M]={...},
uint cost[M]={...} }

GA PARAM{
...

Ip = {0xffff, 0x1, ...}
}

Figure 12 The Run-time User Inputs for Set Covering
Problem

6.3 Maximum Satisfiability Problem

The Maximum Satisfiability Problem (MAXSAT) is
another classic NP-hard problem used to determine an
optimised assignment of a set of boolean variables V =
{V1, V2, . . . , Vu}. A literal is a boolean variable or its
negation, i.e. L ∈ {V,¬V }. A clause Ck is the disjunction
(“or”) of mk literals in the form

Ck =

mk∨
i=1

Lki (3)

A formula F in the conjunctive normal form is defined
as the conjunction (“and”) of M clauses, i.e.

F =

M∧
k=1

Ck =

M∧
k=1

(

mk∨
i=1

Lki) (4)

Let Ξ = (V1/v1, V2/v2, ..., Vu/vu) be an assignment
of V. Then the optimisation target of the MAX-SAT
problem is

g(Ξ) = max
Ξ

M∑
k=1

δ(Ck|Ξ) (5)

where δ(Ck) =

{
1 if Ck = true

0 otherwise

We define Ξ as a binary chromosome containing
multiple booleans and describe the high-level inputs in
Table 3. Here we apply the custom GA system to a hard
instance uf100-430, which contains 100 variables and 430
clauses (1).

Compared with the GPU-based work (34) for same
problem, our system obtaines a 29 times speedup.

6.4 Travelling Salesman Problem

The Travelling Salesman Problem is a well-known NP-
hard problem in combinatorial optimisation which sorts
the following problem: given a list of cities and the
distances between each pair of cities we try to find the
shortest possible route that visits each city exactly once
and returns to the origin city.

In our case we test a 64 cities TSP. We use
permutation chromosomes with 64 items, each of them
representing a city index. The order of the chromosome
represents the sequence in which the cities been visited.
We also define the distance array as the application
parameters.

For this problem, we use ’swap’ mutation and
’permutation’ crossover, to make sure all the new
individuals are correct.

6.5 GA Benchmarks

To test the ability of dealing with numeric computation
in our custom GA, we use three GA benchmarks from
(6), including binary F6 (BF6), binary F7 (BF7) and 2-D
Shubert function (2DS), and one benchmark called F11
from (29). As shown in Table 4, these functions have one
or more parameters.

6.6 Experiments Summary

Our platform can output the results from the FPGA
to the CPU for comparison. As shown in Table 4, our
platform can effectively solve different applications with
an average speed up of 29 times, including discrete
combinatorics, numeric, real-valued and permutation
computation.

Our custom GA can find a location with 96% of best
fitness according to (29) for the locating problem, and
find good solutions for all other applications. The clock
frequency of the custom GA is set to a conservative
default value of 75MHz, so with longer compile times
higher speed-ups are possible. In the Table 4, the

An Automated Framework for General-Purpose Genetic Algorithms on FPGAs 11

Table 3 The User Inputs for MAXSAT

Compile-time Inputs Run-time Inputs

Chromesome { bool v[100]; } App Param{ }
Fitness{ GA Param

bool c[430]={false}; {
uint count=0; Np = 32;

c[0] = v[25]|(!v[98])|v(6); Ng = 1000000;

... // remove for space Ru = 0.065;

c[429] = v[59]|v[91]|(!v(72)); Rc = 0.65;

for (int i=0; i≤429; i++) Rs = 0xffffff;

count += c[i] ? 1:0; Ip = {b10...1
return count; } ,...}

} }
Arch Param {

Ne=2; Ns=2;

Mc:"multi-point crossover";

Ms:"roulette wheel select";

Mu:"bit-flip mutation"; }
}

Table 4 Resources (Res.), Solution Quality and Speed-ups

App. Np NE NS Res.% Speed-up Quality Description

Locating 32 2 8 73.08 24 96% real-valued computation
STS27 128 16 16 65.12 45 100%

discrete combinatorics
MAX-SAT 64 8 8 74.96 22 100 %
TSP 32 1 1 77.54 28 90 % permutation chromosomes
BF6 32 8 8 26.45 26 100%

numeric computationBF7 32 8 8 21.48 25 100%
2DS 32 8 8 68.89 31 100%
F11 32 8 8 60.05 27 100% real-valued computation
MEAN - - - 29 - -

resource usages vary by the complexity of an application,
the number of evaluation units (NE) and SCM units
(NS).

Reference (6) gives speed-ups of 5 times over BF6,
BF7 and 2DS without reporting exact execution time, so
we cannot directly compare its performance with ours.
Although based on high-level inputs, our custom GA can
still achieve high performance while retaining flexibility,
with parallelled and pipelined units.

7 Conclusion and Future Work

Genetic algorithms are ideal candidates for FPGA
acceleration due to their long execution time. To provide
an easy way for users to create and execute FPGA-
based GAs with binary, real-valued and permutation
chromosomes, we propose an automated unified
framework for whole general-purpose GA systems.

Our framework contains a scalable and customisable
custom GA, which allows a user to tune the resource
usage, without directly modifying hardware design. At
compile-time, a user just needs to define a high-level
specification of an application, including chromosome

and fitness function, without writing any hardware
code using VHDL. At run-time, the user can change
GA and application parameters without waiting for
recompilation.

When compared with existing FPGA-based GAs, our
custom GA has more architectural flexibility, making
it much easier for users to take advantage of FPGA
acceleration. Compared with a multi-core CPU over six
applications, the average speed-up of the custom GA is
29 times.

In the future, we will allow users to enhance the
library in the framework to support more genetic
operators. We will also improve the framework by
supporting variable length chromosomes, automatic
parameter decision and structure tuning due to the
flexibility of FPGA platform.

References

[1] G. Luque, and E. Alba. Parallel Genetic
Algorithms: Theory and Real World Applications.
Vol. 367. Springer. 2011.

12

[2] S. N. Sivanandam, and S. N. Deepa. Introduction
to Genetic Algorithms. Springer Berlin Heidelberg.
2008.

[3] S. Scott, et al. “HGA: A hardware-based genetic
algorithm.” ACM International Symposium on
Field-Programmable Gate Arrays. pp. 53-59, 1995.

[4] J. Pimery, and K. Pinit. “Development of a flexible
hardware core for genetic algorithm.” Intelligent
Computing and Intelligent Systems. Vol. 1, pp. 867-
870, 2009.

[5] C. Effraimidis, K. Papadimitriou, A. Dollas and I.
Papaefstathiou. “A self-reconfiguring architecture
supporting multiple objective functions in genetic
algorithms.” International Conference on Field
Programmable Logic and Applications (FPL). pp.
453-456, 2009.

[6] P. R. Fernando, R. Zebulum, and A. Stoica.
“Customizable FPGA IP core implementation of
a general-purpose genetic algorithm engine.” IEEE
Transactions on Evolutionary Computation. Vol.
14, No. 1, pp. 133-149, 2010.

[7] N. Yoshida, and T. Yasuoka. “Multi-gap: parallel
and distributed genetic algorithms in VLSI.” In
Systems, Man, and Cybernetics. Vol. 5, pp. 571-576,
1999.

[8] Y. Choi, and D. J. Chung. “VLSI processor of
parallel genetic algorithm.” IEEE Asia Pacific
Conference on ASIC. pp. 143-146, 2000.

[9] M. S. Jelodar, et al. “SOPC-based parallel
genetic algorithm.” IEEE Congress on Evolutionary
Computation. pp. 2800-2806, 2006.

[10] T. Tachibana, et al. “General architecture for
hardware implementation of genetic algorithm.”
IEEE Symposium on Field-Programmable Custom
Computing Machines (FCCM). pp. 291-292, 2006.

[11] T. Kamimura, and A. Kanasugi. “A parallel
processor for distributed genetic algorithm with
redundant binary number.” 6th International
Conference on New Trends in Information Science
and Service Science and Data Mining (ISSDM). pp.
125-128, 2012.

[12] Y. Jewajinda, and P. Chongstitvatana. “FPGA
implementation of a cellular compact genetic
algorithm.” NASA/ESA Conference on Adaptive
Hardware and Systems (AHS). pp. 385-390, 2008.

[13] P. V. d. Santos, J. C. Alves, and J. C.
Ferreira. “A scalable array for Cellular Genetic
Algorithms: TSP as case study.” IEEE International
Conference on Reconfigurable Computing and
FPGAs (ReConFig), pp. 1-6, 2012.

[14] P. V. d. Santos, J. C. Alves, and J. C. Ferreira. “A
framework for hardware cellular genetic algorithms:
an application to spectrum allocation in cognitive
radio.” 23rd International Conference on Field
Programmable Logic and Applications (FPL). pp.
1-4, 2013.

[15] J. M. P. Cardoso, P. C. Diniz, and M. Weinhardt.
“Compiling for reconfigurable computing: a survey.”
ACM Computing Survey. Vol. 42, No. 4, pp. 1-65,
2010.

[16] T. J. Todman, G. A. Constantinides, S. J.
Wilton, O. Mencer, W. Luk & P. Y. Cheung,
“Reconfigurable computing: architectures and
design methods.” Proceedings on IEEE Computers
and Digital Techniques, vol. 152, no. 2, pp. 193-207,
2005.

[17] K. Compton and S. Hauck, “Reconfigurable
Computing: A Survey of Systems and Software.”
ACM Computing Surveys, vol. 34, no. 2, pp. 171-
210, 2002.

[18] Maxeler Tech. “Programming MPC Systems White
Paper.” 2013.

[19] D. B. Thomas, and W. Luk. “The LUT-SR family
of uniform random number generators for FPGA
architectures.” IEEE Transactions on Very Large
Scale Integration Systems (VLSI) Vol. 21, No. 4, pp.
761-770, 2013.

[20] L. Guo, D. B. Thomas, and W. Luk. “Customisable
Architectures for the Set Covering Problem.”
International Symposium on Highly Efficient
Accelerators and Reconfigurable Technologies
(HEART). pp. 69-74, 2013.

[21] A. Munawar, et al. “Hybrid of genetic algorithm
and local search to solve MAX-SAT problem using
nVidia CUDA framework.” Genetic Programming
and Evolvable Machines. Vol. 10, No. 4, pp. 391-415,
2009.

[22] B. Shackleford, G. Snider, & R. Carter, “A
high-performance, pipelined, FPGA-based genetic
algorithm machine,” Genetic Programming and
Evolvable Machines, vol. 2, no. 1, pp. 33-60, 2001.

[23] C. Aporntewan & P. Chongstilivatana, “A hardware
implementation of the compact genetic algorithm,”
Proceedings of the 2001 Congress on Evolutionary
Computation, vol. 1, pp. 624-629, 2001.

[24] C. Plessl. & M. Platzner. “Custom computing
machines for the set covering problem,” Proceedings
of 10th IEEE Symposium on Field-Programmable
Custom Computing Machines. pp. 163-172, 2002.

[25] D. A. Coley, “An introduction to genetic algorithms
for scientists and engineers,” Singapore: World
Scientific Publishing, 2003.

An Automated Framework for General-Purpose Genetic Algorithms on FPGAs 13

[26] E. Balas, “A class of location, distribution
and scheduling problems: Modeling and solution
methods,” 1982.

[27] M. Vavouras , K. Papadimitriou, & I.
Papaefstathiou, “High-speed FPGA-based
implementations of a genetic algorithm,” In
Systems, Architectures, Modeling, and Simulation,
pp. 9-16, 2009.

[28] P. L Ecuyer, “Tables of maximally equidistributed
combined LFSR generators,” Mathematics of
computation, vol. 68, no. 225, pp. 261-269, 1999.

[29] R. L. Haupt & S. E. Haupt, Practical genetic
algorithms, John Wiley & Sons, 2004.

[30] S. N. Sivanandam & S. N. Deepa, Introduction to
genetic algorithms, Springer, 2007.

[31] W. Tang & L. Yip, “Hardware implementation
of genetic algorithms using FPGA,” 47th IEEE
Midwest Symposium on Circuits and Systems, pp.
549-552, 2004.

[32] Blind for Review.

[33] Blind for Review.

[34] A. Munawar, et al. Hybrid of genetic algorithm
and local search to solve MAX-SAT problem using
nVidia CUDA framework. Genetic Programming
and Evolvable Machines. Vol. 10, No. 4, pp. 391-415,
2009.

[35] M. Pedemonte, E. Alba, and F. Luna. Towards the
design of systolic genetic search. IEEE Parallel and
Distributed Processing Symposium Workshops &
PhD Forum (IPDPSW), pp. 1778-1786. 2012.

