
Exploring the Potential of Reconfigurable Platforms for Order Book Update

Conghui He∗, Haohuan Fu∗, Wayne Luk†, Weijia Li∗, and Guangen Yang∗
∗Tsinghua University, Email: {haohuan,ygw}@tsinghua.edu.cn, {hch13,liwj14,}@mails.tsinghua.edu.cn

†Imperial College London, Email: w.luk@imperial.ac.uk

Abstract—The order book update (OBU) algorithm is widely
used in financial exchanges for rebuilding order books. The
number of messages produced has drastically increased over
time. The software solutions become more and more difficult to
scale with the growing message rate and meet the requirement
of low latency. This paper explores the potential of reconfig-
urable platforms in revolutionizing the order book architecture,
and proposes a novel order book update algorithm optimized
for maximal throughput and minimal latency. Our approach
has three main contributions. First, we derive a fixed tick data
structure for the order book that is easier to be mapped to
the hardware. Second, we design a customized cache storing
the top five levels of the order book to further reduce the
latency. Third, we propose a hardware-friendly order book
update algorithm based on the data structures we proposed.
In the experiment, our FPGA-based solution can process 1.2-
1.5 million messages per second with the throughput of 10Gb/s
and the latency of 132-288 nanoseconds, which is 90-157 times
faster than a CPU-based solution, and 5.2-6.6 times faster than
an existing FPGA-based solution.

Keywords-FPGA; finance; algorithm; latency; order book

I. INTRODUCTION

The financial markets with significant participation of
algorithmic trading strategies have an increasing demand
for low latency access, therefore brokers, banks and funds
have continued to invest in both faster algorithms and low
latency networks. As software solutions have long and
random latency due to the operating system and event
driven interrupts, more and more trading modules such as
market data feed arbitrators, option pricing algorithms and
high frequency trading libraries, are based on reconfigurable
hardware platforms that have the potential of revolutionizing
electronic trading, by providing significantly improvements
in deterministic results, lower processing latency and higher
energy efficiency [1] [2] [3].

Even though the brokers, banks and funds keep pushing
their hardware solutions to the limit, the systems of their
upstream or financial exchanges are mainly still based on
the software solutions, which becomes the bottleneck for
improving the overall trading efficiency. Compared with the
systems of exchanges’ clients, it is more challenging for ex-
changes to design algorithms on hardware platforms owning
to the logic complexities and data volume requirements, one
of which being the order book update algorithm that needs
to maintain a large volume of data in a low-latency way.

The order book update (OBU) algorithm is employed by
exchanges to update order books with hundreds of millions

of requests every day. The order books are implemented by
an electronic list of buy and sell orders for a specific security
or financial instrument, organized by price levels. It lists the
number of shares being bid or offered at each price point [4].
By collecting the statistical information from order books,
the OBU algorithm provides the traders with the changing
status of the marketplace, called market data feeds, which
enable the traders to reconstruct the marketplace, monitor
market conditions, and perform algorithmic trading [5].

However, when the number of messages the financial ex-
changes need to process drastically increases, the evaluation
of the OBU algorithm can become the main bottleneck. This
situation would take place when, for example, a financial
exchange provides a larger range of products with higher
resolution monitoring, or when traders perform algorithmic
trading that generates and cancels trades at a much higher
rate than expected. The software solutions become increas-
ingly difficult to scale with the growing message rate and
meet the requirement of low latency, especially during large
bursts of trading activities.

This paper explores the potential of reconfigurable plat-
forms and proposes a hardware-friendly order book up-
date (HFOBU) algorithm that is effectively optimized for
achieving maximal throughput and lowest latency on re-
configurable platforms such as those based on field pro-
grammable gate arrays (FPGAs). The contributions of our
work include a fixed tick data structure for storing the order
book optimized for our hardware platform (Section III); a
customized cache that stores the top five levels of the order
book as well as a clipped reduction tree (Section IV-B),
and most importantly a hardware friendly order book update
(HFOBU) algorithm based on the data structures proposed
above which reduces latency by at least 90 fold (Section V).

II. BACKGROUND

A. Motivation

Financial exchanges such as the China Financial Futures
Exchange (CFFEX) have unified data bus containing and
streaming different categories of trading messages. Different
modules in exchanges as shown in 1 get input by subscribing
to one or multiple categories of messages from the unified
data bus and send their results back to the unified data
bus, which will be subscribed by other modules. For each
type of message, the exchange provides a corresponding
data structure and related interfaces that can be used among

FIB Bus (order stream, trade stream, time sync stream, etc.)

Market Server
Trading

front

Market

data front

Femas

Traders

Order book update

No. Price Volume

m
m+1
m+2
m+3

Add

Cancel

Execute

Publish

Trading

data sync

Matching Engine Trading query

Trading init Disaster recovery

Figure 1. The architecture and modules in CFFEX

different modules. This approach greatly improves design
modularity and reduces code redundancy.

One category of messages can be subscribed by multiple
modules. For instance, the order stream is subscribed by the
matching engine, market server and trading query module.
One module only uses a small portion of information from
one category of message in most cases. It is unnecessary
to parse and maintain the entire message in every module,
which not only wastes the memory resources but also
also greatly decreases the performance. In addition, it is
especially challenging to map the existing object-oriented
paradigms and multi-level encapsulated data structures to
reconfigurable platforms such as FPGAs. This paper aims
to explore the potential of FPGAs and customize the work-
flow of the marker server module for achieving maximal
throughput and lowest latency.

B. Data Structures of Order Books

The market server module maintains and updates order
books according to millions of requests from traders in a
very low latency. From the point of view of financial trading,
an order book is updated and modified mainly from three
actions, adding an order, canceling an order and executing
a trade. An order book is also frequently accessed when the
exchange broadcasts the top of the order book as market
data feeds to traders. Table I summarizes the actions and
their frequencies of accessing the order book. Good data
structures that maintain order books must have low penalties
for processing the actions in Table I.

An order book stores all the bid and ask orders of an
instrument, identified by an instrument ID. An instrument
ID is a string, thus different instrument IDs are organized

Table I
DESCRIPTIONS AND FREQUENCIES OF DIFFERENT ACTIONS TO THE

ORDER BOOK

Action Description Frequency

Add orders Add a new order at a specific price
level to the order book 10,000+/s

Cancel orders Remove an existing order at a specific
price level from the order book 5,000+/s

Execute trades Match trades when the bid on a particular
instrument meets or exceeds the ask price 10,000+/s

Publish feeds Collect the top 5 levels of price and
quantity of each order book and broadcast 2-10/s

by a hash table with the perfect hash scheme [6]. In the order
book, orders are categorized by different price levels. The
price are often sorted so that it is convenient to access the
optimal price, which is the lowest bid price or the highest
ask price. At each specific price, different orders are queued
in a FIFO. An order is identified by the order ID (OID), with
additional information such as the price, quantity, direction
(bid/ask) and etc.

Figure 2 presents a typical data structure that maintains
order books with a hierarchy of multiple levels. A hash table
is used to track different instruments. For each instrument,
an AVL tree is employed to organize the price levels of
an order book while different orders at the same price are
chained by a linked list. A balanced tree has the benefit of
inserting, deleting and traversing a node at the complexity of
O(log(n)) while the linked list eases the process of adding
or removing an order.

C. The Order Book Update (OBU) Algorithm

The order book update algorithm (OBU) is a set of
routines to update the order book when the events in
Table I are triggered. There are four routines in the OBU
corresponding to the four actions in Table I. The OBU
algorithm is summarized in Algorithm 1.

1) Add an order: The procedure Add illustrates the
process of adding a new order to the order book. The order
book is got by hashing the instrument ID (line 1). If the
price of the new order exists in the order book, we append
the new order directly. Otherwise, a node for the new price
is created and followed by enqueuing the new order (line 3
to 9).

2) Cancel an order: The procedure Cancel in Algorithm
1 shows how to cancel an order. It is guaranteed that the
order exists in the order book. To remove an order from the
order book, we first traverse the order book to find the price
of the order and remove it from the linked list (line 11 to
line 14).

3) Execute a trade: The exchanges match trades when
the bid on a particular instrument meets or exceeds the ask
price. The procedure Trade illustrates the process that the
quantity of the trade packet is subtracted from an order at
the head of the queue. If the remaining quantity of the order

Instrument ID

AVL treePrice: 105.00

Price: 102.00

Price: 101.00 Price: 103.00

Price: 110.00

Price: 108.00 Price: 112.00

IF1205 IF1206 ...

Linked listBid order Ask order

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order

Order book

or

Order

Order

Order

Orderor

Order

Order

Order

Order

or

Order

Order

Order

Order

Order

Order

or

Figure 2. A typical data structure that maintains order books with
a hierarchy of multiple levels. A hash table is used to track different
instruments. For each instrument, an AVL tree is employed to organize
the price levels of an order book while different orders at the same price
are chained by a linked list.

in the queue is less than zero, meaning that the order is not
valid any longer, the order is dequeued (line 17 to line 25).

4) Publish feeds: The procedure Publish illustrates the
process of publishing market data feeds (line 27 to line 36).
For each order book, we need to collect five highest-ask-
price levels and five lowest-bid-price levels. For each price
level, the quantity of each order also needs to be summed
up.

The computing complexity of the Add and Trade routines
is O(log(n)) where n is the number of price levels, while the
complexity of the Cancel and Publish routines is O(log(n)+
m) where m is the number of order at a specific price level.

III. A FIXED TICK ORDER BOOK

A. Data Organization Scheme

The original data structure and the OBU algorithm do
not fit well into a pipelined hardware design. The AVL tree
and the linked list fit general purpose processors, however,
mapping them into hardware will need a great deal of FPGA
resources while making the design complex and error-prone.

After carefully analyzing the OBU, we find that the output
of the order book is the tuple of the price and the total
quantity shown in the Publish procedure in Algorithm 1.
Thus it is not necessary to chain each order by a linked
list. Instead, we can use only one variable to accumulate the
total quantity for a specific price level. The reasons are as
follows.

Algorithm 1 Original Order Book Update (OBU)
1: book ← getbook(hash(instrumentID))
2: procedure ADD(OID, price, quantity, dir)
3: if book.not found(price) then
4: book.insert(price)
5: order = new Order(OID, price, quantity, dir)
6: if is bid(dir) then
7: book.at(price).bidlist.enqueue(order)
8: else
9: book.at(price).asklist.enqueue(order)

10: procedure CANCEL(OID, dir, price)
11: if is bid(dir) then
12: book.at(price).bidlist.remove(OID)
13: else
14: book.at(price).asklist.remove(OID)
15: procedure TRADE(dir, price, quantity)
16: if is bid(dir) then
17: order = book.at(price).asklist.head()
18: order.quantity -= quantity
19: if order.quantity ≤ 0 then
20: book.at(price).asklist.dequeue()
21: else
22: order = book.at(price).bidlist.head()
23: order.quantity -= quantity
24: if order.quantity ≤ 0 then
25: book.at(price).bidlist.dequeue()
26: procedure PUBLISH(orderbooks)
27: for book ∈ orderbooks do
28: N ← 1
29: askodr ← book.head()
30: bidodr ← book.tail()
31: while N ≤ 5 do
32: bidfd.add(price, sum qty(bidodr.bidlist))
33: askfd.add(price, sum qty(askodr.asklist))
34: N ← N + 1
35: bidodr ← bidodr.back()
36: askodr ← askodr.next()

return bidfd, askfd

• Although keeping the whole information of an order
makes it convenient to modify each order, it takes
O(log(m)) time to sum up the total quantity for each
price level.

• Increasing the total quantity when adding an order and
decreasing the total quantity when canceling an order
can result in identical market data feeds.

• Tracking the total quantity directly reduces the com-
puting complexity as well as the resource usage.

An AVL tree has the advantage of inserting an or-
der at any price level. In practice, however, the price
of an order must be in a specific range in a day,
which is [limitdown, limitup]. For instance, in China, the

99.00 99.01 99.02 99.03 99.04 99.05 109.96 109.97 109.98 109.99 110.00

IH1205 IH1206 IF1205 IF1206 ...

...

Total
quantity

...
Total

quantity

...
Total

quantity

...
Total

quantity

...

InstrumentID

Fixed-tick order book Price tick: 0.01

Limit down Limit up No orders Valid

Figure 3. The data organization of the fixed tick order book. The order
book contains all possible price levels, with the price tick of 0.01. The price
in green and blue is the limit down price and the limit up price respectively.
The pink cells represent the valid price. For each price, we store the total
quantity.

limitdown is 0.9OP and the limitup is 1.1OP where
OP is the open price of an instrument. Furthermore, the
price within the range [limitdown, limitup] are distributed
uniformly. The minimum difference between any two price
levels is called the price tick, which is a parameter of an
instrument.

Taking the factors above into consideration, we derive a
fixed tick data structure for the order book that is easier to be
mapped to the hardware in less latency, which is shown in
Figure 3. The order book contains all possible price levels,
with the price tick being 0.01. The price in green and blue
is the limit down price and the limit up price respectively.
The pink cells represent the valid price. For each price, we
store the total quantity instead of keeping each order.

In the fixed tick order book, we can add/cancel an order by
directly increase/decrease the quantity of the order to/from
the total quantity. The address of the total quantity of a price
level is calculated by Equation 1.

Ap = Ald +
p− pld
pt

(1)

where p is the price of an order; pld is the limit down
price; pt is the price tick; Ald is the address of pld.

B. Tree Reduction

The fixed tick order book makes it extremely cheap to
add/cancel an order by simple arithmetics. However, current
design does not support executing trades and publishing
feeds because the top of the order book is needed in both
procedures. We employ the parallel tree reduction algorithm
to keep track of the top of the book (the highest ask price
and the lowest bid price).

Figure 4 presents how the algorithm searches for the
highest valid price, which is 99.14. The price levels with

> > > >

> > > >

> >

>

4
> > > >

6 8 0 11 14 00

4 8 11 14

1 2 3 4 5 11 12 13 14 156 7 8 9 10 16

1 0 0 1 0 1 0 0 1 0 01 1 0 0 1

1 0 0 4 0 11 0 0 14 06 7 8 0 0 0

99.01 99.02 99.03 99.04 99.05 99.06 99.12 99.13 99.14 99.15 99.1699.07 99.08 99.09 99.10 99.11

8 14

14

Addr

Mask

Order
book

Mask
 &

Addr

Cycle 1

Cycle 2

Cycle 3

Cycle 4

99.14Valid price Highest valid price

Figure 4. Find the highest price by parallel reduction. A mask table is
used to identify the valid price level. The parallel tree reduction is applied
to (mask & addr), resulting the address of the highest price.

nonzero quantities are denoted by orange squares. A mask
table is used to identify the price with nonzero quantities.
Performing the logical AND operation to each element in
the mask table and the address table generates the mask
& addr table, which is the input of the parallel reduction
algorithm. The tree reduction algorithm parallelizes in space.
The pipeline depth of reducing an array of n elements is
log(n). In this case, it takes four cycles to find out the
address of the highest price. Then we can have the quantity
of the highest price level by reading the resulted address.

If we need the top five price levels, we can mask the
highest price after the reduction and perform a second run,
and so forth. With the tree reduction algorithm, now we have
a complete set of hardware-based OBU routines.

IV. CUSTOMIZED CACHE WITH A CLIPPED TREE

A. Customized Cache

When executing a trade or publishing the feeds, the top of
the book needs to be accessed. Instead of performing a tree
reduction every time we need to access the top of the book,
we design a customized cache storing the top five levels of
the order book, as shown in Figure 5.

The cache is maintained by the bitonic sorting routine [7]
[8] [9] to guarantee that the price levels are always sorted
when a new order arrives. So the first element of the cache is
the top of the order book for executing the trade, and the first
five elements of the cache are all we need for publishing the
feeds. The Trade and Publish only need O(1) latency with
the cache.

When a new order is added, the cache and the fixed tick
order book are updated simultaneously. If the new order
whose price belongs to the top five levels of the order book,
the new order is added to the end of the cache as well as the
fixed tick order book. The price levels in the cache will be
in order automatically with the bitonic sort before the next
order arrives.

> >

> > <

> <

4
> > < <

6 7 0 11 140

4 7 11

1 0 0 4 0 11 0 0 146 7 0 0 0

7 11

<

99.01 99.02 99.03 99.04 99.05 99.06 99.12 99.13 99.1499.07 99.08 99.09 99.10 99.11
Order
book

Mask
 &

Addr

99.01 99.02 99.03 99.04 99.05 99.06 99.12 99.13 99.1499.07 99.08 99.09 99.10 99.11

7 119

Refine
chains

max(addr) < 9 min(addr) > 9

9

99.01 99.04 99.06 99.07 99.09Cache Customized cache caching top 5 price levels

< Find min(addr) > 9< Find min(addr) > 9> Find max(addr) < 9> Find max(addr) < 9Order added at addr 9Order added at addr 9

Clipped
reduction tree

Figure 5. A clipped reduction tree is used to refined the chains of valid
price levels when updating the order book. The top five price levels are
then stored in the customized cache.

B. Chain Price Levels in Order

The customized cache greatly reduce the latency of the
Trade and the Publish routines, from O(log(n)) to O(1).
However, if the price levels are less than five after canceling
or executing trades, we need the scheme to load the sub-
optimal price levels, which are the valid price levels after
the top five levels, from the fixed tick order book to the
cache. To achieve that, we refine our fixed tick order book
by adding more information to each price level. For each
price level, a link is added pointing to the next valid price
level, as shown in Figure 5. The link enables the cache to
load the sub-optimal price level when necessary.

The links are maintained and updated when adding,
canceling orders or executing trades via a clipped reduction
tree. We call it a clipped tree because we clip the last level
of the tree, resulting two nodes in the last layer instead of
one. Figure 5 shows an example of updating the links when
adding a new order at the price of 99.09 at address 9 as
follows.

• Instead of finding the highest valid price shown in
Figure 4, the reduction in Figure 5 searches for the
maximal valid address less than 9 and the minimal valid
address greater than 9. In this case, they are 7 and 11
respectively.

• Refine the chains according to the output. In this case,
the price level 99.07 at address 7 points to the newly
added price level 99.09 at address 9, followed by
pointing the price level 99.11 at address 11.

The process of refining the chains can also be applied
when canceling orders or executing trades with just minor
modification.

C. Comparisons and Discussions

Compared with the fixed tick order book without the
cache discussed in Section III, current order book design
with the cache and the clipped reduction tree further reduce
the overall latency by a factor of 5, as shown in Table II.
Without the cache, the latency of Add and Cancel routines
are extremely low. They only need to calculate the address
of the price level being updated according to Equation
1. However, the overall latency of the design is 5 log(n)
because the depth of one FPGA design is determined by
the longest path, which is 5 log(n) in the Publish routine.
A good FPGA design for low-latency applications tends to
balance the depth of different routines as much as possible.

Table II
LATENCY COMPARISONS OF DIFFERENT ROUTINES BETWEEN THE

FIXED TICK ORDER BOOK WITH AND WITHOUT THE CACHE.

Scheme Add Cancel Trade Publish Overall
fixed tick

order book 1 1 log(n) 5 log(n) 5 log(n)

With cache and
clipped tree log(n)− 1 log(n)− 1 log(n)− 1 1 log(n)− 1

The fixed tick order book with the cache and clipped
reduction tree is a far better design in terms of latency
balancing. First, the latency is amortized to Add, Cancel and
Trade routines. The longest depth is reduced from 5 log(n)
to log(n) − 1. Secondly, the clipped tree also reduces both
the latency and resource by clipping the last level of the tree.

V. A HARDWARE-FRIENDLY ORDER BOOK UPDATE
(HFOBU) ALGORITHM

Data structures and algorithms are essentially and inher-
ently complementary. In most cases, data structures help
algorithms achieve their goals in the most efficient way. That
is why we propose and update the data structures iteratively
to make it best suited on reconfigurable platforms before
discussing the algorithms. In this section, we propose the
hardware-friendly order book update (HFOBU) algorithm
based on the fixed tick order book with the customized
cache. We are targeting at an extremely high-throughput
and low-latency algorithm for updating order books on
reconfigurable platforms such as FPGAs.

A. Hardware-friendly Add

The features of the fixed tick order book greatly simplify
the procedure of adding an order. Procedure HWAdd in
Algorithm 2 shows how to add an order. The core idea is
to add the quantity of the new order to the total quantity at
the same price in the order book (line 9).

Besides, we also need to maintain the cache and the
chains for other routines. If the price of the new order also
belongs to the cache (the top 5 levels), the total quantity
is accumulated if the price level of the new order is in the
cache (line 3 to 5), or replace the last element of the cache
because the price of the new order is smaller than that of

cache[5] (line 7). A bitonic sort is then applied to keep the
elements in the cache in order (line 8).

To refine the chains of the fixed tick order book, we search
the maximum/minimum valid address less/greater than the
address of new order, and update the links (line 10 to 12).
No matter whether the links exist or not, resetting the links
can always guarantee the correctness.

B. Hardware-friendly Cancel

Canceling an order decreases the total quantity from the
order book (line 16), which is the opposite of adding an
order, as shown in the HWCancel procedure in Algorithm
2. We need to be careful if the quantity of the price level
becomes zero after canceling the order (line 17), which
means that the price level is not valid any longer. We not
only need to refine the chains (line 18 to 19), but also need
to load the sixth price level to the cache (line 20). A bitonic
sort is then applied to keep the cache sorted (line 21).

C. Hardware-friendly Trade

The process of executing a trade is shown in procedure
HFTrade in Algorithm 2, which is similar to HFCancel.
The only difference is that the HFTrade always subtract the
quantity from the top of the book (line 23) in the cache
while the HFCancel can subtract the quantity of any levels
in the cache (line 15).

D. Hardware-friendly Publish

The publish routine is the most time-consuming routine in
the OBU algorithm because it needs to find out the top five
price levels of the order book and sum up their quantities.
The customized cache makes it the most efficient routine, as
shown in procedure HFPublish in Algorithm 2. As the top
five price levels and their quantities are already and always in
the cache, collecting them enables us to get all information
we need for publishing feeds (line 31 to 32).

E. Discussions

The customized data structure and hardware-friendly or-
der book update (HFOBU) algorithm change the way for
storing the information of orders. Compared with the origi-
nal data structure that utilizes the uniformed interface among
different modules in financial exchanges, our new design
aggregates the information the market servers needs as well
as keeping the same input and output message format while
discarding the redundancy so that it can achieve maximal
throughput and minimal latency.

The most time and resource consuming operation of
HFOBU is the clipped tree reduction. The depth is
O(log(n)) and it needs n−1 multiplexers and comparators.
Note that the logic block of bitonic sort is inexpensive in
terms of both time and logic resources because it only needs
to sort five elements in the cache table.

Algorithm 2 Hardware-friendly Order Book Update
(HFOBU)

1: addr ← Atd + (price− ptd)/pt . Equation 1
2: procedure HFADD(price, quantity)
3: if price ≤ cache[5].price then
4: if cache.find(price) then
5: cache.at(price).total += quantity
6: else
7: cache[5] = (price, quantity)
8: sort(cache)
9: orderbook[addr] += quantity

10: (max, min) = orderbook.reduce(addr)
11: max.next = addr
12: addr.next = min
13: procedure HWCANCEL(price, quantity)
14: if price ≤ cache[5].price then
15: cache.at(price).total -= quantity
16: orderbook[addr] -= quantity
17: if orderbook[addr] == 0 then
18: (max, min) = orderbook.reduce(addr)
19: max.next = min
20: cache.at(price) = cache[5].next
21: sort(cache)
22: procedure HFTRADE(price, quantity)
23: cache[1].total -= quantity
24: orderbook[addr] -= quantity
25: if orderbook[addr] == 0 then
26: (max, min) = orderbook.reduce(addr)
27: max.next = min
28: cache[1] = cache[5].next
29: sort(cache)
30: procedure HFPUBLISH(cache)
31: for i ∈ [1..5] do
32: feeds.add(cache[i])

return feeds

VI. EXPERIMENTS

A. Experiment Setups

We run our design in the environment of the China
Financial Futures Exchanges (CFFEX), which also provides
us three data sets, each containing all the packets of one
trading day.

We test the accuracy, throughput and latency of four im-
plementations: the CPU implementations of the OBU and the
HFOBU algorithms; the FPGA implementation of HFOBU
without and with customized cache. The four implementa-
tion are named ‘CPU1’, ‘CPU2’, ‘FPGA1’, ‘FPGA2’ for
short in our experimental records. The two CPU implemen-
tations are fully optimized and deployed in a PC with Intel
Core i7 CPUs. The two FPGA design are mapped to the
Maxeler MAX4 MAIA acceleration card with a Stratix-V

Market data feed sequence
0 200 400 600 800 1000 1200 1400

3600

3650

3700

3750

3800

3850
Index and quantity of instrument IF1512

0

50

100

150

200

250

Index
Quantity

Market data feed sequence
0 200 400 600 800 1000 1200 1400

7550

7600

7650

7700

7750

7800
Index and quantity of instrument IC1512

0
50
100
150
200
250
300

Index
Quantity

Figure 6. The top of the order book of instrument IF1512 and IC1512
containing the index and quantity from a portion of market data feed
sequence.

5SGSD8 FPGA running at 200MHz with 48GB DDR3 on-
board memory [10].

We also compare our design with an FPGA implementa-
tion from NovaSparks [11] which also rebuilds the order
book. However, the targeted exchanges, the protocols as
well as the data set we used are different, the latency and
comparison we provide here are only for reference. This
configuration will be named ‘NovaSparks’ for short in our
experiment records.

B. Accuracy Results
Using the same data set and initial parameters, we com-

pare the market data feeds generated by the four imple-
mentations. Figure 6 presents the top of the order book
of instrument IF1512 and IC1512 containing the index and
quantity from a portion of market data feed sequence. As
the four implementations can generate identical market data
feeds, they are plotted as a single curve at each plot.

C. Throughput Results
We describe the throughput by the number of messages

processed in every second. The throughput of different
actions of orders is recorded in Table III. The last column
in the table records the speedup value of our FPGA-based
HFOBU algorithm with customized cache over the CPU-
based solution (the original OBU algorithm).

Table III
THROUGHPUT RESULT (MESSAGES PER SECOND)

Action CPU1 CPU2 FPGA1 FPGA2 SPEEDUP
Add 4.52E4 5.31E4 1.31E6 1.31E6 28.98×

Cancel 4.81E4 5.44E4 1.31E6 1.31E6 27.23×
Trade 4.72E4 5.22E4 1.25E6 1.25E6 26.48×

Publish 3.41E4 1.52E5 1.53E6 1.53E6 44.87×

The throughput of the FPGA-based implementation is
highly related to the message size of each packet. Multiply-
ing the number of messages processed by the packet size,

our FPGA design can sustain the throughput of 10Gb/s.
Compared with the CPU-based implementation of OBU,
our FPGA-based HFOBU design can provide 26-44 times
more throughputs. Also note that the throughput of the CPU-
based HFOBU implementation is larger than the CPU-based
OBU implementation. We consider it reasonable because we
reduce the complexity of the data structure and eliminate the
need to traverse the linked list.

D. Latency Results

We measure the latency by subtracting the latency of the
network stack from the end-to-end latency of our design.
Table IV presents the average latency results of different
actions of different implementations. In the fixed tick order
book design without the customized cache (FPGA1), we
can achieve extremely low latencies for Add and Cancel
routines. But this design suffers long latencies for Publish
routine. The HFOBU design with the customized cache
(FPGA2) achieves more balanced latency between 132-288
nanoseconds, which is 90 to 157 times lower than the CPU-
based OBU implementations (CPU1).

Table IV
AVERAGE LATENCY RESULTS (NANOSECONDS)

Action CPU1 CPU2 FPGA1 FPGA2 SPEEDUP
Add 26544 25693 96 288 92.16×

Cancel 24658 23896 96 276 89.34×
Trade 25451 18695 272 260 97.88×

Publish 20753 19898 1186 132 157.2×

We also compare the latency of our different imple-
mentation with the one from NovaSparks [11], which is
summarized in Table V. The last two columns record the
speedup values of our FPGA-based solution over the CPU-
based solution and the NovaSparks’ solution. Compared with
the NovaSparks’ FPGA solution, our design can achieve 5.2
to 6.6 times speedup in terms of latency.

Table V
LATENCY COMPARISON WITH NOVASPARKS

CPU1 NovaSparks FPGA2 SUcpu SUns

20.7-26.5us 880-1500ns 132-287ns 90-157x 5.2-6.6x

VII. RELATED WORK

There has been growing interest in using dedicated accel-
eration logic to accelerate financial applications, specifically
using FPGAs as a high-throughput and low-latency solution
[2] [12]. Pottathuparambil et al. described an FPGA-based
ITCH feed handler to handle a peak data rate of 420 Mbps
with a deterministic latency of 2.7µs [13]. Subramoni et al.
presented a prototype of an on-line OPRA data feed decoder
[14], achieving a latency of less than 4µs. Lockwood et
al. presented an FPGA IP library with networking, I/O,
memory interfaces and financial protocol parsers [3]. These

applications demonstrate FPGAs as an ideal choice for low-
latency financial packet processing, however, they mainly
focus on parsing, decompressing, filtering and forwarding
the market data feeds without the need of maintaining a
large volume of data items.

Most reconfigurable designs for rebuilding order books
are commercial and their implementation details are usually
not presented. The Algo-Logic System provides a full order
book with a maximum processing latency of fewer than 230
nanoseconds on a single FPGA Platform [15]. Miles et al.
utilized a ternary tree to rebuild the market data from the
Nasdaq stock exchange with a latency between 180-205ns
[16]. Both of them rebuild the order books with the market
data feeds from the exchanges while our design is targeting
building order books in the exchanges, which involves more
complex operations such as publishing market data feeds.
The NovaSparks announces that its FPGA-based order book
capability for global cash equities achieves latencies between
800-1500ns [11], which is much worse than our design.

VIII. CONCLUSION

This paper presents our FPGA-based solution for the order
book update (OBU) algorithm for financial exchanges, which
is a widely used but latency sensitive algorithm. We derive
a fixed tick data structure for the order book to better fit
the FPGA architecture. We also design a customized cache
with a clipped tree to further reduce latency. Based on these
data structures, we propose the hardware-friendly order book
update algorithm that is highly efficient on FPGAs. In the
experiments, the FPGA-based solution is shown to provide
identical results as CPU-based solutions. It achieves the
throughput of 10Gb/s with latency of 132-288ns, which is
90-157 times faster than a CPU-based solution, and 5.2-6.6
times faster than an existing FPGA-based solution.

Current and future work includes optimizing the proposed
approach to minimize latency while enhancing security for
the entire system, and exploring the automation of building
block optimization.

ACKNOWLEDGMENT

This work was supported in part by the National Key
& D Program of China (Grant No. 2016YFA0602200),
the National Natural Science Foundation of China (Grant
No. 4137411, 91530323), the China Postdoctoral Science
Foundation (No. 2016M601031), the European Union Hori-
zon 2020 Research and Innovation Programme under grant
agreement number 671653, UK EPSRC (EP/I012036/1,
EP/L00058X/1, EP/L016796/1 and EP/N031768/1), Maxeler
and Intel Programmable Solutions Group.

REFERENCES

[1] S. Denholm, H. Inoue, T. Takenaka, T. Becker, and W. Luk,
“Network-Level FPGA Acceleration of Low Latency Market
Data Feed Arbitration,” IEICE Transactions on Information
and Systems, 2015.

[2] S. Wray, W. Luk, and P. Pietzuch, “Exploring algorithmic
trading in reconfigurable hardware.” in ASAP, 2010.

[3] J. W. Lockwood, A. Gupte, N. Mehta, M. Blott, T. English,
and K. Vissers, “A low-latency library in FPGA hardware for
high-frequency trading (hft),” in 20th Annual Symposium on
High-Performance Interconnects, 2012.

[4] Investopedia, “Order Book Definition.” [Online]. Available:
http://www.investopedia.com/terms/o/order-book.asp

[5] G. W. Morris, D. B. Thomas, and W. Luk, “FPGA accelerated
low-latency market data feed processing,” in IEEE Symposium
on High Performance Interconnects, 2009.

[6] I. Sourdis, D. Pnevmatikatos, S. Wong, and S. Vassiliadis, “A
reconfigurable perfect-hashing scheme for packet inspection,”
in International Conference on Field Programmable Logic
and Applications, 2005.

[7] R. Mueller, J. Teubner, and G. Alonso, “Sorting networks
on FPGAs,” The VLDB JournalThe International Journal on
Very Large Data Bases, 2012.

[8] R. Chen, S. Siriyal, and V. Prasanna, “Energy and memory
efficient mapping of bitonic sorting on FPGAs,” in Proceed-
ings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays.

[9] K. E. Batcher, “Sorting networks and their applications,” in
Proceedings Spring Joint Computer Conference, 1968.

[10] H. Fu, L. Gan, R. G. Clapp, H. Ruan, O. Pell, O. Mencer,
M. Flynn, X. Huang, and G. Yang, “Scaling reverse time
migration performance through reconfigurable dataflow en-
gines,” IEEE Micro, 2014.

[11] NovaSparks, “Novasparks announces FPGA-based
order book capability for global cash equities.”
[Online]. Available: http://www.novasparks.com/news-
and-events/press-releases/novasparks-announces-fpga-based-
order-book-capability-for-global-cash-equities.html

[12] N. A. Woods and T. VanCourt, “FPGA acceleration of quasi-
monte carlo in finance,” in International Conference on Field
Programmable Logic and Applications. IEEE, 2008.

[13] R. Pottathuparambil, J. Coyne, J. Allred, W. Lynch, and
V. Natoli, “Low-latency FPGA based financial data feed han-
dler,” in Field-Programmable Custom Computing Machines
(FCCM), 2011 IEEE.

[14] H. Subramoni, F. Petrini, V. Agarwal, and D. Pasetto,
“Streaming, low-latency communication in on-line trading
systems,” in Parallel & Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010.

[15] “Full Order Book.” [Online]. Available: http://algo-logic.
com/orderbook

[16] “A Full-Hardware Nasdaq Itch Ticker Plant on Solarflares
AoE FPGA Board.” [Online]. Available: http://www.cs.
columbia.edu/∼sedwards/classes/2013/4840/reports/Itch.pdf

