
F-C3D: FPGA-based 3-Dimensional Convolutional
Neural Network

Hongxiang Fan∗, Xinyu Niu†, Qiang liu∗, Wayne Luk†
∗School of Microelectronics, Tianjin University, China

†Dept. of Computing, School of Engineering, Imperial College London, UK
Email: {AUSTIN_fan, qiangliu}@tju.edu.cn∗, {nx210, w.luk}@doc.ic.ac.uk†

Abstract—In recent years, 3-dimension convolutional neural
networks (3D CNNs) have been widely used for video analysis,
3-dimension geometric data and medical image diagnosis. While
conventional CNNs are computationally intensive, 3D CNNs push
the computational requirements into another level, since each
computation depends on multiple image frames. This paper
describes a novel hardware architecture for a 3D convolutional
neural network, and design strategies to resolve memory usage
and bandwidth limitations. The proposed architecture F-C3D is
implemented on zc706 at 172MHz, showing 231 times speed up
compared with software implementation on 1 GHz ARM CPU,
7.4 times speed up on 3.07 GHz Intel CPU and nearly 10 times
lower power consumption than GPU.

I. INTRODUCTION

As deep learning has demonstrated its exciting potential,
FPGA-based accelerator of deep learning algorithms such as
2D CNNs has become the hot topic in FPGA filed. In recent
years, various FPGA-based implementations of 2D CNNs [1][2]
and related optimization strategies [3] have been proposed.
However, 2D CNNs are not directly suitable for 3-dimension
data analysis since it can only extract information from two
dimensions.

Recently, a novel 3D CNN algorithm with the ability in
extracting the third dimension information has been proposed
in [4]. Subsequently, various 3D CNNs have been implemented
in CPUs and GPUs respectively, which were used for human
action recognition in video [5], real-time object recognition in
volumetric data [6] and disease detection in medical images
[7].

The main difference between 3D CNNs and 2D CNNs lies
in convolution layer. A comparison between 2D convolution
and 3D convolution is illustrated in Figure 1. 3D convolution
layer computes features from contiguous frames, which thereby
can capture motion information along the temporal dimension.
The pseudo code of 3D convolution is given in Figure 2.
Table I summaries all the parameters used in this paper. As
shown in the pseudo code, comparing with 2D convolution,
the innermost loop i is the extra loop to compute the third
dimension information, which means that the computation of
3D convolution is S times more than 2D convolution.

There are two main challenges to implement 3D CNNs on
FPGAs:

t
em
po
ra
l

t
em
po
ra
l

(a) 3D Convolution (b) 2D Convolution

Fig. 1: Comparison of 3D convolution and 2D convolution

TABLE I: Parameters in 3D CNNs

Parameter Description
H the height of input feature map
W the width of input feature map
Kc the kernel size of 3D convolution
Kp the kernel size of 3D pooling
S the stride of 3D convolution kernel
Nc the number of channels
Nf the number of filters
Nl the number of frames

(1)With more nested loops, 3D CNN algorithms are more
complicated than 2D CNN algorithms. Thus, it is difficult to
determine the execution sequence of different loops in order
to improve data locality, which could effectively remove the
off-chip data transfer bottleneck.

(2)With the large number of layers and computation, 3D
CNN requires more on-chip memory and computational

for (channels = 0 ; channels < Nc; channels ++) {

for (filters = 0 ; filters < Nf; filters ++) {
for (frames = 0 ; frames < Nl; frames++) {

for(i = frames; i < S; i ++){
Output_fm[filters][channels][frames]+=

Coefficient[filters][channels]*

Input_fm[channels][i]

} } } }

Fig. 2: Psuedo code of 3D convolution

resorces. It is far more difficult to implement each layer of 3D
CNN separately on one FPGA chip than 2D CNN[2].

This paper presents an FPGA-based implementation of a 3D
CNN called C3D [5]. To our best knowledge, this is the first
attempt to implement 3D CNN on FPGA. The implementation
is applied to video human action recognition for demonstration.
The main contributions of our work are:

• A novel hardware architecture called F-C3D, which is
reconfigurable for different 3D convolution layers in 3D
CNNs.

• Design strategies to resolve the design difficulties in hard-
ware implementation with limited resource and bandwidth,
which makes our design portable to different FPGAs.

This paper is organized as follows. Section II presents
hardware architecture of 3D convolution and related design
strategies. Section III presents FPGA-based 3D CNN system
and experiment results. The conclusion and future work are
given in Section IV.

II. HARDWARE ARCHITECTURE AND DESIGN STRATEGY

In this section, we first present the hardware architecture
of F-C3D. Based on the architecture, several design strategies
for F-C3D are proposed to resolve memory and bandwidth
limitations.

A. Hardware Architecture

A classical CNN mainly includes convolution, fully con-
nected (fc) and pooling layers. In 2D CNNs, a previous study
[8] showed that convolution operations occupy over 90% of
the computation time. The same phenomenon also appears in
3D CNNs. Hence, in this paper, we mainly focus on designing
optimized hardware architecture for 3D convolution. For fc
layer, we adopt the architecture proposed for 2D CNNs [3].
In F-C3D, only one 3D convolution hardware module and
one fc hardware module are implemented on the FPGA. Both
modules are reconfigured to realize different layers.

Figure 3 illustrates the architecture of the 3D convolution
module when Kc = 3. The architecture contains three 2D
convolution modules, several buffers and a 3D pooling module.
Each 2D convolution module is composed of K2

c multipliers
and a pipelined adder tree with log (Kc) levels.

Three types of buffers are designed to make the 3D convolu-
tion a streaming architecture. The line buffer receives 1 pixel
and outputs Kc pixels in parallel. Then the Kc pixels stream
into the frame buffer and the matrix buffer respectively. Since
3D convolution kernel needs to accumulate Kc contiguous
output frames together, Kc − 1 frame buffers are added in the
design to cache Kc − 1 contiguous input frames. For example,
in Figure 3, when input frame i is processed in kernel 1.3,
the cached input frame i− 1 and i− 2 will also stream from
the frame buffers to kernel 1.1 and kernel 1.2 respectively.
Therefore, three contiguous output frames are generated from
three 2D kernels and accumulated together at the same time.

Conv
Block
2D

Kernel 1.1

Conv
Block
2D

Kernel 1.3

Conv
Block
2D

Kernel 1.2

Input
Feature

Map

Matrix
Buffer

Accumulation Block

3D Output_buffer

3D Pooling

Frame
Buffer

Frame
Buffer

Matrix
Buffer

Matrix
Buffer

Cache FIFO

FIFO

FIFO

Output Feature Map

Line Buffer

Fig. 3: Hardware architecture for 3D covolution layer

Then matrix buffer takes 3 pixels as input and outputs Kc *
Kc pixels at one time. Therefore, each 2D kernel can perform
convolution for every Kc * Kc input vector.

B. Design Strategy

The hardware architecture of 3D CNNs needs Kc 2D
convolutional kernels and large amount of on-chip memories
to buffer input data of different frames. As a result, F-C3D is
more resource-sensitive.

1) Input Cache and 3D Blocking: Due to the limited
bandwidth between on-chip memory and off-chip memory,
we propose input cache strategy to reuse the input data. As
shown in Figure 2. Each input feature map with Nc channels
needs to be calculted Nf times. With the input cache strategy,
we cache the input feature map on chip until the calculation
of the Nf filters finishes.

However, one output feature map needs S ∗Nc input feature
maps. Due to limited on-chip memory, it is hard to cache
all the input data needed for one output feature map on chip.
Hence, we propose 3D blocking to resolve this issue.

There are two methods to implement blocking operation in
3D CNNs, frame blocking and pixel blocking. Frame blocking
divides input data among frames and keeps each frame as
original size. Pixel blocking divides each frame into squares
with equal size.

As shown in Figure 4, both methods have overhead in input
data transfer. In frame blocking, if the first block contains 1st to

(a) frame blocking (b) pixel blocking

overhead
first block
second block

Fig. 4: Frame blocking and pixel blocking

Nth frames, the second block should include (N −Kc +1)th

to (2N −Kc + 1)th frames. Hence, the overhead is Kc − 1

frames. Assume that the cache size is C, each block contains
C/(Nc ∗H ∗W) frames. The overhead of each block is

(Kc − 1) ∗Nc ∗H ∗W/C (1)

As shown in Figure 4 (b), the second block contains the
pixels from the first block in pixel blocking. Assume the kernel
stride is 1, each frame has 2 ∗ (Kc− 1) overhead pixels. Given
each frame contains C/(Nl ∗ Nc) pixels, the side length is√
C/(Nc ∗Nl), the overhead for each block would be

2 ∗ (Kc − 1)/
√
C/(Nc ∗Nl) (2)

dividing (1) by (2) leads to

(H ∗W ∗
√
Nc)/(2 ∗

√
Nl ∗ C) (3)

This equation means the overhead ratio of two methods.
If the ratio is large than 1, the pixel blocking would have
less overhead than frame blocking. Thus, we need to take
parameters H , W , C, Nc and Nl into consideration and then
choose different strategies according to different FPGA chips.

Since C varies from different FPGA boards, we set zc706
as our target board. In F-C3D, we take 3D CNNs’ network
setting into (3) and find that the value is greatly large than 1.
Therefore, we choose pixel blocking as our blocking strategy.
Then, block size for each layer can be determined according
to (1) and layer’s parameter. Table II presents the blocking
strategy of F-C3D. For some layers, since all the input data
can be cached on chip, it is no need to use blocking strategy.

TABLE II: Implementation Detail of C3D on zc706

layer block strategy block size
conv1a pixel blocking 56 ∗ 56
conv2a pixel blocking 16 ∗ 16
conv3a pixel blocking 16 ∗ 16
conv3b pixel blocking 8 ∗ 8
conv4a no original size
conv4b pixel blocking 8 ∗ 8
conv5a no original size
conv5b no original size

2) Filter and Pixel Parallelism: Apart from optimization
strategies of improving input data locality, effective parallelism
strategy is also critical for our hardware architecture.

Figure 5 illustrates two methods of parallelization when
the degree of parallelism is 2. In filter parallelism, two 3D
kernels with different coefficients take the same pixel as input
to compute one result for two filters respectively. In pixel
parallelism, the coefficients for both kernels are the same.
Each 3D kernel receives different pixels to generate results for
one filter.

Although two methods produce the same number of outputs
at one time, there are two disadvantages in pixel parallelism.
Assume the degree of parallelism is P .

• Since P 3D kernels need P pixels at the same time, the
bandwidth between all buffers needs to increase P times.

• Because matrix buffer receives input data line by line,
when P is large than the number of pixels in one line,
zero-pad needs to be added into input feature map to
fit the control logic in matrix buffer, which will cause
overhead.

To simplify the control logic and minimize the overhead,
we use filter parallelism as our parallelism strategy.

Matrix
Buffer

3D
Kernel

1

3D
Kernel

2

 Matrix
 Buffer

3D
Kernel

1

3D
Kernel

1

(a) filter parallelism (b) pixel parallelism

Fig. 5: Two parallelism methods

III. IMPLEMENTATION DETAILS AND EXPERIMENT RESULT

In this section, we first present implementation details of
the whole system. Then, the experiment result is presented to
show the performance of F-C3D design.

A. Implementation Details

As illustrated in Figure 6, the whole system fits in one Zynq
chip along with DDR3 external memory. We implement one
convolution and one fc module on Processing Logic (PL) and
use Processing System (PS) to reconfigure the settings of 3D
convolution and fc through AXI4 and APB bus. In this way,
various layers with different parameters can be implemented.
The communication within PL is based on APB bus.There are
two DMA controllers in the system, which are used to transfer
data and coefficients from DDR to PL with the bandwidth 128
bits/clock cycle.

Processing
System

ARM
CPU

C
en
tr

al

In
te
rc
o
nn

ec
t

Conv
DMA
1

DMA
0

FC

DDR Controller

DDR3

On-chip

Off-chip

APB Bridge

AXI Interface

Processing Logic

 APB AXI

Fig. 6: System overview

For each layer, we first use PS to set parameters and then
transfer input feature maps and coefficient from DDR3 to PL
through DMA. The output feature maps will also be read out
from PL to DDR3 using DMA. Ping-pong buffers are utilized
in each output buffer in 3D convolution and fc modules to
increase the bandwidth.

B. Experiment Result

We quantitatively make a comparison between our FPGA
based design with ARM, Intel CPU and GPU implementations.
F-C3D is implemented on Zynq zc706 with Vivado (v2016.2)
and the resource utilization is presented in Table III.

TABLE III: Resource Utilization on Zynq zc706

LUT FF DSP48 BRAM
Available 218600 437200 900 545

Utilization 90281 114983 810 472
Used Percentage 41.2% 26.3% 90.0% 86.6%

The UCF101 dataset [9] is used in the experiment and the
dataset includes 13320 videos of 101 human action categories.
To keep the accuracy of prediction, each video has 10 batches
and each batch contains 16 frame clips [5]. The precision in
experiment is 16 bits fixed point with 8 integer bits, 7 fraction
bits and 1 signed bit. We compare our work with C3D tool [5],
which is running on ARM v7_A, Intel (R) Core I7-950 (3.07
GHz) CPU and GTX 860M GPU. In ARM and Intel CPU,
GCC 4.8.5 is used to compile C3D tool with −Ofast compile
flag. Table IV shows the performance of four implementations
in terms of platform information, processing time per video,
power and energy consumption per video(10 batches). In our
design, the time of processing one batch (contains 16 frames)
is 542.5 ms, which is nearly 231 times faster than C3D tool
running on ARM CPU and 7.4 times faster than CPU. Although
the processing speed of C3D tool running on GPU is 2.9 times
higher than our design, it consumes 9.6 times more energy than
FPGA implementation. To recognize one action, our design
consumes 52.6J energy.

TABLE IV: Comparison F-C3D With CPU And GPU Implementation

C3D C3D C3D FPGACPU ARM GPU

Platform Intel (R) Core ARM GTX Zynq
I7-950 v7_A 860M zc706

Num. of cores 8 (4 used) 2 (2 used) − −

Complier GNU GCC GNU GCC CUDA Vivado
(v7.0) (2016.2)

Compile Flags −Ofast −Ofast −Ofast −

Frequency 3.07 GHz Up to 1 GHz 1020 MHz 172 MHz

Precision 32bits 32bits 32bits 16bits

Technology 45 nm 28 nm 16 nm 28 nm

Processing Time 39800 1253700 1840 5425/ video (ms)

Power (W) 168 0.85 276 9.7

Energy 6686.8 1066 507 52.6/ video (J)

Compared to the C3D software implementation, the action
recognition error of F-C3D is 0.01%.

IV. CONCLUSION

This work proposes a novel hardware architecture, design
strategies for 3D CNN. To the best of our knowledge, this
is the first work to implement 3D CNN on FPGA. Through
optimisation techniques such as blocking and on-chip cache,
our design achieves 231 times speed up compared with ARM
implementation, and 10 times energy efficiency improvement
compared with designs running in GTX 860M GPU, with
negligable 3D CNN model accuracy loss.

REFERENCES

[1] C. Zhang, P. Li, G. Sun, Y. Guan, B. Xiao, and J. Cong, “Optimizing
FPGA-based accelerator design for deep convolutional neural networks,”
in Proceedings of the 2015 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays. ACM, 2015, pp. 161–170.

[2] H. Li, X. Fan, L. Jiao, W. Cao, X. Zhou, and L. Wang, “A high
performance FPGA-based accelerator for large-scale convolutional neural
networks,” in Field Programmable Logic and Applications (FPL), 2016
26th International Conference on. IEEE, 2016, pp. 1–9.

[3] R. Zhao, X. Niu, Y. Wu, W. Luk, and Q. Liu, “Optimizing CNN-based
object detection algorithms on embedded FPGA platforms,” 2017.

[4] S. Ji, W. Xu, M. Yang, and K. Yu, “3D convolutional neural networks
for human action recognition,” IEEE transactions on pattern analysis and
machine intelligence, vol. 35, no. 1, pp. 221–231, 2013.

[5] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, “Learning
spatiotemporal features with 3D convolutional networks,” in Proceedings
of the IEEE International Conference on Computer Vision, 2015, pp.
4489–4497.

[6] D. Maturana and S. Scherer, “Voxnet: A 3D convolutional neural network
for real-time object recognition,” in Intelligent Robots and Systems (IROS),
2015 IEEE/RSJ International Conference on. IEEE, 2015, pp. 922–928.

[7] Q. Dou, H. Chen, L. Yu, L. Zhao, J. Qin, D. Wang, V. C. Mok, L. Shi,
and P.-A. Heng, “Automatic detection of cerebral microbleeds from MR
images via 3D convolutional neural networks,” IEEE transactions on
medical imaging, vol. 35, no. 5, pp. 1182–1195, 2016.

[8] J. Cong and B. Xiao, “Minimizing computation in convolutional neural
networks,” in International Conference on Artificial Neural Networks.
Springer, 2014, pp. 281–290.

[9] B. Zhou, A. Lapedriza, J. Xiao, A. Torralba, and A. Oliva, “Learning
deep features for scene recognition using places database,” in Advances
in neural information processing systems, 2014, pp. 487–495.

