
Customised Pearlmutter Propagation: A Hardware

Architecture for Trust Region Policy Optimisation

Shengjia Shao and Wayne Luk

Department of Computing, Imperial College London

E-mail: {shengjia.shao12, w.luk}@imperial.ac.uk

Abstract—Reinforcement Learning (RL) is an area of machine
learning in which an agent interacts with the environment by
making sequential decisions. The agent receives reward from
the environment to find an optimal policy that maximises the
reward. Trust Region Policy Optimisation (TRPO) is a recent
policy optimisation algorithm that achieves superior results in
various RL benchmarks, but is computationally expensive. This
paper proposes Customised Pearlmutter Propagation (CPP), a
novel hardware architecture that accelerates TRPO on FPGA. We
use the Pearlmutter Algorithm to address the key computational
bottleneck of TRPO in a hardware efficient manner, avoiding
symbolic differentiation with change of variables. Experimental
evaluation using robotic locomotion benchmarks demonstrates
that the proposed CPP architecture implemented on Stratix-V
FPGA can achieve up to 20 times speed-up against 6-threaded
Keras deep learning library with Theano backend running on a
Core i7-5930K CPU.

I. INTRODUCTION

Reinforcement Learning (RL) is a branch of machine learn-

ing that addresses the sequential decision making problem of

how an agent should take actions to maximise the cumulative

reward gathered from the environment. In each time step t, the

agent observes the state of the environment st and takes an

action at according to his policy π. The environment receives

at and gives a scalar reward rt to the agent. The environment

state s then changes to st+1, as it’s affected by the action. The

agent’s task is to maximise his long-term cumulative reward

by learning to behave optimally through trial and error.

As many real world problems are sequential decision mak-

ing, RL is useful in various areas. In robotics, state s is the

robot’s position, velocity, etc.; policy π is the control logic;

and action a is the control signal for motors; reward can be

given for following the desired trajectory [1]. RL has also been

successfully applied to game playing and finance.

An important class of RL algorithms are policy gradient

methods. Assume we have a differentiable parameterised pol-

icy πθ, where θ denotes the policy parameters. Suppose we

also have an objective function J(πθ), such as the expected

cumulative reward. Then the policy gradient is ∇θJ(πθ).
Policy-gradient methods try to maximise J(πθ) by gradient-

based optimisation, i.e. ∆θ = α∇θJ(πθ), where α is the step

size. This process leads to an improved πθ for higher reward.

Policy gradient methods are iterative algorithms. Each itera-

tion is composed of gradient evaluation and parameter update.

Usually at least hundreds of iterations are needed to achieve

acceptable performance. To reduce the number of iterations,

step size selection is critical. A trivial step size α will lead to

too many iterations, while a step size too large may damage

the policy rather than improving it.

Trust Region Policy Optimisation (TRPO) is a new policy

gradient algorithm that selects step size α based on Kullback-

Leibler (KL) divergence [2]. KL is a statistical measure of

the difference between two probability distributions. In TRPO,

step size α is maximised provided that the KL between the old

policy πθ and the new one πθ+∆θ does not exceed a threshold.

In practice, TRPO tends to give monotonic improvement with

non-trivial step size, which helps it outperform previous policy

gradient algorithms in a wide range of benchmarks like Cart-

Pole, Mountain-Car, and MuJoCo robotic locomotion [3].

With TRPO, fewer iterations are needed, but each iteration

becomes much more complicated - an optimisation problem

with KL divergence as a constraint must be solved. This is

carried out by a Conjugate Gradient (CG) solver. Inside the

CG solver, the computation of Fisher-Vector Product (FVP)

takes most of the time. Based on our profiling results running

robotic locomotion benchmarks with Keras deep learning

framework, given the training data, CG takes around 80%

of the computation time, and CG time is dominated by FVP

computation.

With this in mind, we are interested in whether FPGA-based

custom computing can improve the computational efficiency of

TRPO by accelerating the critical part. However, FVP is tricky

to compute, and a straightforward implementation will not

achieve high performance. This paper proposes Customised

Pearlmutter Propagation (CPP), a novel architecture for FVP

computation on FPGA, optimised using the Pearlmutter algo-

rithm for efficiency. The major contributions are:

• A hardware architecture based on Customised Pearlmut-

ter Propagation (CPP), which computes Fisher-Vector

Product (FVP) efficiently on FPGA.

• Integration of CPP within the Conjugate Gradient solver

to accelerate the key computational bottleneck of Trust

Region Policy Gradient Optimisation (TRPO) algorithm.

• Implementation on Stratix-V FPGA and experimental

evaluation with MuJoCo robotic locomotion benchmarks,

achieving up to 20 times speed-up against Keras deep

learning library with Theano backend on i7-5930K CPU.

The rest of this paper is organised as follows. Section II

covers background. Section III details the CPP hardware archi-

tecture. Section IV presents experimental evaluation. Finally,

Section V presents the conclusion and suggests future work.

II. BACKGROUND

A. Trust Region Policy Optimisation (TRPO)

Here we briefly review the key points of TRPO. Readers

should refer to the TRPO paper [2] for full details.

Consider a Markov Decision Process (S,A, P, r, ρ0, γ),
where S is the state space,A the action space, P : S×A×S →
R the transition probability distribution, r : S → R the reward

function, ρ0 : S → R the distribution of initial state s0, and

γ the discount factor. Let policy πθ be a stochastic policy

πθ : S × A → [0, 1], which is a conditional distribution

πθ(a|s) = Pθ(At = a|St = s), where θ are the parameters.

The state-value function Vπ is the expected reward starting

from state st and then following policy πθ:

Vπθ
(st) = Eat,st+1,...

[

∞
∑

l=0

γlr(st+l)

]

(1)

The action-value function Qπθ
is the expected reward start-

ing from st, taking action at and then following policy πθ:

Qπθ
(st, at) = Est+1,at+1,...

[

∞
∑

l=0

γlr(st+l)

]

(2)

By subtracting Vπθ
from Qπθ

, the advantage function Aπθ

indicates the advantage of a specific action a over average:

Aπθ
(s, a) = Qπθ

(s, a)− Vπθ
(s) (3)

During each iteration, policy parameters θ will be updated.

In TRPO, the new θ is chosen by solving the following

constrained optimisation problem:

max
θ

Es∼ρθold
,a∼πθold

[

πθ(a|s)

πθold(a|s)
Aθold(s, a)

]

subject to Es∼ρθold
[DKL(πθold(·|s)||πθ(·|s))] ≤ δKL

(4)

where ρθold is the discounted state-visitation frequencies in-

duced by πθold , DKL the Kullback-Leibler (KL) divergence,

and δKL the maximum KL allowed. KL is a measure of

difference between two probability distributions P and Q:

DKL(P ||Q) =

∫ ∞

−∞

p(x)log
p(x)

q(x)
dx (5)

In each TRPO iteration, (4) is solved with two steps:

1. Compute a search direction via Conjugate Gradient (CG).

The general framework of CG is shown in Algorithm 1.

2. Perform a line search in that direction, ensuring that the

objective is improved without violating the KL constraint.

In each CG iteration, we will need to compute z = Ap.

Matrix A is the Fisher-Information Matrix. Vector z is the

Fisher-Vector Product (FVP). As all other computations in the

CG iteration are either O(N) or O(1), FVP dominates the

total computing time. Matrix A is approximated as follows:

A ≈ H =
1

N

N
∑

n=1

∂2

∂θi∂θj
DKL(πθold(·|sn)||πθ(·|sn)) (6)

where n = 1, · · · , N denotes each sample in the data set and

i, j denote the parameters in policy πθ.

Algorithm 1 Conjugate Gradient Algorithm

Input: A, b, Maximum Iterations MaxIter, Threshold Th
Output: Solution to the linear equation Ax = b

1: procedure CONJUGATE GRADIENT(A,b,MaxIter,Th)

2: Initialise p = b, r = b, x = 0, ρ = r⊺r, iter = 0
3: while ρ > Th and iter < MaxIter do

4: z← Ap ⊲ Fisher-Vector Product (FVP)

5: v ← r⊺r/p⊺z

6: x← x+ vp
7: r← r− vz
8: ρnew ← r⊺r

9: p← r+ (ρnew/ρ)p
10: ρ← ρnew
11: iter ← iter + 1
12: end while

13: return x

14: end procedure

Equation (6) shows matrix H is the Hessian matrix of

KL divergence with respect to θ, averaged over samples.

Therefore, the dimension of H is the number of parameters in

policy πθ, which can be extremrly large. For instance, the πθ

for the Humanoid-v1 benchmark used in this work has 57634

paramaters, resulting in a Hessian with 3.3 billion numbers.

Thus the explicit calculation and storage of H have to be

avoided. The good news is that in the CG algorithm, there is

no need to formulate H explicitly. All we need is the Fisher-

Vector Product z = Ap ≈ Hp, and it can be computed

indirectly. This is the reason why CG is used in TRPO.

Conventionally, FVP is computed in the following way [2]:

Hp =
1

N

N
∑

n=1

∇θ〈∇θDKLn
· p〉 (7)

Here, the KL divergence DKLn
= DKL(πθold(·|sn)||πθ(·|sn))

based on sample n is used as a loss function. Its gradient with

respect to θ can be computed via standard back propagation.

Then the dot product of the gradient and vector p is computed.

Finally the dot product is back propagated again to obtain FVP.

The symbolic differentiation tools provided by deep learning

libraries can handle the computation without user effort.

B. Reinforcement Learning on FPGA

Much of the existing work accelerating deep learning on

FPGA is focused on Convolutional Neural Networks (CNN).

There is only one paper about accelerating reinforcement

learning on FPGA, proposing an architecture for Deep Q-

Learning [4]. Q-Learning tries to learn the action-value Q

function (2). Unlike policy gradient, it does not have an

explicit policy πθ. In contrast, action is selected by maximising

the Q function, i.e. given the state s, select the action a that

yields the maximum Q value Q∗(s, a). Q-Learning is effective

for discrete action space. For continuous action spaces, max-

imising Q(s, a) can be difficult, and policy gradient methods

tend to perform better. To our best knowledge, this work is

the first paper to explore policy gradient methods on FPGA.

III. HARDWARE DESIGN

A. The Design Challenge

When using a deep learning library to compute FVP, the

computation is based on equation (7). However, we cannot

evaluate (7) in hardware in the same manner as software, and

a straightforward approach will lead to poor efficiency, which

is the biggest challenge of accelerating TRPO on FPGA.

In software, the deep learning library first builds a symbolic

computational graph for FVP during the compilation process.

Then it feeds samples through the computational graph during

runtime, which actually calculates the FVP. The symbolic

computational graph is built with the following 5 steps:

1. Symbolic Forward Propagation

2. Symbolic Back Propagation, evaluating gradient ∇θDKL

3. Symbolic Dot Product 〈∇θDKL,p〉
4. Symbolic Differentiation ∂

∂outj
〈∇θDKL,p〉

5. Symbolic Back Propagation, calculating ∇θ〈∇θDKL,p〉

Step 1 is a preparation for Step 2, as back propagation needs

the internal values computed during forward propagation. Step

4 is the symbolic differentiation of 〈∇θDKL,p〉 with respect

to each output value of the neural network (outj), which are

the inputs to the second round of back propagation (Step 5).

Step 1, 2, 3, 5 are all fine on hardware. The problem lies in

Step 4. The gradient ∇θDKL calculated via back propagation

and the subsequent dot product 〈∇θDKL,p〉 are with respect

to each parameter in the neural network θi. The dot product is

a function of θ, p, and sample s: 〈∇θDKL,p〉 = f(θ,p, s).
But in Step 4, we need to differentiate the dot product with

respect to the final outputs of the neural network outj , so that

it can be back propagated in the next step:

∂

∂outj
〈∇θDKL,p〉 =

∂

∂outj
f(θ,p, s) (8)

Note that outj does not appear in the argument list of f . It

is actually a function of sample s and network parameters θ:

outj = outj(θ, s). Therefore, to differentiate the dot product

with respect to outj , we will need a change of variables.

In software it can be handled by the automatic symbolic

math package without user effort, but in hardware it is gener-

ally infeasible for the circuit designer to manually derive all

these equations for non-trivial problems. In hardware, it would

be desirable to have a circuit that does the job to avoid manual

calculation (section III.B), or to circumvent this obstacle (our

proposed approach, section III.C-D) .

B. The Straightforward Approach

To carry out the change of variables in hardware, we need

to make use of the chain rule of differentiation:

∂〈∇θDKL,p〉

∂outj
=

∑

i

pi
∂DKL

∂θi

∂θi
∂outj

=
∑

i

pi
∂DKL

∂θi
/
∂outj
∂θi

(9)

where pi is the ith item in vector p, ∂DKL

∂θi
is the ith item in

the gradient vector ∇θDKL.
∂outj
∂θi

can be calculated by back

propagating an one-hot vector in which outj = 1.

The FVP for one sample can then be evaluated in hardware

as follows. These steps need to be repeated for each sample.

1. Standard Forward Propagation of the sample

2. Standard Back Propagation, evaluating gradient ∇θDKL

3. Repeat for each node outj in the output layer:

3.1 Back propagate outj , calculating
∂outj
∂θi

in (9)

3.2 Evaluate (9) by mult-add to obtain
∂〈∇θDKL,p〉

∂outj

4. Standard Back Propagation, calculating ∇θ〈∇θDKL,p〉

Note that the number of items in equation (9) is the

number of parameters in policy πθ, which will be large for

a neural network based policy. Worse: equation (9) needs to

be evaluated for the number of output nodes. Consequently,

Step 3 becomes a huge overhead, using much more time than

other steps combined. Hardware implementation based on this

straightforward approach will be very inefficient.

C. Pearlmutter Propagation

Our proposed approach is based on the Pearlmutter algo-

rithm, which is a special kind of forward propagation and

back propagation for computing Hessian vector products [5].

From calculus, Hessian vector product can be derived as:

Hv = lim
r→0

∇w(w + rv)−∇w(w)

r
=

∂

∂r
∇w(w + rv)

∣

∣

∣

r=0
(10)

We define the Pearlmutter differential operator R{·}:

R{f(w)} =
∂

∂r
f(w + rv)

∣

∣

∣

r=0
(11)

where v is a known constant.

Given a feed forward neural network, in which the standard

forward propagation in a layer is as follows:

xi =
∑

j
wjiyj + bi

yi = σi(xi)
(12)

where yj are the inputs from the previous layer, wji and bi
are the weights and biases, xi is the pre-activated value, σ()
is the activation function, and yi is the output of this layer.

Let E = E(y) be the loss function, and the derivative of

E with respect to the output value yi is ei = ∂E/∂yi. The

standard back propagation is then given as follows:

∂E/∂yi = ei(yi) +
∑

j
wij(∂E/∂xj)

∂E/∂xi = σ′
i(xi) (∂E/∂yi)

∂E/∂wij = yi (∂E/∂xj)

∂E/∂bi = ∂E/∂xi

(13)

By applying the R{·} operator to the standard forward

propagation, we get the Pearlmutter Forward Propagation:

R{xi} =
∑

j
(wjiR{yj}+ vjiyj) + vi

R{yi} = R{xi}σ
′
i(xi)

(14)

where vji and vi are the elements in vector v that correspond

to wji, and bi, respectively.

Similarly, we can derive the Pearlmutter Back Propagation

by applying the R{·} operator to standard back propagation:

R

{

∂E

∂yi

}

= e′i(yi)R{yi}+
∑

j

[

wijR

{

∂E

∂xj

}

+ vij
∂E

∂xj

]

R

{

∂E

∂xi

}

= σ′
i(xi)R

{

∂E

∂yi

}

+R{xi}σ
′′
i (xi)

∂E

∂yi

R

{

∂E

∂wij

}

= yiR

{

∂E

∂xj

}

+R{yi}
∂E

∂xj

R

{

∂E

∂bi

}

= R

{

∂E

∂xi

}

(15)

With the Pearlmutter forward and back propagation, the ele-

ments in the Hessian vector product Hv are just R{∂E/∂wij}
and R{∂E/∂bi}. The particular propagation in the Pearlmutter

algorithm eliminates the need for change of variables. The

general procedure of computing a Hessian vector product with

the Pearlmutter algorithm is as follows:

1. Standard Forward Propagation

2. Standard Back Propagation

3. Pearlmutter Forward Propagation

4. Pearlmutter Back Propagation

Step 1-3 compute the values to be used in Step 4. Although the

Pearlmutter forward and back propagation look complicated,

they still have quadratic time complexity, which is the same as

that of standard forward and back propagation. Compared with

the straightforward approach in section III.B, the Pearlmutter

approach is much more efficient. Moreover, the Pearlmutter

forward and back propagation follow the regular pattern of

matrix-vector multiplication, which is hardware efficient.

D. CPP: Customised Pearlmutter Propagation

Now we apply the Pearlmutter propagation to the specific

problem of FVP calculation within TRPO context. This allows

us to exploit problem specific features to simplify computation.

In TRPO, a neural network based policy θπ maps observa-

tion state s to the mean vector µ of a m-dimensional diagonal

Gaussian distribution πθ(·|s) = N(µ, σ). The standard devia-

tion is a stand-alone set of parameters σ = diag(σ1, · · · , σm).
Their natural logarithm, logstdi = ln(σi), are part of the

policy parameters, which are also trained in each iteration, but

are unrelated to the neural network. For FVP computation, the

loss function E is the KL divergence, given by:

E = DKL(πθold(·|s)||πθ(·|s)) (16)

=

m
∑

j=1

[

ln(
σj

σ̂j

) +
(µj − µ̂j)

2 + σ̂j
2

2σ2
j

]

−
m

2
(17)

where µ̂j and σ̂j are constants whose values are taken from

µj and σj , respectively.

Differentiating the equation above, it follows that the first

order derivative of E with respect to µj and σj are zero:

∂E/∂µj = 0 ∂E/∂σj = 0 (18)

Note that µj is the final output values of the neural network.

Then following the back propagation equations (13), it can be

derived that all first order derivatives are zero:

∂E/∂yi = 0 ∂E/∂xi = 0 ∂E/∂wij = 0 ∂E/∂bi = 0

The zero first order derivative is a problem-specific feature

allowing architecture customisation. First, the standard back

propagation is no longer needed since we already know the

results are 0. Second, by substituting zeros into the Pearlmutter

Back Propagation equations (15), we simplify them as follows:

R {∂E/∂yi} = e′i(yi)R{yi}+
∑

j
wijR {∂E/∂xj}

R {∂E/∂xi} = σ′
i(xi)R {∂E/∂yi}

R {∂E/∂wij} = yiR {∂E/∂xj}

R {∂E/∂bi} = R {∂E/∂xi}

(19)

The starting point of Pearlmutter back propagation is the final

output layer. As the neural network generates the mean vector

µ, we have yi = outi = µi. For the neurons in this layer:

R {∂E/∂yi} = R {∂E/∂µi} = R{yi}/σ
2
i (20)

For the natural logarithm of standard derivation σ, we have:

R {∂E/∂logstdi} = 2vlogstdi
(21)

where vlogstdi
is the item in v that corresponds to logstdi.

With the proposed scheme above, the FVP for each sample

can be computed in hardware in two steps, which we call the

Customised Pearlmutter Propagation (CPP):

1. Combined Forward Propagation - eq. (12) and (14)

2. Pearlmutter Back Propagation - eq. (19)

The Pearlmutter Forward Propagation needs the result from the

standard forward propagation, but they can be merged in order

to be evaluated side-by-side, which formulates the Combined

Forward Propagation in Step 1. This merge means each sample

only needs to be fed into the hardware once, rather than twice,

which halves the communication overhead. Compared against

the straightforward approach in III.B, the proposed procedure

CPP based on Pearlmutter propagation has superior efficiency.

E. The CPP System Architecture

From a computational perspective, both the Combined For-

ward Propagation and the Pearlmutter Back Propagation are

essentially dense matrix-vector multiplication. They can be

efficiently implemented in hardware via blocked matrix-vector

multiplication [6].

1) Type A and Type B Blocks: We have two types of

blocked matrix-vector product, A and B, illustrated in Fig.1.

In Type A block, the inner loop is the loop over input vector,

and the weight matrix is traversed in a column major manner.

An output item will be produced at the end of each inner loop.

In Type B block, the loop over input is the outer loop, and

the weight matrix is traversed in row major. Partial results are

buffered, and final results will come out in the last inner loop.

The two types of matrix-vector multiplication can be cas-

caded in an A-B-A-B manner to efficiently carry out forward

IN IN

OUTOUT

W W

Type A Type B

Fig. 1. Type A and Type B blocked matrix-vector multiplication. Both are
2 × 2 blocked for illustration purpose. In Type A, the loop over the input
vector is the inner loop. In the first inner loop, the dot products of the input
vector and the blue matrix columns are calculated, resulting in two output
items (column 1 and 4). In the second inner loop, the dot products of the
input and the orange matrix columns are calculated, and so on. In Type B,
the loop over the input vector is the outer loop. In the first inner loop, the
product of the 1st and 5th element in the input vector and their corresponding
matrix items (blue) in all matrix columns are calculated, resulting in a partial
result for the output. In the second inner loop, the product of the 2nd and
6th element in the input and their corresponding matrix items (orange) are
calculated, resulting in another partial result for each output item. These partial
results are accumulated, and final results come out in the last inner loop.

ODD LAYER

A

B

DIFF

EVEN LAYER

B

A

ODD LAYER

A

B

IN

FVP

FP

BP

Fig. 2. Overall System Architecture. The Odd Layer has a Type A block for
forward propagation and a Type B block for back propagation; the Even Layer
has a Type B block for forward propagation and a Type A block for back
propagation. There are buffers between adjacent layers which are omitted in
this figure. The red U-shaped arrow indicates the data flow: the upper half
is the Combined Forward Propagation (FP), the lower half is the Pearlmutter
Back Propagation (BP). The DIFF module calculates R{∂E/∂yi} based on
eq. (20), preparing for the Pearlmutter Back Propagation.

and back propagation for a multi-layer neural network. The

first layer uses Type A block, as it can read new values from

DRAM every cycle. The second layer’s Type B block starts

its fitst inner loop when the first item from the first layer

becomes available. As soon as the second item from the first

layer arrives, the second layer’s Type B block can start its

second inner loop. When the second layer outputs its results

in its last inner loop, the third layer’s Type A block can start.

Therefore, by cascading in an A-B-A-B manner, the prop-

agation between adjacent layers can be pipelined, reduces the

number of cycles needed for computation.

2) Overall System Architecture: The overall system archi-

tecture is shown in Fig. 2. We have two types of layers. The

Odd Layer has a Type A block for forward propagation and

a Type B block for back propagation; the Even Layer has a

Type B block for forward propagation and a Type A block

for back propagation. This setting implements the A-B-A-

B cascading scheme for efficient pipeline between adjacent

Fig. 3. Ant-v1 (left) and Humanoid-v1 (right) MuJoCo benchmarks [7].

layers. The DIFF block calculates R{∂E/∂yi} based on eq.

(20), preparing for the Pearlmutter Back Propagation. As we

need to compute the FVP averaged over the whole data set,

the FVP for each sample is accumulated inside the hardware,

and finally sent back to CPU to be averaged.

The A-B-A-B cascading between adjacent layers is a fine-

grained pipeline. We also implement a coarse-grained pipeline,

overlapping the processing of adjacent training samples. This

is because the FVP of different samples are independent. We

begin the forward propagation of sample #i+1 as soon as the

forward propagation of sample #i finishes. Therefore, we are

overlapping the back propagation of sample #i and the forward

propagation of sample #i+1, which further halves the number

of cycles needed to compute FVP for the entire data set.

The system architecture is modular and parameterised.

Multiple instances of Odd Layer and Even Layer modules

can be instantiated according to the application. Also, Type A

and Type B blocks are parameterised to support various matrix

blocking schemes. Stream padding is implemented to handle

the case in which a certain matrix dimension is not a multiple

of the number of blocks in that dimension.

IV. EXPERIMENTAL EVALUATION

A. Benchmark Problems

In our experiment, we use two MuJoCo benchmarks from

OpenAI Gym [7], Ant and Humanoid. They are also used in

[3] that evaluates various RL algorithms, including TRPO. In

both problems, the RL algorithm tries to learn how to control

a robot to run from scratch, without any prior knowledge.

• Ant-v1: A robot with 13 rigid links and 8 actuated

joints, shown in Fig. 3. The observation space S is

111-dimensional, the action space A is 8-dimensional.

We use a neural network sized at 111 (input) - 64 - 32 -

8 (output) for this problem, with tanh() activation.

• Humanoid-v1: A humanoid robot with many more links

and joints, shown in Fig. 3. The observation space S is

376-dimensional, the action space A is 17-dimensional.

We use a neural network sized at 376 (input) - 128 - 64 -

17 (output) for this problem, with tanh() activation.

As mentioned bafore, solving the search direction via Con-

jugate Gradient (CG) is the most time consuming part of

TRPO, and FVP computation dominates the CG time. We

write a CG solver in C with FVP calculated by FPGA. The

training data set comes from MuJoCo simulation, consisting

of 50000 samples for each benchmark. We evaluate our C-

FPGA hybrid system against the Keras deep learning library

with Theano backend (double precision) running on CPU.

20 21 22 23 24 25 26 27 28

Number of Fractional Bits

0

0.05

0.1

0.15

0.2

0.25

M
A

P
E

 (
%

)

Fig. 4. Mean Absolute Percentage Error (MAPE) of the Conjugate Gradient
result versus Number of Fractional Bits used in hardware. The result from
FPGA is compared against that from Keras deep learning framework with
Theano backend (double precision). Humanoid-v1 data set is used.

TABLE I
RESOURCE USAGE OF STRATIX-V 5SGSD8 FPGA

Parallelism Logic Primary FF DSP BRAM

Ant-v1 [16,8,5,8] 133112 256505 1377 1846
Humanoid-v1 [48,4,8,2] 140238 269357 1368 1888

FPGA Total 262400 524800 1963 2567

For the CG solver, the maximum iterations MaxIter = 10,

and CGDamping = 0.1. For TRPO, maximum KL divergence

is δKL = 0.01. These settings follow the TRPO paper [2].

B. Number Representation Optimisation

We use fixed-point numbers for computation. Fig. 4 shows

the Mean Absolute Percentage Error (MAPE) of CG results

vs. number of fractional bits, verified against double precision

Keras software. The Humanoid-v1 data set is used. Judging

from MAPE alone, it seems 24 fractional bits is optimal. But

after taking account of other factors, we choose 23 fractional

bits for our system. By analysing the value range, we find

4 integer bits are needed in forward propagation, and if we

use 23 fractional bits, the total bit-width will be 27-bit. In the

Stratix-V FPGA we used, a 27bit×27bit multiplication can be

carried out by one DSP, but for 28bit two DSPs are needed.

Thus we sacrifice accuracy a little bit (0.028% MAPE) in

exchange for a big reduction in resource usage, which enables

higher parallelism. The same bit-width setting also works for

Ant-v1, achieving 0.007% MAPE.

C. Performance Evaluation

We compare the measured elapsed time for our C-FPGA

hybrid system and the Keras deep learning framework with

Theano backend to compute TRPO search direction via Con-

jugate Gradient algorithm, which is the most time consuming

part. Table II shows the performance comparison.

The proposed hardware architecture is implemented on

Maxeler’s MAX4 platform with a Stratix-V 5SGSD8 FPGA.

FPGA clock frequency is 200MHz. The FPGA host computer

has Intel Xeon E5-2640 CPU (32nm, 6 cores, 2.5GHz).

The 6-threaded Keras and Theano software run on a work-

station with Core i7-5930K CPU (22nm, 6 cores, 3.5GHz).

Here, Model is the theoretical FVP computing time cal-

culated by dividing the number of cycles to run by FPGA

frequency. CG(FVP)FPGA and CG(FVP)Keras is the actual

elapsed time for Conjugate Gradient with the elapsed time

TABLE II
PERFORMANCE COMPARISON

Model CG (FVP) FPGA CG (FVP) Keras Acc.

Ant-v1 0.158s 0.192s (0.182s) 3.976s (3.975s) 20.70
Humanoid-v1 0.823s 0.892s (0.852s) 12.016s (12.014s) 13.47

for FVP computation inside the brackets, measured in the

experiments. Acc. is the C-FPGA speed-up of CG against 6-

threaded Kreas software with Theano backend.

The difference between model prediction and actual mea-

sured FVP computation time is due to FPGA API call latency.

A higher speed-up is achieved for Ant-v1 benchmark, which

has a smaller problem size. However, it is difficult to draw the

big picture of how the system scales based on just two data

points. We plan to explore the scalability in future work.

V. CONCLUSION AND FUTURE WORK

In this work, we propose a novel hardware architecture,

Customised Pearlmutter Propagation (CPP), for accelerating

Trust Region Policy Gradient (TRPO) on FPGA. The design

addresses the key computational bottleneck of TRPO, which

is the Fisher-Vector Product (FVP) computation inside the

Conjugate Gradient (CG) solver. The proposed approach is

based on the Pearlmutter algorithm, which enables an efficient

hardware design, circumventing the key obstacle - symbolic

differentiation with change of variables.

The proposed system is evaluated using two MuJoCo

robotic locomotion benchmarks. Experimental results show

that the proposed solution running on Stratix-V FPGA

achieved up to 20 times speed-up against Keras deep learning

framework with Theano backend running on i7-5930K CPU.

Future work includes further fine tuning of the CPP ar-

chitecture, automating the development of optimised CPP

implementations, as well as additional experimental evaluation

to explore the scalability of the proposed approach.

Acknowledgements. The support of the Lee Family Schol-

arship, the EU Horizon 2020 Research and Innovation Pro-

gramme under grant agreement number 671653 and the UK

EPSRC (EP/L00058X/1, EP/L016796/1, EP/N031768/1 and

EP/P010040/1) is gratefully acknowledged.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32,
no. 11, pp. 1238–1274, 2013.

[2] J. Schulman, S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz, “Trust
Region Policy Optimization,” in ICML, 2015, pp. 1889–1897.

[3] Y. Duan, X. Chen, R. Houthooft, J. Schulman, and P. Abbeel, “Bench-
marking deep reinforcement learning for continuous control,” in ICML,
2016, pp. 1329–1338.

[4] J. Su, J. Liu, D. B. Thomas, and P. Y. Cheung, “Neural Network
Based Reinforcement Learning Acceleration on FPGA Platforms,” ACM

SIGARCH Computer Architecture News, vol. 44, no. 4, pp. 68–73, 2017.
[5] B. A. Pearlmutter, “Fast exact multiplication by the Hessian,” Neural

computation, vol. 6, no. 1, pp. 147–160, 1994.
[6] A. Grama, Introduction to parallel computing. Pearson Education, 2003.
[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schul-

man, J. Tang, and W. Zaremba, “OpenAI gym,” arXiv preprint

arXiv:1606.01540, 2016.

