
Convolutional Neural Networks on Dataflow Engines

Nils Voss∗†, Marco Bacis†‡, Oskar Mencer†, Georgi Gaydadjiev∗†, Wayne Luk∗
∗Imperial College London
‡Politecnico di Milano

†Maxeler Technologies Ltd.
{nvoss, mbacis, oskar, georgi}@maxeler.com w.luk@imperial.ac.uk

Abstract—In this paper we discuss a high performance imple-
mentation for Convolutional Neural Networks (CNNs) inference
on the latest generation of Dataflow Engines (DFEs).

We discuss the architectural choices made during the design
phase taking into account the DFE chip properties. We then
perform design space exploration, considering the memory band-
width and resources utilisation constraints derived from the used
DFE and the chosen architecture.

Finally, we discuss the high performance implementation and
compare the obtained performance against other implementa-
tions, showing that our proposed design reaches 2,450 GOPS
when running VGG16 as a test case.

I. INTRODUCTION

Machine learning in general and Neural Networks (NNs)

in particular have received a lot of attention in recent years.

Many different publications focus on the possibilities of high

performance hardware implementations for typical machine

learning and NN tasks and show that significant speed ups

and power efficiency improvements are achievable [1]–[3].

The above combined with the higher flexibility make this

approach a very interesting choice for machine learning even

when compared to ASIC implementations [4].

Especially applications of NNs for deep learning and CNNs

have particularly demanding computational and sometimes

even real time requirements, e.g., a HD live feed that should be

processed at frame rate. For these reasons CNNs can benefit

from high performance hardware implementation, especially

when huge archives of video material are considered.

One of the main challenges in the development of high

performance CNN implementations is to find the right balance

between on-chip and off-chip memory resources, since usually

it is not possible to store all weight parameters and the inter

layer computation results on-chip for networks of practical

relevant sizes. For this reason CNN implementations usually

rely on external system DDR memory, which has limited total

bandwidth, erratic bandwidth, unpredictable access latencies

and significantly contribute to the system power consumption.

In this paper we will discuss an optimised architecture for a

generic high performance CNNs implementation and perform

a design space exploration based on a high level model.

The main contributions of this paper are as follows:

• a high performance CNN hardware design exploiting

multiple levels of parallelism in deep learning networks;

• design space exploration using the proposed architecture,
driven by the characteristics of the specific device;

• a test case showing VGG16 network implementation on
the latest generation of DFEs.

The paper is organised as follows. Section II gives a

background on Maxeler DFEs specific features. Section III

lists the state of the art work relevant to our proposal. Our

architecture is explained in detail in Section IV, while the

specific optimisations used and the Design Space Exploration

(DSE) are described in Section V. Finally, we compare our

results against related work in Section VI and draw our final

considerations in Section VII.

II. MAXJ AND MAX5 DFE

MaxCompiler is a streaming data-flow driven design envi-

ronment. The user describes the generation of a computational

data-flow graph using a Java style language, called MaxJ. The

graph is then automatically mapped onto a hardware platform.

One special characteristic of MaxJ is that it provides a good

trade off between designer productivity and low level hardware

control [5]. For example it is possible to create custom ad-

dress command generators, which allow high efficiency DDR

access, even for complex, non-linear data access patterns.

Additionally MaxCompiler provides bit-accurate simulation

capability, and libraries which allow easy integration into CPU

code. It is build to operate with DFEs [6], which combine large

chips with big and fast memory and high-speed interconnects.

The latest, fifth generation MAX5 DFE consists of a large

capacity arithmetic chip, three 16GB DDR4 DIMMs (also

referred as Large Memory, LMEM), 16x PCIe gen. 3 con-

nectivity, a 40 GBit/s QSFP network interface and is fully

compatible with the Amazon F1 cloud instance.

Each MAX5 DFE has 6,840 dedicated multipliers and over

two million registers. Additionally it has 38 MB of on-chip

SRAM fast memory which we call FMEM. This memory has

an aggregated memory bandwidth of over 20 TB/s

III. RELATED WORK

Interest into high performance implementations of CNNs

increased during the last few years. The most notable work is

the Tensor Processing Unit (TPU) chip, which is specifically

designed for neural networks [7]. The TPU was developed

by Google for their machine learning needs and offers up

to 200x speedup compared to conventional CPUs. The major

TPU advantages are the very short computation latency and

up to 10x cost reductions compared to other solutions.

2017 IEEE 35th International Conference on Computer Design

1063-6404/17 $31.00 © 2017 IEEE

DOI 10.1109/ICCD.2017.77

435

However, other companies like Microsoft follow a different

path and build their own cloud using off-the-shelf chips [4].

They achieve similar performance compared to the TPU and

claim lower development costs and more flexibility. This

especially adds the option to follow the most recent changes

in machine learning algorithms.

One notable work is Caffeine [1], in which the authors show
the implementation of a general framework based on a matrix

multiplication architecture. The proposed architecture uses a

High Level Synthesis (HLS) generated systolic array which

exploits data locality thanks to a weight-major mappping
technique for both convolution and fully connected layers

execution. Their implementations, integrated with the deep

learning framework Caffe, obtained 354 GOPS throughput
when configured as VGG16.

A different approach is reported in [8]. The authors per-

form an analysis of the CNN computation loop structure and

compare different optimisations (in particular loop unrolling,

tiling and interchange). Their analytical model based on the

loop order and parameters is then used to perform the DSE.

The best design found in the work uses loop unrolling of the

external loops of the convolution layer. This allows to reuse the

weights and minimise memory accesses and size requirements,

and to achieve 645 GOPS performance.

In [2], the authors propose an end-to-end automation flow

for systolic array design synthesis. A 2D systolic array struc-

ture improves the timing and the data reuse of the design, and

is obtained from the analysis of the nested loops implementing

the considered algorithm. By performing a two-phase DSE

(first generic and then platform-specific), the authors are able

to map an aribtrary user-defined CNN algorithm to few pre-

designed templates. As a result an example VGG16 design

achieves 1.17 TOPS.

In [3] the authors use the 2D Winograd algorithm [9]

and buffer the needed data in a line buffer. The architecture

performs the 2D Winograd over a tile with a fixed stride, in

order to compute multiple results at the same time. In this way,

the authors have been able to implement an automatic tool

flow, and reach 2.9 TOPS with their VGG16 implementation.

IV. VGG16 ARCHITECTURE

A first step in developing an architecture for a high per-

formance CNN implementation on a DFE is to determine,

if off-chip memory will be required and if a fully streaming

architecture is feasible.

The first layer of the VGG16 CNN has 64 output planes,

where each output contains 224x224 pixels. This means that

in total 3,211,264 elements should be stored for the first layer

alone. If each element occupies one byte the buffering of all

layer 1 elements requires roughly 3MB.
It is necessary to compute all output planes of a given

layer before the computation of the first output plane of the

next layer can be finished. This means that a fully streaming

architecture, where all layers are computed in parallel, requires

buffers large enough to store all inter layer results preferably

on-chip. This is not feasible because of the prohibitive on-chip

memory requirements.

In theory it would be possible to buffer data between layers

off-chip and still process each layer in parallel, but this would

require an excessive off-chip memory bandwidth.

Considering the above, the proposed architecture will use

Processing Elements (PEs), which all work on the same layer

in parallel. The overall architecture of the convolution design

can be seen in Figure 1. Each PE can process multiple pixels

and multiple input feature maps in parallel, while calculating

one output feature map.

A PE handles the convolution operation as well as the rec-

tifier linear unit (ReLU) activation function [10]. Additionally

it has a buffer used for the accumulation of the results in the

output feature map. This structure is double buffered so that

once all input feature maps are processed the output feature

maps do not need to be written back to the off-chip memory

from all PEs at the same time. When the output data are

Fig. 1. Convolution design architecture, highlighting the PE connections

streamed back to the off-chip memory optional pooling can

be applied during the streaming process.

V. OPTIMISATIONS AND DESIGN SPACE EXPLORATION

In this section, we introduce a series different optimisations

that are applicable to the proposed architecture, together with

our DSE derived from them. The main goal of the applied op-

timisations is to fully utilise all available arithmetic resources

in addition to an maximising usage of the on-chip memory.

A. Processing Elements count

The number of used Processing Elements (PEs) defines di-

rectly the required resource utilisation and memory bandwidth.

In particular, the more PEs are used the more on-chip mem-

ory is needed, but on the other hand the memory bandwidth

requirements are reduced, as less pixels per cycle have to be

processed per cycle. In addition, more PEs mean that less

iterations have to be performed to generate all outputs.

To simplify control logic and to avoid stalling, the number

of PEs is a divisor of the specific number of outputs.

436

B. Processing of Multiple Inputs in Parallel

An option to narrow the PEs memory write port width is

to process multiple inputs in parallel. While this has no direct

impact on the required off-chip memory bandwidth, it means

that more weights have to be loaded at the same time.

Multiple parallel inputs can be used to make it easier to

match the aspect ratios of the available on-chip memory or to

fit the output size of each layer better to the available PEs.

C. Datatype Customisation

CNNs are ideal for custom data representations [11]–[13].

It is possible to successfully use very low precision as shown

for example in [14]. However, these very low precision types

usually also lead to changes to the network architecture.

Because of the specific CNNs characteristics we consider

only fixed point datatypes in this work. Fixed point operations

require significantly less area and power compared to their

floating point counterparts. One specific reason for the above

is that area is expended on normalisation and denormalisation

around every operation.

The precise fixed point type used is determined by sim-

ulating the system (with a device simulator or using soft-

ware libraries for fixed point computation) and checking the

classification results on a test set against a reference floating

point version. A different option to optimise the trade off

between the used area and the achieved performance is to

use asymmetric arithmetic. For example the weights can be

represented with less bits than the actual network data. This

also helps when the port widths of the available hardware

multipliers are asymmetric.

D. Design Space Exploration

Our DSE is performed taking into account all previously

described optimisations, such as a fixed point datatype, a

variable PE number and number of inputs per cycle. In order to

improve the timing characteristics we divide the chip into three

super regions, which are programmed separately. This removes

the need for communication between parts of the algorithm,

which are placed on opposite ends of the chip. As a result we

only perform the design space exploration for one super region

(at a third of the external IO bandwidth) and then replicate our

design three times in space.

Figure 2 shows the design space points by applying the

optimisations described in this Section. The implementation

choice starts from a range of number of PEs and pixels per

cycle (pipes). We can then prune the design space by removing
all the non-feasible points. These are points in which the

architectural and application-specific limits are not respected.

The same exploration can be performed by considering

the Roofline Model [15], which is a visual model initially

used to analyse the attainable performance in multicore sys-

tems. The model is based on two terms: the Computation to

Communication (CTC) ratio, which represents the number of

operations per memory byte access, and the computational

performance, represented in GOPS. Ceilings are then added

to the graph: the peak bandwidth ceiling (left to middle) and

Fig. 2. Design Space of the proposed architecture for the VGG16 network.
Blue dots are considered in the DSE (chosen design point in green). Red
and grey dots where not considered because of resources and complexity
constraints.

Fig. 3. Roofline Model representation of our Design Space for VGG16,
showing the peak bandwith and performance ceilings. Blue dots are considered
in the DSE (chosen design point in green). Red and grey dots were not
considered because of resources and complexity constraints.

the peak performance ceiling (right). These bounds depend on
the chosen architecture and compute device, and are useful to

decide which parts of the design to optimise and which not.

The graph in Figure 3 represents the design space points

based on their expected CTC ratio and performance at

240MHz, which is our target frequency. As it can be seen from

the picture, our design parameters choice represents the best

choice in terms of performance, without becoming memory

bound and having a certain margin of the resources utilisation

(useful for timing constraints).

VI. EXPERIMENTAL RESULTS

In this section, we present our implementation results, in

terms of performance and consumption of power/resources.

We also perform a comparison with previous work to validate

our model and implementation.

437

TABLE I
PERFORMANCE COMPARISON

[1] [8] [2] [3] Our Work
Precision 16 bits fixed 16 bits fixed 16 bits fixed 16 bits fixed 18-27 bits fixed

Freq (MHz) 150 150 231.85 200 240

Logic cell (K) 300 161 313 600 788

SRAM (Kb) 1, 248× 18 1, 900× 20 1, 668× 20 1, 824× 18 3, 128× 18

Multipliers 2,833 1,518 1,500 2,520 6,057

TeraOp/s 0.354 0.645 1.17 2.9 2.45

A. Experimental Setup

We implement and evaluate our design on a Maxeler MAX5

DFE (described in Section II). The DFE contains over 1

million logic elements, 6,840 multipliers and 38 MB of on-

chip memory. In addition, 48GB of LMEM, organised as three

independent 16GB DDR4 channels and a 16x PCIe gen. 3 link

to the host processor are available.

The host application runs on a Dual-Socket server with

Intel®Xeon®E5-2643V4 (6 cores @3.40GHz) CPUs.

B. Results and Comparison

In order to test our methodology, we implement the con-

volutional layers of the VGG16 network. The implemented

design consists of 16 PEs for each of the three super regions.

Each PEs receives at each clock cycle 14 values (7 values ×
2 feature maps).

The total consumption of resources consumption and the

performance of our design can be seen in Table I, along with

related work. Our design uses 67% of the available logic,

89% of the multipliers, and 53% of the memory resources.

To measure the actual performance of our implementation,

we show a test application which performs a forward pass

over a batch of images. The test results show an average

throughput of 84.5 images per second at a 240MHz frequency

achieving 2,450 GOPS. It can be assumed that due to the low

resource utilisation higher frequencies can be achieved with

more aggressive timing optimisations.

It has to be noted that most of other work at high perfor-

mance uses 16 bits precision data types and 8-16 bits precision

for the weights. This is due to the used multiplier architecture,

which allows tiling of the hardware multipliers into two 16×16
bits multipliers. Our work uses instead a higher precision data

type (27 bits data, 18 bits weights), considering the specific

hardware multiplier implementation using 27 by 18 multipli-
ers, which cannot (easily) be tiled with lower size operators.

Considering these limitations, our work positions between [2]

and [3], and is one of the fastest implementations compared to

state of the art, while providing an especially good accuracy.

In order to significantly improve the performance further we

will employ the Winograd transformation in future research.

VII. CONCLUSIONS

In this work, we presented our design space exploration and

the implementation of a widely used CNN on the Maxeler

MAX5 DFE. The design space exploration was tailored to

our base design, composed by processing elements, each

computing part of the network in an efficient way, by merging

the convolution and pooling execution. We then estimated the

expected performance and resources usage, along with the

required external memory bandwidth, which is seen as the

limiting factor in most designs. We used both, standard design

space exploration exploration and the Roofline model. Finally,

we implemented a VGG16 test case showing high throughput.
Future steps to improve our architecture include the im-

plementation of a Winograd-based design, in order to further

reduce the computational complexity of each processing ele-

ment. Work in progress considers the implementation of the

Fully-Connected and other layers with a similar model and

analysis and also the automation of the proposed approach.

REFERENCES

[1] C. Zhang et al., “Caffeine: Towards uniformed representation and
acceleration for deep convolutional neural networks,” in ICCAD, 2016.

[2] X. Wei et al., “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in Proceedings of the 54th
Annual Design Automation Conference 2017. ACM, 2017, p. 29.

[3] L. Lu et al., “Evaluating fast algorithms for convolutional neural
networks on FPGAs,” in FCCM, 2017.

[4] K. Freund. (2017, August) Microsoft: FPGA Wins Versus Google TPUs
For AI. [Online]. Available: https://www.forbes.com/sites/moorinsights/
2017/08/28/microsoft-fpga-wins-versus-google-tpus-for-ai/amp/

[5] N. Voss et al., Rapid Development of Gzip with MaxJ. Cham: Springer
International Publishing, 2017, pp. 60–71.

[6] O. Pell and V. Averbukh, “Maximum performance computing with
dataflow engines,” Computing in Science Engineering, vol. 14, no. 4,
pp. 98–103, July 2012.

[7] N. P. Jouppi et al., “In-datacenter performance analysis of a tensor
processing unit,” ser. ISCA, 2017.

[8] Y. Ma et al., “Optimizing loop operation and dataflow in FPGA
acceleration of deep convolutional neural networks,” in FPGA, 2017.

[9] A. Lavin and S. Gray, “Fast algorithms for convolutional neural net-
works,” CoRR, 2015.

[10] M. D. Zeiler et al., “On rectified linear units for speech processing,”
in IEEE International Conference on Acoustics, Speech and Signal
Processing, 2013.

[11] V. Gokhale et al., “A 240 G-ops/s Mobile Coprocessor for Deep Neural
Networks,” in The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2014.

[12] A. Tisan and J. Chin, “An end-user platform for FPGA-based design and
rapid prototyping of feedforward artificial neural networks with on-chip
backpropagation learning,” IEEE Transactions on Industrial Informatics,
June 2016.

[13] S. I. Venieris and C. S. Bouganis, “fpgaConvNet: A framework for
mapping convolutional neural networks on FPGAs,” in FCCM, 2016.

[14] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in The 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017.

[15] S. Williams, A. Waterman, and D. Patterson, “Roofline: an insightful
visual performance model for multicore architectures,” Communications
of the ACM, 2009.

438

