
12

Efficient Assembly for High-Order Unstructured FEM Meshes
(FPL 2015)

PAVEL BUROVSKIY, Maxeler Technologies
PAUL GRIGORAS, SPENCER SHERWIN, and WAYNE LUK, Imperial College London

The Finite Element Method (FEM) is a common numerical technique used for solving Partial Differential
Equations on large and unstructured domain geometries. Numerical methods for FEM typically use algo-
rithms and data structures which exhibit an unstructured memory access pattern. This makes acceleration
of FEM on Field-Programmable Gate Arrays using an efficient, deeply pipelined architecture particularly
challenging. In this work, we focus on implementing and optimising a vector assembly operation which, in
the context of FEM, induces the unstructured memory access. We propose a dataflow architecture, graph-
based theoretical model, and design flow for optimising the assembly operation for spectral/hp finite element
method on reconfigurable accelerators. We evaluate the proposed approach on two benchmark meshes and
show that the graph-theoretic method of generating a static data access schedule results in a significant
improvement in resource utilisation compared to prior work. This enables supporting larger FEM meshes
on FPGA than previously possible.
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1. INTRODUCTION

Finite Elements Method (FEM) is an ubiquitous tool in many areas of science and
engineering, such as geophysics, fluid and structure mechanics, electromagnetics, and
biomedicine [Cantwell et al. 2014]. The method solves Partial Differential Equations
(PDEs) by discretising space and time and thus reducing the PDE problem to a finite
dimensional, linear algebra problem to construct a numerical approximation of the
solution.
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The FEM supports unstructured spacial discretisations, which are essential for
accurately capturing complex geometrical shapes found in industrial and scientific
applications. But numerical methods solving PDEs over these unstructured domains,
including the method studied in this work, require the solution of large scale sparse lin-
ear systems of equations. These sparse data structures induce an unstructured memory
access pattern, which cannot be determined and optimised statically, at compile time.

Previous work shows that, in the context of the FEM, the fine-grained control over
the massively parallel on-chip memory resources of the Field-Programmable Gate Ar-
ray (FPGA) may be used to efficiently implement no-stall unstructured memory ac-
cess [Burovskiy et al. 2015]. The key is to take advantage of the time-invariant nature
of the sparse data structures used by the iterative linear solvers, preserved over many
timesteps of a PDE solver. Since data do not change during the FEM simulation,
the unstructured memory access can be resolved efficiently by employing (1) a deeply
pipelined architecture with an efficient custom cache, which maps well to the FPGA
fabric, and (2) a software generated execution schedule which maps various FEM simu-
lation inputs to this architecture. Altogether, this enables the hardware acceleration of
FEM problems of practical interest at the cost of runtime preprocessing of FEM data.

In this work, we improve the heuristic schedule generation presented in Burovskiy
et al. [2015] by proposing a systematic graph-based method of identifying and process-
ing the access constraints. This article has the following contributions:

(1) A novel approach to FEM vector assembly designed for execution directly on FPGA.
We decompose the problem of supporting vector assembly on FPGA into (1) data
storage on chip with scheduled access and (2) several graph-based sub-problems to
be solved on CPU as data pre-processing; we propose a graph-theoretic formulation
to solve these sub-problems and, therefore, the problem of on-chip vector assembly;
by leveraging standard graph-theoretical approaches, we are able to both simplify
the implementation and improve the resource utilisation of the design;

(2) Design flow and prototype implementation of an accelerator for the single-level static
condensation linear solver on a Maxeler Maia Dataflow Engine (DFE) acceleration
board. This linear solver is a part of the incompressible Navier-Stokes PDE solver
within the Nektar++ spectral/hp FEM framework [Cantwell et al. 2015], which
is used as a software reference in this work. The linear solver is based on the
diagonally preconditioned Conjugate Gradient (CG) method with reduced commu-
nication reordering [Demmel et al. 1993].

(3) Experimental evaluation of the proposed approach on two unstructured 3D bench-
mark meshes with tetrahedral and prismatic elements. We provide the resource util-
isation for both problems and compare performance for both accelerated and non-
accelerated Nektar++ runs on the same Intel Xeon server. We demonstrate signifi-
cant improvement in quality of results compared to our previous work [Burovskiy
et al. 2015] due to improvement in schedule. This leads to increased supported
problem size: both benchmark FEM problems can fit on a single FPGA device,
leaving resources for further architectural improvements.

Some parts of this article have appeared in Burovskiy et al. [2015]. New material
includes the graph-theoretic approach for translating assembly mapping into data
access schedule (Section 5), evaluating its impact on resource utilisation (Section 6),
and discussion of processing rate balance in the proposed architecture (Section 4.2).

As in previous work [Burovskiy et al. 2015], we focus on the higher-order spectral/hp
FEM methods, which result in a more regular data access pattern outside of the as-
sembly operation. This leads to realising sparse matrix-vector multiply in the CG as a
collection of dense block-matrix-vector multiplies [Grigoras et al. 2016a, 2016b] and on-
chip vector assembly. We also assume the FEM matrices remain static throughout the
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Fig. 1. Left: FEM mesh. Right: domain decomposed into separate elements with their local discretisations.
Elemental decomposition and global assembly can be denoted using the incidence matrix Aand its transpose
AT of a mapping from the set of element-local discretisation points onto the set of mesh-global points.

computation, which makes the static overhead of data pre-processing and restructuring
to optimise on-chip execution of vector assembly tolerable: the overhead is amortised
across the large total execution time of the entire FEM simulation.

The proposed implementation strategy of vector assembly might be applicable to
other types of hardware accelerators (e.g., GPUs), although that discussion is beyond
the scope of this article.

2. BACKGROUND AND RELATED WORK

The FEM [Galerkin 1915; Strang and Fix 1973; Karniadakis and Sherwin 2013] is
a canonical high performance computing problem used to solve PDEs on large-scale
geometric domains, which are used in many fields of engineering. Given the importance
of the method, the use of custom accelerators such as GPUs [Ikushima et al. 2015;
Markall et al. 2013] or FPGAs [Elkurdi et al. 2008; van der Veen 2007; Lienhart et al.
2005; Wu et al. 2013; Hu et al. 2008; Piechotka 2013] has long been anticipated to
reduce the substantial execution times observed on traditional CPU clusters. So far,
a substantial limitation of prior work, particularly on FPGAs, has been the small
problem size supported. This makes previous work, although exciting and showing
great potential for reconfigurable acceleration, limited to problems so small they are of
no practical interest to FEM users in important domains such as computational fluid
dynamics. This limitation is precisely what we propose to address in this work. A key
factor in enabling support for larger problem sizes is the focus on higher-order FEM,
as explained in the following section.

2.1. The FEM

The FEM operates on meshes which represent the geometrical domains by splitting
them into elements: simple geometrical shapes such as prisms or tetrahedra. The adja-
cency graph on these elements is unstructured. A solution to the PDE is approximated
with a piecewise polynomial, defined at every element separately, with an additional
continuity constraint at element boundaries. Boundary points of adjacent elements
overlap as shown in Figure 1. Hence, to enforce continuity, the element-local numerical
approximations are accumulated at the points of overlap. This is the procedure of global
assembly, the key operation of the FEM method [Markall et al. 2013; Karniadakis and
Sherwin 2013].

For each element e of the domain, the FEM discretises a differential operator into
an element-local n × n matrix Me and n-component vector ve, where n is the number
of discretisation points for the element. This produces a block-diagonal local matrixMl
of dense local matrix blocks Me and a local vector vl. Ml represents the mesh-global
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Fig. 2. Example of discretisation for various elemental shapes at P = 1 and P = 2.

discretisation with some redundancies, but with a locally regular structure of dense
blocks. To eliminate redundant data, a global assembly operation can be performed,
leading to a global matrix Mg. This is done by multiplying the block-diagonal matrix
Ml from left and right with matrices AT and A, accordingly: Mg = (AT Ml A). The
resulting matrix Mg is a sparse matrix of a smaller rank; its rank, which normally
equals the number of matrix rows, also equals the number of unique mesh-global
discretisation points.

Similarly, the global vector vg can be assembled from a local vector vl by right-
multiplying it by AT matrix: vg = AT vl. In this work, we refer to vectors vl and vg as
the same vector represented in a local coefficient space and a global coefficient space,
respectively. It is also possible to construct the vectors in a local coefficient space from
their global coefficient space counterparts by changing matrix AT with A: ṽl = Avg.
However, vl and ṽl are different vectors.

Every mesh element is discretised into a regular grid of points, which form the
support of a polynomial approximation function of order P. Higher values of P lead
to more internal element points, and, therefore, more regular local mesh structure.
Figure 2 illustrates this in the case of 2D and 3D elements: in 2D, the number n of
internal points is O(P2); in 3D, it is O(P3). Exact formulas depend on element shape
and dimension; e.g., for a quadrilateral, the number n of internal points equals (P +1)2.

The geometrical discretisation of each element can be automatically refined by in-
creasing P, without the need to modify the geometrical description of the mesh. The
special case of P = 1 corresponds to the classical FEM, where basis functions are piece-
wise linear. In this article, we assume every element has the same polynomial order,
although it is possible to have meshes with spacially-local variations of P.

2.2. Evaluation Strategies for Matrix-Vector Multiplication in Spectral/hp FEM

The structure of Mg can be exploited to optimise the evaluation of matrix-vector prod-
ucts sg := Mg vg. The global matrix approach [Karniadakis and Sherwin 2013] explicitly
forms Mg and stores it in a sparse storage format. This operation can be performed
only once as a pre-processing step, as long as the mesh remains static throughout the
computation. The alternative local matrix approach [Karniadakis and Sherwin 2013]
uses the structure of Mg at every evaluation of the matrix-vector multiplication:

sg = Mgvg
︸ ︷︷ ︸

global matrix approach

= (AT Ml A)vg = AT Ml(Avg) = AT (Mlvl) = AT sl
︸ ︷︷ ︸

local matrix approach

.
(1)
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Fig. 3. Transformations between coefficient spaces within a compute pipeline.

Equation (1) shows that the two approaches are equivalent: the same result can be
achieved by either multiplying a global vector vg by a sparse matrix Mg (which implies
using SpMV kernels) or by a three-stage procedure, as show in Figure 3:

(1) Vector vg in a global coefficient space is first scattered into a local coefficient space
by multiplying it by matrix A, to form vector vl;

(2) Operation done in a local coefficient space: vector vl is multiplied by a block-diagonal
dense matrix Ml to produce vector sl;

(3) Vector sl is gathered from local into the global coefficient space by multiplying it
with matrix AT , to form vector sg.

In the local matrix approach, the sparse matrix Mg is not explicitly formed. The
only unstructured computations are the vector gather and scatter operations. Vos et al.
[2010] presents the CPU performance of matrix evaluation strategies as a function
of the polynomial order and mesh structure. For lower polynomial orders, most mesh
points are shared across multiple elements, thus, the redundancy in local data rep-
resentations is substantial. This makes a dramatic impact on performance: for lower
polynomial orders the sparse matrix representation provides sufficient compression
ratios to compensate for the performance loss stemming from the unstructured data
access. However, for higher polynomial orders, the local matrix approach becomes more
computationally efficient due to the more regular memory access pattern and a dimin-
ished effect of compression.

An additional factor of computational efficiency of the local matrix approach stems
from higher computational complexity of block diagonal dense matrix multiplication
compared to the computational complexity of gather and scatter operations: the work-
load for a local matrix multiply scales as O(P2d) where d is space dimension, while
the workloads of gather and scatter scale as O(Pd). This makes the regular part of
computational flow dominate for higher polynomial orders. In Vos et al. [2010], the op-
timal implementation strategy as a function of P is studied for various finite element
operators with focus on CPUs.

It is these two effects that we propose to exploit in our work in order to improve the
applicability of FPGA-based accelerators to larger FEM problems.
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2.3. Acceleration of FEM

Due to its long running times, there has been a significant interest in accelerating the
FEM using GPUs or FPGAs. Some previous work avoids implicit numerical schemes
to accelerate large-scale FEM computations on GPUs [Ikushima et al. 2015]. A com-
prehensive review of available GPU papers on FEM matrix assembly in the context of
implicit numerical schemes can be found in Markall et al. [2013]. This work also pro-
vides a good introduction to the operator implementation options for the spectral/hp
method. Finally, it concludes that higher-order methods are more suitable for GPU
implementation.

In the FPGA community, a number of past publications and student works (e.g.,
Elkurdi et al. [2008] and van der Veen [2007]) focused on the Sparse Matrix Vector
multiply (SpMV) architectures, specialised for FEM matrices of particular connectivity.
Lienhart et al. [2005] focuses on the LU decomposition of a global matrix for the low-
order FEM method, where the matrix is generated by FEMLAB software for 1D or
2D meshes. Wu et al. [2013] presents a general purpose CG solver architecture with
SpMV kernel, evaluated on sparse matrices with dimensions up to 66,127. Chow et al.
[2014] is another general purpose SpMV-based CG solver on FPGA, evaluated on sparse
matrices of rank up to 63,838.

Piechotka [2013] (master’s thesis) presents a completely different approach to ac-
celerating FEM on FPGAs. It prototypes a matrix-free Flux Reconstruction method
[Vincent et al. 2011], which is still quite unconventional in the FEM community, evalu-
ating a 2D linear advection on a 100×100 regular grid using single precision arithmetic
a fourth-order polynomial basis.

Only Hu et al. [2008] can be directly compared to this work: they implement the
local matrix approach in the context of higher-order FEM methods and evaluate it
on regular geometric domains with up to 48,000 tetrahedra using single precision
arithmetic. They mention the benefit of using a higher-order method for the increase
in regularity of data access, but do not mention the approximation orders used in their
study. Assuming first-order approximations, the number of local degrees of freedom
(local coefficients) for this test mesh equals 192,000. Our benchmark meshes presented
in the Table II are unstructured and, for the third-order approximations used in this
work, have 3.6 and 14.3 times more local degrees of freedom, accordingly.

In summary, acceleration of FEM problems using custom accelerators poses signifi-
cant challenges due to the unstructured nature of memory accesses. However, exploit-
ing the locally regular data structure induced by higher-order FEM problems enables
and simplifies custom accelerator implementations. As we show in the remainder of
this work, this can lead to an efficient, scalable architecture which maps well to the
FPGA fabric, enabling support for FEM problems of practical importance.

3. APPROACH OVERVIEW

We propose to take advantage of the runtime reconfiguration capabilities of the FPGA to
generate an efficient, problem-specific custom accelerator for the high-order spectral/hp
FEM problems. Our approach consists of three components:

(1) A parametric, reconfigurable streaming dataflow architecture, presented in Sec-
tion 4; this enables a stall-free implementation of the assembly operation and
makes use of an efficient design to perform the block matrix vector multiplication
required in high-order spectral/hp FEM;

(2) A software component interfacing the spectral/hp FEM package (in our case, Nek-
tar++) with an instance of our dataflow architecture on FPGA;

(3) A runtime pre-processing software component for translating vector assembly
mapping data from the spectral/hp FEM package into the execution schedule
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required for the dataflow architecture; this is presented in more detail in Section 5
and builds on our graph-based approach to generate the execution schedule for a
particular mesh.

Together these components enable the generation of a problem-specific custom ac-
celeration architecture. Taking advantage of runtime reconfiguration capabilities of
the FPGA, an appropriate architecture can be loaded at runtime for a specific mesh
instance. The operation of the proposed flow is summarised below:

(1) An offline phase, where a repository of accelerated architectures is created:
—a set of target architecture parameters is identified from the problem domain;
—all required FPGA bitstreams are synthesised;

(2) A runtime phase, where the accelerator executes for a particular input mesh:
(a) A numerical simulation with the spectral/hp FEM package is started for a

particular input mesh problem;
(b) Based on the vector assembly mapping received from the spectral/hp FEM

software package and a set of architecture parameters for available FPGA bit-
streams, the on-chip data access schedule is generated as described in Section 5;

(c) For a schedule generated, an architecture is selected from the repository and
the accelerator is reconfigured;

(d) The accelerator begins execution and all CG calls are redirected from the spec-
tral/hp FEM software package to the reconfigurable accelerator.

Steps 2b and 2c are executed only once in the beginning of FEM simulation. This
two-phase approach is required because some architecture parameters must be fixed
at compile time: the number of on-chip buffers to use during assembly, the number
of parallel pipelines, and the vector width of arithmetic processing units are static
parameters. These are discussed in more detail in Section 4 and Section 5.

A given instance of a dataflow architecture may support many mesh problems, as long
as on-chip buffer configuration and capacity match the schedule generated. The use
of a systematic graph-based approach to capture the data access constraints enables
generating less resource demanding schedules compared to prior work, which leads to
substantial on-chip resource savings for a given mesh problem; this forms the main
contribution of this work.

There is a possibility that no available bitstream has sufficient on-chip buffers to
meet the scheduling constraints for a given mesh on a single DFE. In this case, the
only viable option is to decompose the geometric domain and perform multi-FPGA/CPU
computation, where every device executes the same computation on a subdomain it
owns. In this work, we do not cover this case.

4. ARCHITECTURE

To demonstrate the applicability of FPGA-based acceleration to higher order FEMs
we implement the most time-consuming stage of the implicit numerical scheme for
the incompressible Navier-Stokes equation: solving a set of linear equations using the
CG method. We interface with the spectral/hp FEM framework Nektar++ [Cantwell
et al. 2015], which provides all input data to our prototype dataflow accelerator of a
preconditioned CG solver (presented in Section 4.2). In our dataflow architecture, we
focus on a local matrix approach and higher polynomial orders, mapping the three-stage
local matrix evaluation procedure described in Section 2.2 to a hardware pipeline.

4.1. System Overview

We use the Velocity Correction Scheme for the incompressible Navier-Stokes problem,
available in Nektar++, which discretises a pressure field and three components of the
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Fig. 4. System level overview of the heterogeneous execution model: Nektar++ software runs on CPU and
the most computationally intense tasks are accelerated with FPGA-based acceleration boards (Maxeler
DFEs).

Table I. Boundary Elemental Matrix Sizes for Different Polynomial
Orders and Geometrical Shapes

Element type P = 1 P = 2 P = 3 P = 4 P = 5 P = 6
Tetrahedron 4 10 20 34 52 74
Prism 6 18 38 66 102 146
Hexahedron 8 26 56 98 152 218

velocity field into four systems of linear equations

Mg xg = b (2)

to be solved one strictly after another, as shown in Figure 4, due to the sequential data
dependency. Although every set of equations mentioned above has its own matrix Mg,
the right hand side vector b, and the left hand side vector xg, for convenience, in this
article, we do not introduce separate notations. For our problem, among alternatives
provided by Nektar++, we choose the built-in single level static condensation linear
solver. This solver splits the solution into three phases: (1) constructing the boundary
linear problem; (2) solving the boundary linear problem using CG method; (3) prolon-
gating the solution to the remaining unknowns.

The matrix of the boundary linear problem has the same structure as the full system,
but smaller matrix blocks; this reduces solution time. For example, the full local matrix
block for hexahedral element at P = 6 has rank 343 = (6 + 1)3, while the rank of its
boundary matrix block is 218. The larger the P, the higher the impact of extracting
the boundary problem. Table I examples the dimensions of matrix ranks per element
shape and polynomial order.

Nektar++ and our prototype accelerator implement the reduced communication re-
ordering variant [Demmel et al. 1993] of the preconditioned CG method (Algorithm 1).
This is an iterative method for solving large and unstructured systems of linear equa-
tions. It consists of repeated evaluations of the matrix-vector product of the matrix
Mg present in Equation (M in Algorithm 1) to an auxiliary vector, in order to build a
successively better approximation of the solution vector xg (�x in Algorithm 1) within a
reasonable amount of iterations Nmax. The sequence of iterations is called convergent,
if the correction terms α �p become smaller and smaller starting from some iteration.
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ALGORITHM 1: Preconditioned CG Method
1: function CG( M, P, b, y, tol, Nmax)
2: �x ← 0, �r ← b
3: �v ← P�r; �s ← M�v
4: ε ← (�r, �r), μ ← (�v, �s), ρ ← (�v, �r); α ← ρ/μ, β ← 0
5: while (Nstep ≤ Nmax) & (ε < tol2) do
6: �p ← �v + β �p, �q ← �s + β �q � Vector arithmetic
7: �x ← �x + α �p, �r ← �r − α�q
8: �v ← P�r � Applying preconditioner
9: �s ← M�v � Matrix-vector multiply

10: ε ← (�r, �r); μ ← (�v, �s); ρnew ← (�v, �r) � Dot products
11: β ← ρnew/ρ; α ← ρnew/ (μ − ρnewβ/α); ρ ← ρnew
12: end while
13: end function

Many real-life problems need a preconditioner, the matrix P approximating the in-
verse of problem matrix Mg, in order to improve the convergence behaviour and reduce
the number of iterations. Since choosing a good preconditioner is problem specific, we
use a basic diagonal preconditioner and leave the exploration of more interesting and
complex preconditioning techniques as future work.

The main CG iteration loop consists of: four vector arithmetic operations, a multipli-
cation by a preconditioner matrix (which, in our case of a diagonal preconditioner, is
equivalent to componentwise multiplication of two data streams), and evaluating FEM
matrix-vector multiply, followed by computation of dot products and scalar factors. This
version of the CG method rotates the loop of a classical CG so that the dot products
are co-located toward the end of its iteration. Dot product acts as a synchronisation
barrier both for inter- and intra-device operation. On FPGAs, it prevents pipelining
the compute stages before and after dot product; on the system scale, it prevents a
device proceeding further until all devices complete evaluation of a dot product and
communicate their results.

For the local matrix approach, all vectors and the preconditioner P are present in the
global coefficient space while M is stored in the local coefficient space. Hence, �v must
be converted from the global to the local coefficient space representation vl, in order to
compute the matrix-vector product; the resulting vector sl must then be converted from
the local to the global space �s to continue CG evaluation: computing the dot product
at the same iteration and using vector �s at the consecutive iteration. This coefficient
space transformation is the major challenge for hardware acceleration of FEM sim-
ulations, especially for larger problems, where the data does not fit entirely on chip.
Due to the unstructured data access patterns, this challenge is frequently addressed
by sending vector data from the hardware accelerator to the CPU. However, sending
vector streams to the CPUs and back via slow interconnect creates a communication
bottleneck diminishing the acceleration potential. The reconfigurable architecture pre-
sented in Section 4.2 aims to avoid external communication: it performs this conversion
directly on chip as part of the hardware pipeline.

For the incompressible Navier-Stokes solver run on CPU using Nektar++, the linear
solver may account for more than 95% of total execution time. For our benchmark mesh
problems at P = 3 (see Table II), CG requires ≈50–100 iterations for velocity field
solves and ≈1.5k iterations for the pressure field solve. The most compute-expensive
stage is the matrix-vector product at line 9 of Algorithm 1. In general, the second and
third time consuming operations for MPI-parallel run of Nektar++ are inter-device
communication and evaluating advanced preconditioner. In our study, we use basic
preconditioner and evaluate execution on a single FPGA board orchestrated by a single
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Fig. 5. Overview of the proposed dataflow CG architecture.

thread on the CPU node; the only impact of inter-device communication is the latency
of CPU control.

4.2. Proposed Dataflow Architecture

The proposed dataflow architecture comprises multiple pipelined processing elements
(PEs), which altogether implement one iteration of the CG Algorithm as shown in
Figure 5. The implementation of the Vector Arithmetic, Diagonal Preconditioner, and
Dot Product kernels is straightforward and therefore omitted for brevity. The Matrix-
vector multiplier unit (MVMU) performs a large-scale block diagonal dense matrix-
vector multiplication. The Scatter and Gather kernels implement the transformation
from global-to-local coefficient space (and back) of input and output streams of the
MVMU, respectively.

Figure 5 shows the architecture of the Scatter and Gather kernels in more detail:
(1) input and output streams are processed at different rates because of the difference
in the coefficient space lengths; (2) to facilitate the unstructured on-chip data access,
input data for each kernel is stored in its own internal multi-bank Block RAM (BRAM)
storage; (3) schedule controls which banks to read and write at which address; (4)
schedule also controls when the data read from BRAM storage should form the output
of the kernel; (5) additionally, the Gather kernel has adders to concurrently accumulate
new local coefficient values with their partial sums stored in BRAM. The schedule is
prepared on the CPU and stored in acceleration board’s DRAM as a preparation step.
We generate the same schedule to control both Gather and Scatter kernels, as detailed
in Section 5.

The architecture maintains a number of DRAM streams for the matrix, precondi-
tioner, and vector data, as well as two streams representing the schedule in Gather
and Scatter kernels. The schedules are split into global_schedule and local_schedule
since these two streams are being read at different rates. Each of the two streams co-
alesce gather and scatter schedules to save on the total number of DRAM streams.
Similarly, vector and preconditioner data are all coalesced into a single input and
single output streams.

In order to minimise the impact of CPU control latency overhead, the proposed
hardware architecture performs several iterations of the loop in Algorithm 1 directly
on the FPGA board as part of a single action. A state machine on chip keeps track of
the current phase of execution and checks the stopping criteria.
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The overall throughput of the proposed architecture is determined by the processing
rates of all kernels forming the CG pipeline. To achieve maximum performance, the
throughputs of all kernels must be carefully balanced. The following analysis links the
balance of the design throughput with mesh parameters.

For a given d-dimensional FEM mesh, the rank of every local matrix is proportional
to O(Pd). Therefore, the number of arithmetic operations required for processing the
full block-diagonal matrix in the MVMU is O(kP2d), where k is the number of mesh
elements; all other compute kernels perform O(αkPd) operations, where α < 1 is the
mesh connectivity dependent data reduction factor, measuring how many components
of a local coefficient space are mapped to a single component of a global coefficient
space on average (the lower the P, the lower the α). Hence, on average, the MVMU
performs O(P/α) more work than other kernels. In other words, the throughput of the
whole design is bounded by the throughput of the MVMU. This implies that the optimal
number of pipes in all other kernels is fully determined by the number of matrix rows
processed per cycle by MVMU. The more cycles it takes for MVMU to process a matrix
block, the less parallel all other kernels need to be.

The balance in processing rates in the proposed architecture depends on three factors:
the average size of a matrix block the MVMU needs to process (which is a function
of a polynomial order and proportion of various element shapes in the mesh), the
throughput of DRAM interconnect, and compute parallelism in MVMU. Since the latter
two factors are bound by available hardware, the polynomial order is a critical design
parameter for the whole architecture that use may control.

For small values of P, the number of matrix elements fetched from DRAM is less
than the available DRAM bandwidth. Therefore, to fully utilise all available DRAM
bandwidth, the design must include replicated pipes, which process independent ma-
trix blocks in a task-parallel fashion. Each pipe includes its own memory channel with
independent command and data queues and requires its own on-chip buffers, thus,
replication significantly complicates the architecture. Additionally, the rest of the de-
sign also needs to be more parallel, which makes it more architecturally challenging.
In this work, we use P = 3, which is too small for MVMU to completely dominate:
other kernels need to process three vector components per cycle to match the MVMU
processing rate. This leads to the challenge of processing data in bursts in Gather and
Scatter kernels: preparing the data access schedule so that reading or writing several
coefficients per cycle from or to the buffers yields no access conflicts and no kernel stalls.

However, the proposed architecture scales well with the polynomial order P: for
larger values of P, fewer independent pipes are required to saturate DRAM bandwidth
and, hence, maximise throughput in the MVMU. This improves resource utilisation,
particularly for memory controllers in the MVMU by avoiding the use of independent
memory channel, commands, and data queues for each pipe. Also, the rest of the design
needs to compute at most one global coefficient per cycle, which removes the need for
SIMD style parallelism and removes access conflicts, therefore, simplifying both the
schedule constraints and the architecture of all kernels.

In summary, the proposed architecture can efficiently implement the CG method
used in the inner loop of the FEM. However, variability in P determines different
choices in balancing the hardware design components to maximise performance and
improve applicability to larger meshes.

5. ON-CHIP VECTOR ASSEMBLY STRATEGY

The key to achieving good performance and supporting useful problem sizes is an
efficient implementation of vector assembly. Large FEM problems typically require
the distribution of the computational workload across multiple cluster nodes. There-
fore, the slow inter-device communication can make the vector assembly operation a
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ALGORITHM 2: Transforming Vector from Global into the Local Coefficient Space
for local idx from 1 to num local coefficients do

global idx, sign ← local to global map[local idx]
v local[local idx] = sign * v global[global idx]

end for

bottleneck of the entire computation, which results in reduced overall performance.
An efficient FPGA implementation can reduce the number of devices required, thus
addressing the communication bottleneck and resulting in increased performance. To
achieve the level of efficiency required to support large meshes on a single device, we
propose to use a fully streaming, deeply pipelined architecture with minimal control
logic. This architecture reduces computational inefficiencies and removes the need for
complex circuitry for cache management, enabling more resources to be dedicated to
useful computation.

In order to support the unstructured nature of memory accesses without using a
cache, in this section, we present a novel method to generate the full data access
schedule on the CPU, prior to accelerator execution. Given that the mesh does not
change for the duration of the computation, the overhead of generating the schedule is
amortised across the long runtime of the entire application. To be functionally correct
and efficient, the generated schedule must:

(1) avoid cache misses, by completely removing data hazards associated with con-
current writing or reading of vector elements from on-chip banked memory. In
Section 5.2, we formulate and solve this problem by finding a graph coloring for the
data constraint graph induced by the read and write operations;

(2) reduce on-chip storage requirements, by minimising the number of global vector
coefficients stored on chip at any given time. In Section 5.3, we formulate and solve
this problem by minimising the bandwidth of the data dependency graph induced
by the local to global mapping.

The algorithms proposed in Section 5.2 and in Section 5.3 are designed specifically to
preserve the block diagonal structure of the local matrix Ml. As explained in Section 3,
this is a vital aspect of the proposed approach, leading to increased performance,
scalability, and applicability to larger problems.

By satisfying these constraints, a data access schedule can be generated which allo-
cates every global coefficient to a corresponding memory bank for the entire runtime
of the FEM accelerator. In Section 5.4, we introduce an algorithm which produces such
a schedule for the proposed dataflow architecture, to control the Gather and Scatter
kernels. This data access schedule induces a reordering of both the local and the global
coefficient spaces which satisfies all the above constraints. While the reordering of
local coefficient space is constrained to preserve block diagonal matrix structure, no
constraints are placed on the global coefficient space reordering by the dataflow archi-
tecture: all computational kernels which process data in the global coefficient space
implement component-wise commutative and associative arithmetic operations and
are, therefore, not sensitive to data ordering.

5.1. Coefficient Space Transformation

Algorithm 2 and Algorithm 3 present the only unstructured memory accesses in the
whole dataflow design. Matrix A provides the mapping from the global to the local
coefficient space, which represents the elemental decomposition step in Figure 1. This
rectangular matrix contains only 0 and ±1, and only one nonzero entry per row, so it
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ALGORITHM 3: Transforming Vector from Local into the Global Coefficient Space
for local idx from 1 to num local coefficients do

global idx, sign ← local to global map[local idx]
v global[global idx] += sign * v local[local idx]

end for

is practical to represent the assembly mapping on CPU with an indexing array, and
implement the global-to-local assembly as in Algorithm 2.

In the proposed architecture, the action of a global-to-local mapping is implemented
in the Scatter kernel. This kernel stores the required components of the global vector
in an internal buffer and produces the corresponding local coefficients by indexing the
buffer using the generated data access schedule.

The transformation from local to global coefficient space may be implemented with
the same indexing array, as in Algorithm 3. Since matrix AT has several nonzero entries
per row, we need to accumulate several components of a local vector contributing to the
same global coefficient:

In the proposed architecture, the local to global mapping is implemented in the
Gather kernel, which (1) reads data from its internal buffer, (2) accumulates new local
coefficient into it and (3) either writes the result back to the buffer, (4) or outputs
the result to the downstream kernel as a stream in a global coefficient space. In our
architecture, these two kernels share the same data access schedule but have their
own internal buffers. Sections 5.2 to 5.4 describe the procedure of converting the local
to global mapping into the data access schedule described above.

5.2. Resolving Access Conflicts

In the proposed dataflow architecture, (1) all unstructured data access is performed
only via on-chip buffers, (2) any data request from the local coefficient space can be
resolved by a look-up into these buffers, and (3) requested data is always available in
the buffers at the cycle the request has been made. Both Gather and Scatter kernels
process data in bursts, processing kelements of both input and output streams per cycle,
where k is the design parameter balancing the throughput of Gather/Scatter kernels
with a matrix-vector multiplier. The locally unstructured access patterns require a
multi-bank buffer with minimum k banks, satisfying the following two conditions,
exemplified for the Scatter kernel:

(1) it must be possible to write k global coefficients concurrently into buffer banks with
no access conflicts;

(2) it must be possible to concurrently read k global coefficients from the buffer both at
the cycle of their first reference by the local-to-global mapping array and at every
cycle after (to avoid future access conflicts).

Allocation of global coefficients to banks subject to the above constraints is challeng-
ing since a naive allocation strategy results in data access conflicts. Since buffer banks
are shared by both reading and writing operations, the access constraints for both
procedures need to be resolved simultaneously to yield a correct coefficient-to-bank
allocation policy.

For a given local-to-global mapping, we define its access constraints graph as follows.
For every i-th global coefficient of a vector v, we add a vertex gi to the set of vertices
G of this graph. Edges represent access constraints: when two vertices gi and gj are
connected via an edge, the global coefficients vi and v j cannot be placed to the same
bank. We add edges as follows:
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Fig. 6. Left: building the access constraints graph from the global-to-local mapping for k = 3. Every group
of up to three coefficients contributes with its complete graphlet. These graphlets then merge to form the
resulting constraint graph. This global-to-local mapping corresponds to a mesh consisting of one tetrahedral
element, one prismatic element, and one hexahedral element, P = 1. Right: the resulting constraint graph
with vertex coloring resolving all data access constraints.

(1) For every consecutive group of k local coefficients to be accessed at the same cycle,
we perform k look-ups into the local-to-global mapping to resolve them to a group
of k global coefficients vi1 , . . . , vik. All vertices gi1, . . . , gik within this group become
pair-wise connected. This represents, for example, the read burst in Scatter kernel.

(2) Every consecutive group of k global coefficients gi1 , . . . , gik is also fully connected.
This represents, for example, write burst in Scatter kernel.

These two types of fully connected vertex subgroups form connected components of
the access constraints graph (see Figure 6). Disconnected vertices in this graph, if any,
represent non-conflicting global coefficients which may be assigned to an arbitrary
buffer bank.

We propose to employ vertex coloring of the access constraints graph to satisfy the
conditions above. A vertex coloring guarantees no bank access conflicts at runtime,
while minimal vertex coloring yields provident use of on-chip memory resource. Ev-
ery color denotes its own BRAM bank, thus minimising the number of colors leads to
resource optimisation. In our prototype, we use boost::sequential_vertex_coloring
algorithm [Coleman and Mor 1983], which attempts to minimise the number of colors,
but does not guarantee an optimal solution. The number of colors generated by the
algorithm is the lower bound for the number of buffer banks an architecture must have
to resolve all access conflicts for a given local-to-global mapping with no stalls. The
number of buffer banks is a compile time parameter for our architecture, although the
required number of buffer banks can only be determined at runtime (at the initialisa-
tion stage of the FEM simulation on the CPU). Therefore, the result of vertex coloring
of an access constraints graph for a given local-to-global mapping determines whether
a given mesh at a given P can be supported with available sets of hardware builds.

5.3. Bandwidth Reduction and Data Reordering

Our architecture requires that all data requested from the buffers is always available in
the buffers at the cycle the request has been made. Satisfying this condition may result
in a higher than optimal utilisation of on-chip resources. We propose to formulate the
problem of minimising the resources required for correctly handling the unstructured
accesses of Algorithm 2 and Algorithm 3 as a graph bandwidth minimisation problem.
This approach leads to a more efficient solution than previously proposed in Burovskiy
et al. 2015].
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Fig. 7. Local-to-global mapping for the regular 2 × 2 quadrilateral mesh with four elements at P = 2,
represented with a bipartite graph.

Fig. 8. Incidence matrix of a bipartite graph of the local-to-global mapping before and after bandwidth
minimising vertex reordering.

Fig. 9. Result of bandwidth minimisation reordering of a bipartite graph above.

The local-to-global mapping can be represented with a bipartite graph as shown
in Figure 7. On this graph, vertices are split into two groups: a group L represents
local coefficients (the top row on Figure 7) and another group G represents global
coefficients (the bottom row on Figure 7). No two vertices from the same group are
connected; a vertex li ∈ L is connected by an edge to a vertex gj ∈ G if and only if the
i-th component of a local-to-global mapping array references the j-th global coefficient.
Figure 7 illustrates such a bipartite graph for the regular quadrilateral mesh with four
elements arranged into a 2 × 2 grid. This problem has 21 global coefficients and 32
local coefficients, which gives 53 vertices of the bipartite graph in total.

The bandwidth of this graph, or, equivalently, the bandwidth of its incidence matrix,
defines (1) the maximum offset of indirect access to vector streams, and (2) the lifetime
interval in the buffer. The lifetime interval is the duration in cycles between the first
and last reference of the global coefficient by the local-to-global mapping.

Since we need to store all data on chip throughout its lifetime, the buffer size required
for correct execution should be greater than or equal to the largest lifetime interval.

To minimise the required buffer size for a particular mesh, we can apply a bandwidth
reduction algorithm such as Cuthill and McKee [1969]. The result of Cuthill-McKee
reordering is shown in Figure 8. The bandwidth reduction induces a reordering of
graph vertices whose result is shown in Figure 9.

The newly generated ordering on vertices of this graph defines the new order of visits
to both local and global coefficients such that

(1) the global coefficient is required to be present in the on-chip buffer for the minimum
number of cycles;

(2) the global coefficients are enumerated and visited strictly in order of their first
reference by the local-to-global mapping.

However, directly applying the Cuthill-McKee reordering may destroy the block-
diagonal dense structure of the local FEM matrix. This is because reordering local
coefficients is equivalent to reordering rows and columns of the local FEM matrix,
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Fig. 10. Structure of a local matrix before (on the left) and after (on the right) reordering of a local coefficient
space induced by the bandwidth minimisation of a bipartite graph shown on Figure 7.

Fig. 11. Block-bipartite graph for the same mesh as above. Local coefficients are grouped together with
respect to the matrix block to which they correspond.

without taking into account the local block structure formed by its nonzero entries.
Figure 10 shows the effect of such a reordering on the structure of a local FEM matrix.

To preserve the block structure of the FEM local matrix, which is crucial for the
performance and scalability of the proposed architecture, we propose to construct a
block-bipartite graph and minimise its bandwidth instead. First, we add a set of vertices
G, as above, and a set of vertices M, which contains one vertex mj for each local matrix
block Me

j . We then partition local coefficients with respect to their matrix blocks (as
on Figure 3); there is an edge between every gi ∈ G and every mj ∈ M if and only if
the local coefficient mapped to gi (by the local to global mapping) belongs to the group
of local coefficients for the matrix block Me

j . The block-bipartite graph for the above
example is shown on the Figure 11.

The bandwidth minimisation of a block-bipartite graph induces a block-reordering
on the local coefficient space; this formulation captures two constraints: (1) all local
vector components must be on chip when MVMU is processing a corresponding local
matrix block; (2) rows corresponding to exactly one matrix block must be processed in
a contiguous range of cycles, to avoid destroying the block diagonal structure of the
matrix.

The algorithm to devise a streaming schedule which minimises the required on-chip
resources then becomes:

(1) build the bipartite graph, connecting global coefficients with local matrix blocks;
(2) minimise its bandwidth;
(3) reorder local matrix blocks, which induces block-reordering of local coefficients;
(4) reorder global coefficients accordingly;
(5) update the local-to-global mapping array to match the reorderings.

The gather kernel adds one constraint to the local data reordering: due to the latency
of a floating point accumulator, two local coefficients contributing to the same global
vector component should come to the accumulator at least Lfp cycles one after another,
where Lfp is the latency of both accumulator and BRAM buffer access. This allows to
complete previous accumulation before the next summand arrives. The alternative is
to use C-slowed accumulation, store partial results in the buffer at separate addresses,
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ALGORITHM 4: Generating Access Schedules
for local idx from 1 to num local coefficients do

global idx, sign ← local to global map[local idx]
bank idx ← vertex coloring[global idx]
if first referenced[global idx] then

if available address list[bank idx] is empty then
re-run algorithm with more colors or larger buffers

else
address[global idx] ← available address list[bank idx].pop()
global schedule.push({address[global idx], bank idx})

end if
end if
if last referenced[global idx] then

available address list[bank idx].push(address[global idx])
end if
local schedule.push({address[global idx], bank idx, sign})

end for

and build an additional reduction pipeline stage. We avoid this problem by further
aggregating the local coefficient space: when two local coefficients li ∈ mj and lk ∈ ml
are mapped to the same global coefficient gs, and the number of cycles between reads
of li and lk from the local-to-global mapping is less than Lfp, we merge vertices mj and
ml of a block-bipartite graph. This facilitates three goals:

(1) bandwidth minimisation problem is completely decoupled from the adder latency
data hazard problem;

(2) enforcing appropriate intervals between consecutive references of same global co-
efficient is done via local post-processing of the M vertex set of the block-bipartite
graph after bandwidth minimisation.

(3) such decoupling guarantees both Gather and Scatter kernels use the same ordering
on local and global coefficients.

To summarise, the proposed bandwidth minimisation of the block-bipartite graph
reduces the lifetime intervals for the data stored in the internal buffers of the Gather
and Scatter kernels. The reduced lifetime intervals enable the processing of the un-
structured mesh with smaller on-chip buffers or, equivalently, enables the processing of
larger mesh problems with a given hardware architecture. Also, since both Gather and
Scatter kernels use the same ordering on coefficient spaces, these two kernels do not
need separate data access schedules: their data access patterns to their (separate) on-
chip memory buffers are identical. The resulting reorderings on the coefficient spaces
(1) enforce the linear streaming of global vector data at the input of the Scatter kernel
and the output of the Gather kernel, and (2) guarantee no stalls of the Scatter kernel
when the local coefficient is out of the buffer.

5.4. Generating Schedules

We translate the local-to-global mapping into two separate control streams for the
Gather and Scatter Kernels. The schedule generation procedure consists of the follow-
ing steps:

(1) (optional) bandwidth minimisation: for a local to global mapping array generated by
the FEM package, produce a new local-to-global mapping to minimise the on-chip
buffer size requirements;

(2) generate an access constraints graph from a given local-to-global mapping array
and compute its vertex coloring;
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Table II. Characteristics of Benchmark Problems

Mesh name DBTV Naca 1L N/A
Work [Rocco 2014] [Chow et al. 1997] [Hu et al. 2008]
Mesh type unstructured unstructured structured
P used in this article and Hu et al. [2008] 3 3 1
P normally being used 7 6
Num. tetrahedra, block size for P = 3 34,887; 20 × 20 58,728; 20 × 20 up to 48,000; 4 × 4
Num. prisms, block size for P = 3 0 11549, 38 × 38 0
Num. local coefficients 697,740 2,758,986 192,000
Num. global coefficients 158,905 1,077,373 ?
Floating point precision double double single
Dense matrix size 106.7MB 820MB up to 2.92MB
One CG vector size 1.21MB 8.21MB ?

(3) perform “register allocation:” allocate every global coefficient its buffer bank ID
and the address in that buffer (the access to every bank is unstructured).

For every global coefficient, the vertex coloring determines its buffer bank, but we
still need to allocate a particular address within a buffer bank and check there is
enough space in all banks for storing all simultaneously live vector components. We
suggest a one-pass procedure shown in Algorithm 4, which simulates both reads and
writes to the buffer. Algorithm 4 assumes all data access conflicts have been resolved
and the coefficient space has been reordered. Also, it assumes every buffer bank has a
fixed capacity, defined at design compile time.

This algorithm reads the local-to-global mapping sequentially and tries to allocate
every new global coefficient an available slot in a buffer, as determined by its color.
The algorithm maintains the pool of available slots in each buffer. Initially, the whole
buffer bank is available. Once the global coefficient is referenced for the last time (its
lifetime interval ends), its bank address joins the pool of available bank storage and
may be overwritten in the same cycle with a new coefficient.

6. EVALUATION

In this section, we evaluate our approach to FEM vector assembly to demonstrate
that this enables a large-scale FEM simulation using a single FPGA-based accelera-
tion board, connected to a CPU server. The goal of this work is to show the maximum
scale of the FEM problems supported by a single, state of the art FPGA-based accel-
eration board. This indicates how large FEM problems could be solved by a cluster of
FPGAs. We leave additional performance optimisation opportunities and multi-FPGA
evaluations to the future work.

The spectral/hp framework Nektar++ [Cantwell et al. 2015] is written in C++ and
parallelised with MPI. It implements the Incompressible Navier-Stokes solver (INS)
we use in this study. This solver has been recently used on the ARCHER supercomputer
to study the NACA 0012 problem with 243,000 elements at P = 5 and P = 6, which
accounts for 16.7 and 25.3 million degrees of freedom (global coefficients) respectively
[Lombard et al. 2015].

In this article, we use smaller mesh problems whose parameters are shown in
Table II. Nevertheless, these meshes are substantially larger than FEM meshes eval-
uated on FPGAs previously [Hu et al. 2008]. The Naca 1L mesh listed in Table II
represents a coarser tessellation into 70,277 elements of the same NACA 0012 ge-
ometry as above; we also use a lower polynomial order: P = 3, which accounts for 1
million global coefficients. Even these two benchmark problems provide a substantial
challenge for FEM acceleration using FPGAs.
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Table III. Schedule Parameters of the Hardware Architecture, Per Scatter/Gather Kernel

DBTV mesh, 64bit Naca 1L, 64bit
this work / Burovskiy et al. [2015] this work / Burovskiy et al. [2015]

Number of buffer banks 10 / 48 10 / 90
Size of a buffer bank 2,048 / 2,048 4,608 / 1,280
Num iterations to converge deterministic / 1 deterministic / 4,411
Estimate utilisation of M20K 80 / 336 180 / 630

In our previous work [Burovskiy et al. 2015], we implemented the proposed
architecture using MaxCompiler 2014.1, targeting Maxeler MAX4 Maia acceleration
board with an Altera Stratix V D8 chip, 48GB on–board DRAM, and Infiniband
interconnect to the CPU server. In this article, we use the same implementation of the
dataflow architecture, however, we recompile it for different schedule parameters using
MaxCompiler 2014.1. In both works, we built our designs for 150Mhz on-chip clock
frequency and 666Mhz memory controller frequency, with three MPEs in MVMU and
three compute pipelines for the rest of the design; each MPE performs 24 floating
point multiplications per cycle.

The reference CPU implementation of the Nektar++ framework uses double preci-
sion floating point arithmetic for all compute operations and data representation. Our
design maintains double precision floating point vectors and performs all arithmetic
operations in double precision; however, the matrix data is stored in single precision
in on-board DRAM and cast to double precision on the fly.

In Burovskiy et al. [2015], we conclude that the design supporting DBTV mesh fits
the chip and leaves enough resources for architectural optimisations, while the corre-
sponding design for the Naca 1L mesh overfits the available resources of the Stratix V
D8 FPGA by 239 M20Ks. The schedule generated by our heuristic algorithm requires
more BRAMs than available on chip after other PEs and general infrastructure. In
this work, we evaluate a more efficient schedule generation procedure. It produces a
more resource efficient schedule, which enables the architecture for the Naca 1L mesh
problem to fit on a single chip.

The proposed scheduling algorithm determines the number of BRAM buffers and
their sizes necessary for supporting on-chip assembly for both test meshes. Our schedul-
ing algorithm takes the local-to-global mapping data, as well as the list of matrix block
sizes directly from Nektar++, running against the mesh of interest. These numbers
become compile time parameters to our hardware architecture. Table III presents the
results generated by our graph-based schedule (marked as “this work”) and our heuris-
tic algorithm described in previous work [Burovskiy et al. 2015]. In both cases, the
schedule is generated for the architecture supporting read/write burst size three in
both Gather and Scatter kernels, and vector data in double floating point precision.
The scheduling algorithm takes the number of buffer banks and their depth as param-
eters and aborts if the local-to-global mapping is too demanding for these parameters.
Table III presents the parameters for the graph-based scheduling procedure that min-
imise spare buffer space. Note, both buffer bank sizes 2,048 and 4,608 generated by
the scheduling procedure are multiples of 512, which accounts for two physical M20K
blocks in configuration 512 × 32.

Table IV and Table V present the place and route results for the Scatter and Gather
kernels, as well as the whole design compiled against parameters shown in Table III. We
present only BRAM utilisation for the Scatter and Gather kernels since this is the most
critical resource for these kernels. In our previous work [Burovskiy et al. 2015] we show
more detailed resource utilisation for these kernels, which shows negligible amounts of
LUTs and FFs used in these kernels. We conclude that an optimised schedule improves
resource utilisation for both hardware builds, even without any resource optimisations
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Table IV. Does Not Change with Problem Size: Area Utilisation for the MVMU and Vector Arithmetic Units

Kernel BRAMs LUTs FFs DSPs
Stratix V DDR 149 46,327 52,094
Memory Controller (MVMU) 652 17,165 64,581
PCIe (MVMU) 100 6,713 7,828
FIFOs (MVMU) 184 568 709
Vector arithmetic, dot products, preconditioner 127 35,886 43,290 36
MVMU, 3 x MPEs 201 105,129 145,147 288

Table V. Varies with Problem Size: Area Utilisation for Gather/Scatter Kernels
and the Whole Design: This Work

Resource Usage DBTV Naca 1L
Scatter Kernel (BRAM) 85 / 341 186 / 638
Gather Kernel (BRAM) 101 / 358 198 / 652

Total (including MVMU)
BRAM 1,703 / 2,215 1,835 / 2,806
LUT 128K / 133K 144K
FF 189K / 270K 341K
Available 2,567 BRAMs, 524K LUTs, 1,024K FFs, 1,963 DSPs

Fig. 12. Projected speed-up opportunities over multicore CPU software Nektar++.

of the remaining design. With this improvement, the Naca 1L problem fits the chip,
and the remaining spare 732 M20K enable future performance optimisations.

Finally, Figure 12 shows the benefits in terms of acceleration potential of the proposed
solution. First, we note that the approach presented in this work achieves a substantial
resource saving for the Scatter and Gather kernels compared to previous work: the
baseline design fits on chip for the much larger NACA 1L mesh, thus enabling a
potential four times speedup over an optimised implementation of Nektar++ running
with 6 MPI ranks on an Intel Xeon E5-2640 [Burovskiy et al. 2015]. Furthermore, the
additional spare resources could be used for important optimisations such as a simple
compression algorithm, which could deliver up to two times memory throughput for
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matrix data at the cost of 12 additional BRAMs per MVMU input [Grigoras et al.
2015]. Alternatively, the spare resources could be used to implement a symmetric
matrix multiplier to exploit the symmetry of the element-local blocks which arise in the
FEM. A naive implementation which loads the entire block (up to 60 × 60 elements, at
P = 3) and supports an MVMU with 72 inputs as the one used in this work may require
approximately 800 BRAMs: an additional 7 BRAMs per input since 512 single precision
entries can be stored per BRAM plus the cost of the baseline design. This number can
be reduced substantially by applying additional optimisations such as fused floating
point adder trees and additional exploration of vendor tool configurations, particularly
level of pipelining, mapping of computations to DSPs, increased clock-frequency, and
so on. Both the compression and symmetric multiplier optimisations fit independently
on the Stratix V, due to the resource savings achieved by applying the method proposed
in this work. While they may not fit on the Stratix V chip simultaneously, the current
generation of high-end chips such as the Stratix 10 GX 2800, could not only accomodate
both optimisations, but the design could even be replicated three times to provide
increased throughput, assuming sufficient memory bandwidth, such as through the
use of a hard memory controller, which is supported in Stratix 10. Overall, the proposed
implementation could deliver up to eight times acceleration over the aforementioned
Nektar++ CPU implementation on a Stratix 5 and up to 50 times acceleration on a
high-end Stratix 10.

7. CONCLUSION

We have proposed a high performance FPGA design for the CG Solver specialised to
spectral/hp FEM problems on arbitrarily unstructured meshes, a novel approach to
performing FEM assembly directly on chip and the graph-theoretic method of building
the schedule of access to on-chip buffers. This improves the resource efficiency of the
proposed architecture and enables the simulation of a large-scale spectral/hp FEM
problems with up to 70,277 mesh elements and ≈1M global degrees of freedom to a
single FPGA acceleration board. This is the largest FEM problem proposed for FPGA
acceleration so far. Our study shows a good potential in accelerating FEM on FPGA.
A number of performance and further resource utilisation improvements is left for
future work. This includes exploiting the symmetric structure of FEM matrix, advanced
preconditioners, multi-FPGA design, data compression, and use of reduced precision.
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