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Abstract—This paper presents an approach to enhance the
performance of machine learning applications based on hard-
ware acceleration. This approach is based on parameterised
architectures designed for Convolutional Neural Network (CNN)
and Support Vector Machine (SVM), and the associated design
flow common to both. This approach is illustrated by two case
studies including object detection and satellite data analysis.
The potential of the proposed approach is presented.

1. Introduction

Machine Learning is a thriving area in the field of
Artificial Intelligence, which involves algorithms that can
learn and predict through, for example, building models
from given datasets for training. In recent years, many
machine learning techniques, such as Convolution Neural
Network (CNN) and Support Vector Machine (SVM), have
shown promise in many application domains, such as image
classification and speech recognition.

Many hardware technologies can be used in accelerating
machine learning algorithms, such as Graphics Processing
Unit (GPU) and Field-Programmable Gate Array (FPGA).
In particular, FPGA is a promising technology due to its
low power consumption, reconfigurability, and real-time
processing capability.

There are, however, two challenges for effective FPGA
development. First, architectural descriptions should capture
families of designs with different trade-offs in capability,
performance and energy efficiency. Second,Second, a design
flow for multiple architectures should facilitate re-use and
comparison of optimisation methods and tools.

This paper presents a novel approach to address these
challenges. The major contributions are as follows:

1) Parameterised hardware architectures for two well-
known machine learning algorithms, Convolution
Neural Network (CNN) and Support Vactor Ma-
chine (SVM).

2) A common design flow for different architectures
designed for different algorithms and models.

3) Two case studies illustrating our approach, with
a CNN design for object detection, and an SVM
design for hyperspectral image classification.
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Evaluations show that our approach is applicable to accel-
erating different machine learning algorithms and can reach
competitive performance.

This paper has four main sections. Section 2 presents
background in CNN and SVM, and also related research.
Section 3 illustrates the basic architectures that are pa-
rameterised for machine learning tasks. Section 4 proposes
a common design flow for given architectures. Section 5
shows two case studies of our approach.

2. Background

2.1. Convolutional Neural Networks

Many machine learning designs are based on deep learn-
ing networks, which involve an architecture with neurons
grouped into layers by their functionalities, and multiple
layers organised to form a deep sequential structure. Our
focus is on Convolutional Neural Network (CNN), a classic
deep learning network which has been applied to many
vision-based tasks. A typical CNN contains the following
layers:

e A convolution layer performs multi-dimensional
convolution computation, which extracts features
from an input feature map (fm;,) and generates a
feature map (fm,,:) with new features.

e An FC (Fully-Connected) layer usually performs the
classification tasks at the end of a CNN. It applies
dffine transformation to the input feature map. An
FC layer can be implemented with matrix-vector
multiplication.

o Sub-sampling is a layer that can significantly reduce
the dimensions of feature maps and enhance the
translation-invariance property of CNNs. To acquire
non-linearity, CNN usually contains activation lay-
ers, which are non-linear functions. Normalisation
layers in CNNs often guarantee the probabilistic
distribution will not change between the input and
the output.

There are four well-known CNN architectures in recent
years. AlexNet [1] is the first deep CNN architecture for
large-scale image classification tasks. VGGNet [2] further
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increases the depth of CNN and achieves better performance
than AlexNet. Inception [3] is a CNN that contains incep-
tion modules, which increases the computation efficiency
of CNN based on irregular kernels. ResNet [4] has the
best image classification performance by adopting residual
shortcut connections in CNNSs.

CNN-based Object Detection. CNN is an excellent feature
extractor for vision-based tasks, such as object detection,
which first targets Regions of Interest within an image and
then assigns it with a class label. These two steps can be
greatly enhanced by CNN, which has been discovered in
Faster R-CNN [5] and YOLO [6]. We will discuss how
CNN-based object detection algorithms can be accelerated
by FPGA in Section 5.

2.2. SVM and Hyperspectral Image Classification

SVM Principles. Support Vector Machine (SVM) is a
classic machine learning algorithm for classification and
regression problems. The fundamental idea behind SVM is
to find a hyperplane that can separate two groups of input
data points, which should also be mapped to the same high-
dimensional space as the hyperplane. The mapping from the
original space to the higher-dimensional space is commonly
implemented through a kernel function, which measures
the distance between two vectors in the higher-dimensional
space.

Multi-class SVM. Regarding multi-class classification, a
frequently used method is constructing multiple binary SVM
classifiers, which is known as One-Versus-One (OVO). In
this approach, suppose the number of classes in the problem
is K, then the number of binary SVMs should be K(lg_l),
and their outputs will further construct a vector that can be
measured by Hamming distances.

Hyperspectral Image Classification. Unlike a normal RGB
image, a hyperspectral image (HSI), frequently used in
satellite imaging tasks, covers information from across the
electromagnetic spectrum in each pixel. Multi-class SVM is
widely used for HSI classification because it can effectively
deal with the Hughes phenomenon, caused by the high di-
mensionality of HSI data [7]. More details will be discussed
in Section 5.

2.3. Related Work

CNN Accelerator Design. Design Space Exploration is a
frequently used technique when optimising CNN hardware
design. Zhang et al. [8] use the roofline model [9] and
data dependence analysis to optimise a convolution-only
AlexNet-based CNN architecture. Data quantization is a
precision optimisation method that allows CNNs to use
low-precision data types rather than floating-point. Qiu et
al. [10] successfully deploy the VGG-16 architecture on an
embedded FPGA platform with low-precision. Umuroglu
et al. [11] explore binarised neural networks, which is an
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extreme case of quantization for FPGA platforms. Weight
matrices in CNN models can be pruned and truncated until
they become sparse. Han et al. [12] design a general Efficient
Inference Engine (EIE) that computes based on compressed
deep neural network models and takes into account the
sparsity due to compression.

SVM Acceleration on FPGA Platforms. Irick et al. [13]
optimise an SVM with a Gaussian Radial Base kernel
function by using signed logarithmic number system. Pa-
padonikolakis et al. [14] and Kyrkou et al. [15] present scal-
able FPGA architectures based on a cascaded SVM classifier
scheme, which can effectively exploit FPGA resources and
reconfigurability. Shao et al. [16] exploit the performance
of incremental SVM training through an optimised dataflow
architecture.

3. Parameterised Architectures

This section presents two parameterised architectures
designed for CNN and SVM, with a focus on their common
architectural parameters and scalable components. These
two architectures are inspired by [17] and [18].

3.1. Overview

Hardware accelerators for different machine learning
methods are, unsuprisingly, based on different architectures
and building blocks. The following explores the parameters
that can be used for such architectures and building blocks
to achieve the desired trade-off in capability, performance,
and energy efficiency.

There are two typical approaches to enhance the perfor-
mance of an FPGA design: increasing the level of paral-
lelism and revising the bit width of the data representation.
To increase the level of parallelism, multiple processing
units for the same functionality can be adopted. Regarding
the bit width of the data representation, shorter bit width
will lead to less resource usage of a building block and
higher level of parallelism, but can also lead to unpredictable
effects on the accuracy of the machine learning algorithm.
Thus, there is usually a tradeoff between having higher
accuracy or higher processing rate. This tradeoff can also
be studied by simulating the performance with different data
representations.

The two architectures presented in this section take the
above considerations into account. They both contain paral-
lelisable building blocks and flexible data types. Their de-
scriptions are parameterised, such that the number of parallel
building blocks and the bit width of the data representation
are parameters. In the following discussion, we will focus
on the parameters and their effects on our architectures.
Section 4 will show a common design flow based on similar
parameters and structures.

3.2. CNN Accelerator Architecture

The accelerator architecture for CNN is a streaming
architecture: it takes input feature maps and weight matrices
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Figure 1. CNN accelerator architecture [17].

from off-chip memory and performs CNN computation by
streaming data through each building block. There are two
primary types of building blocks in this architecture: the
CONV kernel that acts as a convolution layer, and the FC
kernel that performs fully-connected computation. In either
type of kernels, there are buffers to cache inputs and co-
efficients to improve data reuse, and computation units to
perform specific types of computation, such as convolution
and dot-product (Figure 1).

There are two levels of parallelism in this architecture.
First, at the computation unit level, arithmetic circuits can
be replicated to produce more results in each cycle. In the
CONV kernel, it is possible to parallelise the computation
either within a channel or among filters. For the first case,
Py°™? number of adjacent sliding windows for convolution
can be computed in parallel, enabled by a line buffer and
a group of shared registers. For the second case, Pg™
number of output filters can also be computed in parallel, as
their results are independent. In the FC kernel, P{;c number
of dot-product operations can be run in parallel.

Second, at the kernel level, there can be multiple CONV
(P§f™) and FC (P]{c,c) kernels placed on the same FPGA
device if there is sufficient space. The data representation 7’
does not need to be fixed in this architecture. Table 1 sum-
marises the parameters used to describe a CNN architecture.
Section 4 presents how these parameters affect the resource
usage and performance.

3.3. SVM Accelerator Architecture

The architecture for accelerating SVM computation has
several features similar to the CNN accelerator. First, it
is a streaming architecture, data are loaded from input
interfaces and on-chip preloaded ROMs and then processed
by pipelined computation kernels, including the Binary
Classifier (BC) kernels, Hamming distance computation
kernels, and the Collection Kernel. Specifically, each BC
kernel outputs classification information for one pixel and
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TABLE 1. PARAMETERS FOR THE CNN ACCELERATOR ARCHITECTURE

Notation Description
Heonv Height of the convolution input feature map
Weenv Width of the convolution input feature map
Ceonv Number of input channels
Freonv Number of output filters
Keonv Size of convolution kernels
pgene Number of parallel windows within one channel
premv Number of parallel filters
Pz Number of parallel CONV kernels
P{;C Number of parallel dot-product operations
PJ{]C Number of parallel FC kernels
T Data type
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Figure 2. SVM accelerator architecture [18].

one of the category pairs; each Hamming distance kernel
takes vectors from K BC kernels’ output and computes
the Hamming distance among w elements; while the
Collection Kernel produces the final decision output.
Second, there are also building blocks that can be pro-
cessed in parallel. This SVM accelerator architecture has
two parameters related to the levels of parallelism, PyY
specifies the number of image pixels to be processed in
parallel, and PE,VM (equals to K) indicates the number of
BC kernels to process one pixel. Thus the number of BC
kernels is PV M x PYVM. The data type T of the SVM
model coefficients is configurable to support the trade-off
between model accuracy and design parallelism. Figure 2
illustrates this architecture while Table 2 summarises its
parameters. Section 4 shows how to derive the resource

usage and performance of this architecture.

4. A Common Design Flow

This section presents a design flow common to architec-
tures of both CNN and SVM. As mentioned in Section 3,
these two architectures have similar structures and parame-



TABLE 2. PARAMETERS FOR THE SVM ACCELERATOR ARCHITECTURE

Notation Description

KSVM Number of classes to be decided

1SvM Number of support vectors within each BC kernel
nSVM Number of dimensions in each support vector
P;EIVM Number of parallel pixel operations

Pf,VM Number of parallel BC kernels

TSVM Data type

ters, such as parallel units and data type. The flow illustrated
in this section makes use of these common parameters: it
makes use of a design model to predict the resource usage
and performance based on these parameters. A constrained
optimisation problem is formulated with the predicted per-
formance as an objective function and resource usage as
constraints, and the proposed optimisation module generates
hardware designs for different applications.

4.1. Design Model

Resource Usage. There are three types of resources in an
FPGA device: logic that includes Look Up Tables (LUTSs)
and Flip-Flops (FFs), Block RAMs (BRAMs) that act as on-
chip memory, and Digital Signal Processors (DSPs) that
contain high-performance arithmetic units. The following
focuses on the relationships among resource usage and
parameters that are tunable. Parameters that originate from
application specifications are constants and will not be
considered in this section. There are many ways to resolve
these constants, such as linear regression on the resource
usage of generated designs. We will use the big-O notation
to reflect the key relationships. Table 3 shows the resource
usage models for our architectures. Several discoveries are
as follows:

Although under big-O notations logic usage and
DSP usage are the same, they cannot share the same
set of constants.

The BRAM usage in CNN is mainly due to the
partial result buffer, which is linear to the number
of filters computing in parallel. The BRAM usage
in SVM is from image pixels RAM and preloaded
SVM model ROM, which is only affected by the
number of parallel pixel operations.

The impacts of different data types are reflected in
the constants of the design models.

Performance. The performance of a generated design has
two aspects: speed (S) and power consumption (P). This
paper adopts throughput to indicate the speed of the design.
We assume that the speed is linear to the parallel processing
units. For power consumption, the power consumption of an
FPGA design can be divided into static power and dynamic
power components, which are proportional to the on-chip
space usage and the clock frequency respectively. Given the
clock frequencies for the CNN and SVM designs are FENN
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TABLE 3. RESOURCE USAGE FOR ARCHITECTURES TO ACCELERATE
CNN AND SVM

Type Resource Usage Model
et || o pgeney  opfRL)
Sram || OWPR™PE™)

UGN || 0P P Pgm) + O(PYPL°)
li‘g/z‘]y O(PlgVAIPJE}VA!)

ugiat || oy

udss\;M O(P]€VMPA54VM)

TABLE 4. PERFORMANCE ESTIMATION FOR ARCHITECTURES TO
ACCELERATE CNN AND SVM

Type Performance Model
SCNN O(fCNN(Pj%onvP‘c/onuPIgonv + PJJ\C]CP‘J;C))
PCNN O(]:CNN) + O(Pﬁ]onvp‘c/onvpln;onv + PIJ\CICP‘JiC)
SSVM O(‘FSVAIPIEVAIPJ.&VNI)
pSVM O(FSVM)y 4 O(PIEVMP]?{VAI)

and FSVM  we could derive the performance models in
Table 4.

4.2. Optimisation Problem Formulation

To get the values for architectural parameters with the
best performance, we present a constrained optimisation
problem, in which the objective function is based on perfor-
mance models while the constraints involve resource usage
models. Intuitively, the objective function for a hardware
design is a combination of its speed and power consumption:
the speed should be as high as required, and the power con-
sumption should be as low as possible. Given the parameter
alg can either be CNN or SVM, we assume the objective
function has the form a(S%9) — 3(P*9), in which o and j3
are two positive hyper-parameters that specify weights for
these two performance metrics. Constraints for this objective
function capture the condition that the predicted resource
usage should be less than the resource capacity on the FPGA
device. The final form of the optimisation problem is shown
in Equation 1. Note that all the constants should be resolved
to specific values in order to get a reasonable answer from
the solution of the problem.

max (@S9 BPe)

subject to Z/Il{zlgic < Upgie |
w0, < g, .
Uj < UL

Various contraint solvers should be able to produce solu-
tions to the above constraint optimisation problem. Recently
it is proposed that machine learning techniques, such as
transfer learning, can also be used in optimising parameters
for many applications targeting FPGA-based implementa-
tions [19].
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Figure 3. A common design flow for different machine learning architec-
tures.

4.3. Design Flow

Figure 3 shows the proposed design flow. At the begin-
ning of the flow, users need to specify the system require-
ments, such as the clock frequency and the percentage of
hardware resource they would like to use. Parameters for
applications should also be specified. Next in the flow is
the optimisation module that is discussed in Section 4.2,
which takes user inputs to solve the optimisation problem.
Note that only the parameters relevant to the optimisation
problem are important in this module; other application
related parameters will be fixed, such as the height and
width of the convolution layer. Also, although the output of
the optimisation module meets resource constraints of the
system, there are several other constraints that can only be
addressed after running the place and route algorithm, such
as the critical path delay constraint. So there is a backwards
flow after the building process unless the build succeeds. As
this flow has no direct dependency on specific algorithm or
architecture, it can be applied to many other FPGA-based
machine learning applications.

TABLE 5. PERFORMANCE EVALUATION FOR CNN-BASED OBJECT

DETECTION
ARM CPU FPGA GPU
Platform ARMv7-A ZC706 Titan X
Technology 28 nm 24 nm 16 nm
Clock Freq. Upto 1 GHz | 200 MHz 1531 MHz
Num. of Cores 2 cores — —
YOLO 430.6 s 0.744 s 0.010 s
Faster R-CNN Failed 0.875 s 0.062 s
YOLO 1.6 W 1.167 W 230 W
Faster R-CNN Failed 1.167 W 81 W
YOLO 688.96 T 0.868 J 23017
Faster R-CNN Failed 1.027J 50217

5. Case Studies

This section evaluates the effectiveness of our proposed
approach based on two applications: CNN-based object de-
tection and SVM-based hyperspectral image classification.
Our results show that the approach presented in this paper
can achieve competitive performance.

5.1. CNN-based Object Detection

As mentioned in Section 2, there are two well-known
CNN-based object detection algorithms: YOLO and Faster
R-CNN. The CNN architectures of YOLO and Faster R-
CNN that we evaluate are Inception and VGG-16 respec-
tively. The target platform of our evaluation is the Xilinx
Zynq (ZC706) embedded FPGA platform, which contains
moderate resources on its FPGA board. After setting the
resource capacity and resolving the constants in our mod-
els, we derive an optimised configuration of the tunable
parameters. In this design, we deploy 1 CONV kernel with
P = 4 and 1 FC kernel with PJ° = 4. The data type
used is 32-bit fixed-point, which is chosen for detection ac-
curacy. Table 5 shows the final evaluated results. Compared
with the ARM CPU version, the generated FPGA design is
much faster. When compared with the GPU version (2.3J),
the energy consumption of the FPGA design (0.868J) is
much smaller.

5.2. SVM-based Hyperspectral Image Classifica-
tion

We also evaluate the SVM architecture for hyperspectral
image classification, often used in satellite image processing.
Our accelerator is implemented on a Maxeler MAX4 DFE
which is equipped with a Stratix V FPGA. We use the
AVIRIS HSI data set to train and evaluate the performance
of SVM classifiers. By applying our design flow, we find that
PIVM = 15, pgYM =8, with 16-bit fixed-point data type
in the final design. Our results show that this design can use
more than 80% logic and DSPs and 66.8% BRAM. Also,
we compare its performance with other processors, such as



TABLE 6. PERFORMANCE EVALUATION FOR SVM-BASED HSI

CLASSIFICATION
Intel CPU ARM CPU DFE
Platform E5-2650 Cortex A9 Max4
Technology 32 nm 28 nm 28 nm
Clock Freq. 2.00 GHz Upto 1 GHz | 120 MHz
Num. of Cores 8 cores 2 cores -
Time (us/pixel) 25.8 1321.2 0.99
Power (W) 95 33 26.3
Energy (J/pixel) 2.45x 1073 | 4.36 x 1073 | 2.60 x 10~°
Relative run time 14.2 1334.5 1.0

an Intel Xeon E5-2650 CPU and an ARM Cortex A9 CPU.
Table 6 shows that our design has competitive performance.
Compared with the results on Xeon and Cortex, our DFE
design has at least 14.2 times speed up and lower power
consumption.

5.3. Discussion

These two case studies have shown that our architectures
and design flow and support high performance. The archi-
tectures are parameterised, FPGA platforms with different
resource capacities, such as Xilinx ZC706 and Maxeler
Max4 DFE. The performance of these designs is competitive
compared with software running on CPU and GPU, in terms
of speed and/or power consumption. These two case studies
show that other applications can be accelerated on FPGA as
long as they adopt similar architectural parameters.

6. Conclusion

This paper describes how hardware acceleration can
enhance the performance of machine learning applications.
It is based on parameterised architectures for such ap-
plications, and the associated optimisation techniques and
flow. The proposed approach is illustrated by two examples:
CNN-based object detection, and SVM-based hyperspectral
image classification. Future work includes extending our
approach to cover further applications based on CNN and
SVM, and other machine learning algorithms such as Gaus-
sian Mixture Model [20] and Genetic Algorithm [21]. Fur-
ther FPGA-based optimisations such as multi-pumping [22]
will also be included in the proposed design flow.
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