
Hardware Compilation of Deep Neural Networks:
An Overview

Ruizhe Zhao∗, Shuanglong Liu∗, Ho-Cheung Ng∗, Erwei Wang∗, James J. Davis∗, Xinyu Niu†,
Xiwei Wang‡, Huifeng Shi§, George A. Constantinides∗, Peter Y. K. Cheung∗ and Wayne Luk∗

∗Imperial College London, London, United Kingdom
{ruizhe.zhao15, s.liu13, h.ng16, erwei.wang13, james.davis, g.constantinides, p.cheung, w.luk}@imperial.ac.uk

†Corerain Technologies Ltd., Shenzhen, China, xinyu.niu@corerain.com
‡China Academy of Space Technology, Beijing, China

§State Key Laboratory of Space-Ground Integrated Information Technology (SGIIT), Beijing, China

Abstract—Deploying a deep neural network model on a re-
configurable platform, such as an FPGA, is challenging due
to the enormous design spaces of both network models and
hardware design. A neural network model has various layer
types, connection patterns and data representations, and the
corresponding implementation can be customised with different
architectural and modular parameters. Rather than manually
exploring this design space, it is more effective to automate
optimisation throughout an end-to-end compilation process. This
paper provides an overview of recent literature proposing novel
approaches to achieve this aim. We organise materials to mirror
a typical compilation flow: front end, platform-independent
optimisation and back end. Design templates for neural network
accelerators are studied with a specific focus on their derivation
methodologies. We also review previous work on network com-
pilation and optimisation for other hardware platforms to gain
inspiration regarding FPGA implementation. Finally, we propose
some future directions for related research.

I. INTRODUCTION

Deep neural networks (DNNs) represent one of the most
effective classes of machine learning techniques, and a range
of DNNs have been applied in application domains including
image classification, speech recognition and reinforcement
learning. In spite of their excellent accuracies, DNNs can
demand a substantial amount of hardware to meet their compu-
tational needs. For example, VGG-16’s coefficients consume
528MB of memory, while 30.6 billion arithmetic operations
are required for a single inferencing pass on ImageNet [1].
Worse still, it can take several days or even weeks of training
until a DNN reaches acceptable accuracy for tasks with in-
creasing complexity. These factors hinder the wide deployment
of DNNs in real-life scenarios with limited resources and strict
requirements on power consumption, latency, etc.

Very often, classification with DNNs relies on mainstream
hardware platforms such as CPUs or GPUs, which lack the
flexibility to satisfy all user constraints. FPGAs, on the other
hand, are promising candidates for DNN implementation due
to their configurability and energy efficiency. It is therefore

The support of the United Kingdom EPSRC (grant numbers EP/I012036/1,
EP/L00058X/1, EP/L016796/1, EP/N031768/1 and EP/K034448/1), European
Union Horizon 2020 Research and Innovation Programme (grant number
671653), Corerain, Intel, Maxeler, SGIIT, China Scholarship Council and the
Lee Family Scholarship is gratefully acknowledged.

appealing to combine the effectiveness of DNNs with the cus-
tomisability of FPGA platforms to facilitate the proliferation
of machine learning across application domains.

Given a specific task targetting a particular reconfigurable
device, the combined search space of possible DNN topolog-
ical choices, model parameters and hardware design possi-
bilities is colossal. A framework that can perform automatic
design space exploration and discover near-optimal solutions
is therefore highly desirable. Within such a framework, a DNN
is considered to be a program and a compiler transforms
the network from its original representation to a hardware
implementation under certain constraints. Compilers tend to
be split into two major components: front ends and back
ends. A front end parses a DNN representation, in which
the network topology and parameters mainly depend upon
the training framework. The DNN is platform-independently
optimised and an intermediate representation (IR) is generated.
The IR is subsequently accepted by a back end for platform-
dependent optimisation, leading to the generation of a bistream
and binary for hardware implementation and software control.

The implementation of such a compiler is challenging due
to the complexity of the design space exploration process. As
mentioned, the design space includes numerous combinations
and optimal ones can only be determined when the designs are
implemented on actual hardware, which involves a lengthy
synthesis, placement and routing process [2]. This paper
summarises recent literature by presenting an overview of the
DNN compiler landscape including front ends (Section II) and
back ends (III). As a practical approach to the generation of
implementations in the back end, hardware design templates
will be discussed in Section IV.

II. COMPILER FRONT ENDS AND MODELS

A compiler front end is responsible for transforming a
high-level DNN representation from a source representation to
an IR. Platform-independent optimisation can be carried out
during this process. In this section, we cover high-level repre-
sentations and platform-independent optimisation techniques
proposed and exploited within DNN frameworks.



A. DNN Model Representation

Researchers have built models from optimised machine
learning frameworks in recent years [3]–[8]. These frameworks
use simple input constructs and provide easy-to-use mecha-
nisms to build, train and test DNN models. Thereafter, for de-
ployment, one needs to export DNN structures and coefficients
in a particular representation. Such model representations are
the entry points of a DNN compiler.

A model representation can be recognised as a domain-
specific language (DSL). In general, there are two implemen-
tation paradigms for DNN DSLs: coarse-grained layer-based
approaches and fine-grained graph-based approaches.

A layer-based DSL contains primitives that define typical
DNN layers. The major advantage of this approach is that
it is straightforward to optimise the implementation of a
specific DNN layer. However, difficulties may arise when
implementing new layer types or attempting to achieve cross-
layer optimisation. Examples of layer-based DSLs include
Caffe [8], Mocha [9] and Darknet [10].

A graph-based DSL can be used to construct a general
computation graph in which nodes are low-level arithmetic
operators, such as addition or multiplication, or high-level
DNN operators, e.g. convolution or rectified linear units (Re-
LUs). These nodes are normally organised from a dataflow
perspective. A range of graph algorithms can be used to
execute and optimise a DNN model specified by a graph-
based DSL. This provides flexibility since it is possible to
build a DNN with high-level operators—similar to a layer-
based approach— or with low-level operators to experiment
with new DNN functions. It is harder, however, to understand
the underlying representation of a computation graph due to
the lack of abstraction. Graph-based DSLs include Tensor-
Flow [3], MXNet [7], Torch [5], CNTK [4] and Theano [6].

Existing works on the hardware compilation of DNNs
mostly employ layer-based DSLs to generate hardware accel-
erators since they facilitate intuitive customisation of hardware
templates. For example, Venieris et al. [11] and Zhang et
al. [12] used the DSL from Caffe as the input to their
frameworks. These DSLs are then converted to IRs, which
convey information about DNN models and provide hints for
hardware realisation. The primary objective of such an IR is
to enhance the portability of input DSLs. It is worth noting
that ONNX [13], a community-supported DSL, provides ex-
changeability of model representations between many popular
machine learning frameworks.

B. DNN Model Optimisation

The primary optimisation goal of a DNN model is to achieve
efficient inferencing. In other words, an efficient DNN model
obtains high classification accuracy with few computational
resources. Model efficiency can be coarsely defined as model
accuracy normalised by model size, where the latter is stated
in terms of the number of operations performed and memory
footprint required during execution.

A DNN model can be optimised by reducing redundancy.
DNN models are frequently trained using large datasets in

order to achieve generality. However, such a model may be
overly complicated for a simple application. On one hand,
redundancy lies in model coefficients. Some coefficients, if
pretrained on a large-scale dataset, may become insignificant
for a specific application. These can be pruned or quantised
to reduce demands on computation and storage [14]–[17].
On the other hand, redundancy can also be architectural, i.e.
the realisation of a model may be overly complicated for a
particular task. There are some pragmatic approaches to reduce
architectural redundancy. Kernels of reduced size have been
empirically proven to be more efficient than larger ones in
typical image classification tasks [18], [19]. ResNet’s authors
demonstrated that a deeper DNN with small, regular filters
is more efficient when shortcut connections are inserted [20].
Grouped, depthwise and pointwise convolutional layers have
been shown to facilitate the reduction of computing costs while
maintaining accuracy [21]–[24].

Currently, such optimisation techniques tend to be manually
implemented, requiring expert knowledge. DNN researchers
are now exploring the use of automatic architectural search
engines to generate efficient DNN models instead [25], [26].
In particular, Zhao et al. recently proposed a transfer learning-
based approach to systematically identify and replace redun-
dant layers in pretrained DNN models, allowing the production
of efficient networks for particular applications [27].

III. COMPILER BACK ENDS

The purpose of a compiler back end is to produce hardware
implementations and control software for a given FPGA from
a platform-independently optimised DNN. Inputted as an IR,
DNNs at this level contain architectural information and
additional optimisation details.

It is challenging to convert an arbitrary software represen-
tation to an optimised implementation due to the complex-
ities of both DNN models and target devices. Researchers
therefore tend to generate hardware from predefined design
templates. Templates of different types have been proposed
to achieve particular objectives: some works accelerate matrix
multiplication operations to maintain generality, while others
narrow down templates to specific categories of DNN in order
to produce more optimal, yet less flexible, designs.

A back end also generates control software, which must be
tightly coupled with the hardware to ensure correctness and
efficiency when executed. The generation of such software
is relatively simple for CPUs, mainly due to their implicit
latency-hiding mechanisms, and there exists a mature compiler
ecosystem for CPU programming, in particular the LLVM tool
chain, which can be used for generating programs for efficient
DNN processing. The equivalent procedure for customised
hardware is nontrivial, however, due to the extra requirements
of explicit scheduling and memory management to hide la-
tency, and the lack of standardised compiler tool chains.

In the literature, TVM is an end-to-end framework that
compiles DNN models to various hardware platforms [28].
This work has several important features. The proposed fusion
of operators can greatly improve performance by reducing



inter-operator data transfer. The exploration of low-level tensor
operations’ schedule spaces is also performed by using com-
mon passes from Halide: a DSL for the automatic optimisation
of high-performance image processing tasks [29]. Note that
Halide features similar processing routines to DNNs. DLVM
provides a DSL that can be used to specify forward and
backward computations based on tensors [30]. Optimisation
is straightforward in the sense that DLVM DSL is converted
to LLVM IR, allowing LLVM optimisation passes to be used.
Tensor Comprehensive provides a framework to compile DNN
models onto CPU and GPU platforms [31]. The authors also
make use of Halide, along with multiple polyhedral optimi-
sation passes. The polyhedral framework is commonplace in
hardware design templates as well, as will be discussed in
Section IV-A. Finally, Latte’s authors proposed another DSL
to represent DNN models, presenting a compiler framework
that applies parallelisation and operator fusion [32].

IV. HARDWARE DESIGN TEMPLATES

A hardware template is a generic implementation with
configurable parameters. Templates can be described in a hard-
ware description language (HDL) or as conceptual diagrams.
With the use of templates, the hardware generation process can
be automated, and due to the presence of configurable param-
eters, the templates themselves can generalise onto multiple
hardwares. These properties of hardware templates eliminate
the need to compile arbitrary software representations to
optimised hardware directly: an active area of research within
the FPGA community [33]–[35].

The generation of a template-based design usually consists
of two major steps: parameter value selection and template
instantiation. The former is an optimisation problem in which
the objective depends on the requirements of the generated
design, such as its latency and throughput requirements or
restrictions on resource usage. A corresponding objective
function therefore contains template parameters that capture
such design metrics. The solution of such an optimisation
problem can be regarded as a design space exploration (DSE).
The process of template instantiation sees the propagation
of parameter values into a template in order to generate an
implementation. This procedure is accomplished through the
use of module or template parameter passing in the languages
that describe the template.

There is no de facto metric for the quality of a hardware
design template for DNN acceleration. With the objective
of generating DNN hardware automatically and ensuring
templates generalise across platforms, we consider effective
hardware templates to feature the following properties.

• Scalability: A hardware template is scalable if it can
be configured to generate efficient implementations in
scenarios of different magnitude, e.g. large-scale data-
centres consisting of multiple high-end FPGAs vs edge
devices with constrained resources and energy budgets.
A scalable template can also generate efficient designs
in accordance with changing performance objectives. For
example, if a compiler’s optimisation goal were modified

from high performance to low power consumption, a
scalable template would be configured to use fewer
parallel processing units and/or lower clock frequency in
order to accommodate.

• Flexibility: A DNN model may contain layers of many
types, and each layer can have different configuration
parameters. A template is flexible if it is able to produce
implementations that support a range of layer types and
parameters, e.g. kernel size.

Design templates are mentioned in many of the recent
works related to DNN accelerators. In some literature, the
authors aimed to design templates with high scalability and
flexibility [12], [36]–[40], while others applied them within
design space explorations to maximise performance [41]–
[43]. We categorise DNN design templates by considering the
following aspects.

• Architecture: Templates can have different base architec-
tures: systolic arrays, streaming engines, etc.

• Derivation: A templated design can be derived in various
ways. It is common to analyse nested loops within DNN
computations, deriving template configurations that map
them to design components. Polyhedral-based methods
are sometimes also applied.

• Model: It is often necessary to predict the performance of
a design to be generated by a given template. A design
model can map configurations to expected design prop-
erties, which can further be used to inform design space
exploration. A roofline model is a simple, commonly used
example [44].

• Configurability: A template’s configurability defines how
and to what extent it can be instantiated. We evaluate this
factor by considering the parameters and functionality
that a given template provides.

In the remainder of this section, we first introduce templates
categorised by their derivation methods. Templates derived
from loop analysis-based methods are discussed in the first
instance due to the generality of these methods regarding DNN
computation. Methods based on dataflow graph analysis are
introduced next, which are more general but less common
for DNN accelerator designs. Inspired by advances made in
the acceleration of DNNs on CPUs and GPUs, several design
templates in which matrix multiplication is considered to be
the core operation, and so is accelerated, are discussed. There-
after, templates with more unusual base architectures, such as
systolic arrays, are considered. We also mention several works
that do not involve templates per se, but nevertheless provide
insights for template design from their novel architectures. The
section concludes with comparisons between these templates.

A. Templates from Loop Analysis

As with many other compute-intensive tasks, DNN process-
ing consists of nested loops, particularly in the convolutional
layers. To accelerate the computation of nested loops on an
FPGA, loop unrolling and pipelining are the most commonly
used techniques. Loop unrolling increases the number of



performed operations per loop iteration from 1 to N , known
as a step size or unrolling factor, and reduces the total number
of loop iterations. Loop pipelining, meanwhile, schedules
operations within loops so that successive iterations can begin
execution as quickly as possible.

However, it is not always possible to fully apply both
of these techniques due to data dependencies across loop
iterations. For example, a loop cannot be fully pipelined if
the computation of one iteration depends on the results from
the previous iteration. Also, the limited memory bandwidth
and non-sequential access pattern can degrade the perfor-
mance [45]. Since the size and number of ports of a memory
block are finite, operations involve memory access must be
carefully designed to improve data locality and reduce unnec-
essary transactions. Finally, the number of resources required
to implement optimised loops may exceed the capacity of
a given platform. Loop tiling is needed to split the original
workload into smaller ones for hardware execution. Note that
resolving these issues often necessitate certain loop reordering,
and the following sub-sections summarise the common loop
analysis technique to derive a DNN accelerator.

1) Parallelism Analysis: An intuitive way to analyse and
explore nested loops in hardware terms is through parallelism.
Chakradhar et al. presented a configurable architecture that
exploits three types of parallelism: operator level, to parallelise
operations within single convolution, and intra- and inter-
output, to enable parallel processing for multiple channels
of input and output images, respectively [46]. The level of
parallelism was decided by balancing bandwidth requirements
and execution time. Chakradhar et al.’s paper was particularly
significant since it explored more opportunities for parallelism
than existing works, which only exploited parallelism at the
operator level through systolic arrays [47]–[49]. The work
also featured a novel design space exploration that took both
memory bandwidth and throughput into account, previously
only covered by Cadambi et al. [48].

Some recent works proposed parallelised design templates
similar to the ones from aforementioned approaches in the
era when DNN became widely deployed. Template should
enable the acceleration of not only convolutional layers, but
also others including fully connected, pooling and activation.
Ma et al. [36] presented a scalable HDL template that can
be used for AlexNet [50] and NiN [51] generation. Rahman
et al. jointly considered unrolling and tiling factors together
with a design space exploration process [43]. Motamedi et
al. [42] proposed a template similar to Zhang et al.’s [41],
also using roofline modelling. Motamedi et al., however,
did not mention polyhedral analysis, instead deriving their
template parameters from nested loops and parallelism types,
as were also covered by Chakradhar et al. [46]. Ma et al.
categorised the parallelism of convolution layer by different
loop unrolling strategies, and proposed a template that can be
systematically configured based on the impact of performing
loop transformations on various loop levels [37]. Another
recent work of Ma et al.’s focused more upon the flexibility of
accelerator templates to support a diverse range of DNNs [38].

Peemen et al. also built template designs from nested loops in
convolutional layers, while they optimised their design with
a special focus on memory usage issues, such as resource
and reuse distance [52]. Zhang et al. explicitly analysed on-
chip RAM usage and the balance of memory bandwidth and
performance, proposing a template capable of achieving high
performance [53]. Wei et al. proposed the use of systolic arrays
to achieve higher levels of parallelism, since such architectures
are place-and-route friendly and allow the achievement of high
clock frequencies [54].

Fusing multiple layers into a single, unified operator can im-
prove performance, as time-consuming off-chip data transfer
can be saved between layers. Manoj et al. studied so-called
layer fusion between consecutive convolutional layers [55],
while Xiao et al. attempted to fuse layers in Winograd-
based design templates (which will be elaborated upon in
Section IV-B) [56]. Zhao et al. considered layer fusion op-
portunities in convolutional blocks [27], each consisting of
various types of convolutional layers such as the bottleneck
block [20], which features a standard convolutional layer
sandwiched between a pair of pointwise ones.

2) Polyhedral Analysis: Alternatively, polyhedral model-
based methods can provide effective and systematic ap-
proaches for deriving templated designs from nested loops.
The polyhedral model is a representation of a program’s
statically predictable control flow, which could mainly con-
sist of nested loops. A dynamic instance of a statement,
e.g. an iteration of a loop statement, is represented as an
integer vector on an affine hyperplane. If the loop bounds
are linear combinations of variables, the statement defines
bounded polyhedron via its iteration vectors. Methods based
on the polyhedral model mainly perform loop transformation
to increase parallelism and data locality.

Polyhedral methods have been applied to reconfigurable
computing in recent years. Pouchet et al. studied the ap-
plication of polyhedral loop transformation on general tasks
for FPGAs [57]. Their target was to minimise off-chip data
transfers while constraining on-chip buffer sizes. Zuo et al.
followed a similar approach but focused more on the integra-
tion of polyhedral analysis into the general flow of high-level
synthesis (HLS) [58]. The authors’ motivation is based on the
fact that loops that HLS cannot directly pipeline, mainly due to
data dependency, can often be transformed and then pipelined.

The application of polyhedral methods to DNN accelerator
design is a relatively new field of study. Zhang et al. proposed
the application of loop unrolling and interchanging within
DNN architectures [41]. Based on notations from [57], they
concluded that, for a given multidimensional array, there
are three types of data-sharing relationship between different
iterations of a loop dimension: irrelevant, independent and
dependent. In loop unrolling where the processing elements
(PEs) and buffers are duplicated, different data-sharing re-
lationships can lead to different implementations. The loops
unrolled are determined by establishing dimensions which
do not have dependent relationships with any buffers in the
design. This avoids the creation of complex arbitration logic



between buffers and PEs. Zhang et al.’s target was therefore to
reduce the initial interval of pipelines. The rest of their work
mainly explored the design space of accelerators optimised
via their polyhedral-based method through the roofline model.
The work, however, did not fully apply automatic optimi-
sation tools powered by polyhedral analysis. Instead, they
partially applied the idea of polyhedral analysis and manually
transformed the nested loops of convolution, leading to an
insufficiently explored design space.

Additionally, the template proposed by Motamedi et al. in-
troduced more dimensions into the design space and achieved
better optimisation results, despite not making use of poly-
hedral analysis [42]. Caffine reused the design proposed by
Zhang et al. and involved mapping from the computation of
fully-connected layers to PEs of convolutional layers [12].

In other implementations, the authors applied polyhedral
analysis for DNN acceleration on non-FPGA platforms. Yang
et al. used polyhedral analysis to create an optimised loop-
blocking strategy for convolutional layers on multicore CPUs,
demonstrating higher performance than conventional general
matrix-matrix multiplication (GEMM)-based approaches [59].

B. Templates from Linear Algebra Acceleration

On generic software platforms, it is common to use opti-
mised linear algebra libraries to achieve DNN acceleration.
Most of the popular DNN frameworks use at least one
implementation of the Basic Linear Algebra Subprograms
(BLAS) [60]. Out of all the BLAS procedures, GEMM is
the most commonly used function for DNN implementation,
particularly in convolutions, fully connected layers and long
short-term memories (LSTMs) [61].

1) Matrix Multiplication: Inspired by this phenomenon, the
authors of several papers derived their design templates from
the perspective of a GEMM accelerator. The advantage of
targetting the template to matrix multiplication acceleration is
simplicity: it is relatively easy to optimise this straightforward
operation to make the best use of the available resources
and to achieve high performance. The main drawback of this
approach is that it can introduce overhead, especially within
convolutional layers, within which data need to be rearranged
into Toeplitz matrices prior to computation [62]–[64]. For
this reason, throughput-oriented DNN applications may ben-
efit from matrix multiplication optimisation, while latency-
focussed ones may not. Gupta et al. presented a systolic array-
based GEMM processor to perform DNN computations at low
precision [65]. Although their work involved no templates
or design space explorations, the elegance of their design
is inspiring. Suda et al. proposed an end-to-end framework
for mapping DNNs onto matrix multiplication-based design
templates [66]. Nconv and Sconv, the two design template
parameters in their work, only related to the number of threads
and vectorisation factor in the accelerator; no convolutional
layer parameters were involved in their design explorations.
Suda et al.’s work achieved comparable performance to Zhang
et al.’s [41] when discounting the effect of fixed-point opti-
misation. FP-DNN also projects DNN models onto a matrix

multiplication-based FPGA template [67]. Its authors achieved
much faster inferencing than Suda et al., who applied existing
designs directly. Moss et al. studied this approach on the Intel
HARPv2 platform and captured performance data for varying
precisions, including binarised representations [68].

2) Winograd and the Fast Fourier Transform: Among other
linear algebra-based methods exploited to accelerate DNNs,
the Winograd minimal filtering algorithm and fast Fourier
transform (FFT) are two effective methods that have been
widely applied. Research efforts thus far have focussed on
the performance enhancement of convolutional layers, since
convolution consumes more than 90% of the total processing
time for the majority of DNNs [41]. The methods have a
similar form: both require the use of a pair of transformation
matrices—one to project original input feature maps to their
specific domain and another to convert the results back—
and the core computations in their domain require far fewer
operations and resources vs standard convolutional implemen-
tations. They do have different use cases, however: Winograd
transforms perform better for convolutional layer with small
kernel sizes, while FFTs favour larger ones.

Accelerating convolution via Winograd in the context of
DNNs was first proposed by Lavin et al. [69]. Thereafter,
the authors of several papers have proposed mapping such
structures onto FPGAs [40], [56], [70]–[73]. All of these
hardware design templates are similar in terms of architecture,
however they use different parameters to capture parallelism
and tiling configurations. Lu et al. took input tile size for
Winograd as a configurable parameter [71], while Aydonat
et al. used a fixed Winograd configuration and explored
parallelism in other dimensions [70].

The authors of several papers have proposed efficient FPGA
designs for FFT-based DNN acceleration [74]–[76]. The major
downside of using FFTs is the overhead of transformation be-
tween the time and frequency domains. Chen et al. designed an
FPGA-based accelerator for two-dimensional FFTs optimised
for energy consumption through arranged off-chip data storage
and access [74]. Zhang et al. proposed the use of the overlap
and add (OaA) technique [75], which was previously used
by Highlander et al. [77], to perform FFT-based convolutions
on FPGAs. This technique aimed to improve the performance
of FFTs with small filters: always the case for convolutional
layers because kernels are much smaller than input feature
maps Zhang et al.’s design has a tunable folding parameter
K for each two-dimensional FFT kernel, while parameters Ti

and Tk enabled configurable parallelism.
Compared to standard convolution, FFT-based approaches

have much more complex datapaths and the ability to exploit
fine-grained parallelism is limited. Zeng et al. improved upon
this OaA idea with concatenate and pad (CaP), proposing the
use of CaP-OaA and devising a template that can generate
CaP-OaA-based implementations for different purposes [76],
[78]. Their templated designs were mainly derived from tiling
nested loops. Zeng et al. provided more parameters than
previous works, including tiling factor f .

According to the recent literature, Winograd-based designs



can achieve higher performance and are more suitable for
bleeding-edge DNN models that mainly feature small kernels
than FFT-based equivalents. Weak FFT performance was the-
oretically analysed by Lavin et al., who stated that FFTs have
lower multiplication, but higher transformation, complexity,
the latter of which dominates the former [69]. It would be
interesting to undertake a detailed comparison between the
two methods in the context of reconfigurable platforms.

C. Templates from Generic Dataflow Graph Analysis

A dataflow graph (DFG) is a common representation of
computation in which nodes represent operators and edges
represent data dependencies. Due to the graph-like structures
of DNNs, it is natural to represent machine learning models
as DFGs and control-flow graphs (CFGs) [3].

Although the previously mentioned methods have gained
popularity due to their performance, there exist contributions
that attempt to convert DFGs to FPGA implementations and
processing schedules directly via graph-aware templates. Com-
pared to templated designs derived from loop analysis (Sec-
tion IV-A), which rely on sequential execution and focus on the
acceleration of compute-intensive layers such as convolution,
graph-aware templates are more generic because they can
handle a variety of operators and more complex data flows.

Due to the flexibility and potential complexity of DFGs, it is
difficult to construct a design template that can be configured
for all DFG instances. There exist approaches that provide rel-
atively fixed processor designs, which cannot be reconfigured
at runtime to perform different computations. Runtime recon-
figuration commands, if applicable, together with instructions
to be executed, are generated by compilers. In such cases, a
DFG template is said to have been “promoted” from design
to instruction level, and a compiler can generate instructions
based on predefined instruction templates. NeuFlow follows
this approach [79], [80]: its design is a grid of runtime-
reconfigurable PEs organised in a diastolic array [81], each of
which can be configured to perform basic numeric operations.
An earlier work, CNP, is less configurable [49]. Therein, DNN
operations were mapped onto a vector arithmetic and logic unit
(ALU) through the use of a customised compiler.

Recent approaches have mapped DFGs to both hardware
and software. Tabla is a framework that can compile statistical
machine learning models to hardware designs and software
programs through an DFG IR [82]. A given model is first
converted to a DFG, from which a hardware implementation
and software will be built. Designs generated by Tabla are
based on a hierarchical template: PEs that contain ALUs,
data buffers and bussing logic are organised within processing
units (PUs). PEs perform basic arithmetic operations, while
PUs execute entire learning algorithms. PE and PU tem-
plates are implemented in an HDL. Tabla’s model compiler
further schedules instructions based on the generated de-
sign with the minimum-latency, resource-constrained schedul-
ing algorithm [83]. DNNWeaver is an improved version of
Tabla specifically focussed on DNN models [39]. This work
novelly provides a DNN instruction set architecture (ISA)

that covers most of the popular DNN operator types. The
underlying hardware is similar to Tabla’s, but customised
for DNN computation. For example, contents within Tabla’s
PEs are replaced with ALUs, accumulators and first-in first-
out buffers (FIFOs) designed for convolutional processing.
The work also includes an explicit template-based resource-
optimisation algorithm to find the best configuration for a
given a DNN specification. Another recent framework, FP-
DNN [67], explicitly targets the automatic generation of FPGA
implementations from TensorFlow models. Unlike Mahajan et
al. [82] and Sharma et al.’s [39] works, the core architecture
of FP-DNN was designed to perform matrix multiplication.
High-level DNN operations are transformed and offloaded to
FPGAs for execution. FP-DNN supports the compilation of
both convolutional and recurrent (LSTM-based) DNNs onto
FPGAs, which indeed showcases its flexibility. fpgaConvNet
is a DNN-to-FPGA framework based on the synchronous
dataflow (SDF) paradigm, used to create static execution
schedules through graph theory and linear algebra [11], [84],
[85]. Based on this model, efficient design space explorations
are performed via graph partitioning, reconfiguring, folding
and weight reloading. Rather than mapping DNN operations
to either generic ALUs or matrix multiplications, fpgaConvNet
instead maps them to a family of dataflow operators, e.g.
fork and sliding window, and DNN building blocks, such as
convolution. A design generated by fpgaConvNet maintains
the form of the data flow. That is, its operators are not folded
or merged into fewer nodes to save resources; designs are
instead partitioned across bitstreams if resources are limited.

D. Summary

The key compilers and templates discussed in this sec-
tion are summarised in Table I. The main purpose of using
templates is to bridge the gap between high-level software-
based DNN representations and optimised hardware accel-
erator design. In this section, we categorise templates by
their derivation approaches. Regardless of their underlying
architectures, templated designs are mainly derived by recog-
nising parallelism and other properties of computations and
quantifying their impacts on resource usage and performance
through design models. This information can be used for
design space exploration to generate an optimised design for
a given platform and DNN model.

In terms of the evaluation metrics mentioned at the be-
ginning of this section, the majority of these templates are
scalable for two reasons. Firstly, they try to highly utilise
hardware resources by exploring their design spaces. Secondly,
their models can balance computation and communication
based on the memory bandwidth of a given system. The use
of roofline models, adopted by many authors [12], [41], [42],
[56], [75], [86], is a good practice. Regarding flexibility, most
templates can cope only with standard DNN models comprised
of typical layers and configurations, such as VGG-16 [1] and
AlexNet [50]. Only certain exceptions [38], [84] can support
a limited range of new models, such as ResNet [20] and
DenseNet [87]. The design of templates supporting rapidly



TABLE I
A SUMMARY OF HARDWARE COMPILERS

Compiler Year(s) Approach(es) Architecture(s) Platform(s) Optimisation(s)

TVM [28] 2018 Polyhedral – CPU, GPU, FPGA Operator fusion, schedule space exploration
DLVM [30] 2017 DSL, LLVM – CPU, GPU LLVM utilities

Tensor Comprehensions [31] 2018 Polyhedral – CPU, GPU Auto-tuning via genetic search
RTL Complier [36]–[38] 2016–17 Loop analysis Dataflow FPGA Maximising number of parallel multipliers

Caffine [12] 2016 Polyhedral Dataflow FPGA Roofline model
BlockCNN [59] 2016 Loop analysis – CPU Constrained optimisation

FFTCodeGen [75], [76] 2017–18 FFT Dataflow FPGA Searching in design charts
Tabla [82] 2016 DFG Dataflow FPGA Scheduling via ML-RCS

DNNWeaver [39] 2016 DFG ISA, dataflow FPGA Resource-constrained optimisation
FP-DNN [67] 2017 DFG Dataflow FPGA Matrix multiplication kernel optimisation

SysArrayAccel [54] 2017 Loop analysis Systolic array FPGA Resource-constrained optimisation
fpgaConvNet [11], [84], [85] 2016–17 SDF Streaming FPGA SDF analysis, simulated annealing

Domain-specific [27] 2018 Layer fusion Streaming FPGA Transfer learning-based model optimisation

developed DNN models with new layer and connection types
has proven to be a considerable challenge.

V. CONCLUSION

In this paper, we reviewed recent literature on DNN ac-
celeration targetting reconfigurable computing platforms, with
a specific focus on automatic transformation from models
to hardware accelerators. Since DNN models have become
more powerful and complex in recent years, many tools aim
to reduce the effort of deploying these models onto FPGAs
through the use of customised compilers. There are different
approaches to building such a compiler, including the use of
design templates within automated design generation process.
Key techniques involved in existing compilers include loop
analysis, the polyhedral framework, DSL design and FPGA
architecture and design space explorations.

We see a number of potential directions for future work.
Hardware compilers with user interfaces and optimisations for
specific applications, such as remote sensing or medical image
analysis, is one. Another is the investigation of IRs suitable for
hardware generation to accelerate both inference and training.
A third is to devise effective techniques for the exploration of
design spaces of various dataflow graph-based DNN models,
including for recurrent networks. We hope that this overview
will inspire advances in DNN hardware compilers.

REFERENCES

[1] K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks
for Large-Scale Image Recognition,” in ICLR, 2015, pp. 1–14.

[2] H.-C. Ng et al., “ADAM: Automated Design Analysis and Merging for
Speeding Up FPGA Development,” in FPGA, 2018, pp. 189–198.

[3] M. Abadi et al., “TensorFlow: Large-Scale Machine Learning on
Heterogeneous Systems,” 2015. [Online]. Available: https://www.
tensorflow.org/

[4] D. Yu et al., “An Introduction to Computational Networks and the
Computational Network Toolkit,” Microsoft Technical Report, vol. 112,
no. MSR-TR-2014-112, 2015.

[5] R. Collobert et al., “Torch7: A Matlab-like Environment for Machine
Learning,” in BigLearn, NIPS Workshop, 2011.

[6] J. Bergstra et al., “Theano: A CPU and GPU Math Compiler in Python,”
in Proceedings of the 9th Python in Science Conference, 2010, pp. 3 –
10.

[7] T. Chen et al., “MXNet: A Flexible and Efficient Machine Learning
Library for Heterogeneous Distributed Systems,” arXiv:1512.01274, pp.
1–6, 2015.

[8] Y. Jia et al., “Caffe: Convolutional Architecture for Fast Feature Em-
bedding,” in Proceedings of the 22Nd ACM International Conference on
Multimedia, 2014, pp. 675–678.

[9] “Mocha: Deep Learning Framework for Julia.” [Online]. Available:
https://github.com/pluskid/Mocha.jl

[10] J. Redmon, “Darknet: Open Source Neural Networks in C,” http:
//pjreddie.com/darknet/.

[11] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Framework for
Mapping Convolutional Neural Networks on FPGAs,” in FCCM, 2016,
pp. 40–47.

[12] C. Zhang et al., “Caffeine: Towards Uniformed Representation and
Acceleration for Deep Convolutional Neural Networks,” ICCAD, pp.
12:1–12:8, 2016.

[13] “ONNX: Open Neural Network Exchange Format.” [Online]. Available:
https://onnx.ai/

[14] S. Han et al., “Deep Compression - Compressing Deep Neural Networks
with Pruning, Trained Quantization and Huffman Coding,” in ICLR,
2016.

[15] S. Anwar et al., “Structured pruning of deep convolutional neural
networks,” J. Emerg. Technol. Comput. Syst., vol. 13, no. 3, pp. 32:1–
32:18, Feb. 2017.

[16] P. Molchanov et al., “Pruning Convolutional Neural Networks for
Resource Efficient Transfer Learning,” in ICLR, 2017.

[17] H. Li et al., “Pruning Filters for Efficient Convnets,” in ICLR, 2017.
[18] C. Szegedy et al., “Going Deeper with Convolutions,” in CVPR, 2015,

pp. 1–9.
[19] ——, “Rethinking the Inception Architecture for Computer Vision,” in

CVPR, 2016, pp. 2818–2826.
[20] K. He et al., “Deep Residual Learning for Image Recognition,” in CVPR,

2016, pp. 770–778.
[21] F. Chollet, “Xception: Deep Learning with Depthwise Separable Con-

volutions,” in CVPR, 2017, pp. 1800–1807.
[22] X. Zhang et al., “ShuffleNet: An Extremely Efficient Convolutional

Neural Network for Mobile Devices,” arXiv:1707.01083, 2017.
[23] A. G. Howard et al., “MobileNets: Efficient Convolutional Neural

Networks for Mobile Vision Applications,” arXiv:1704.04861, 2017.
[24] M. Sandler et al., “MobileNetV2: Inverted Residuals and Linear Bottle-

necks,” arXiv:1801.04381, 2018.
[25] B. Zoph and Q. V. Le, “Neural Architecture Search with Reinforcement

Learning,” arXiv:1611.01578, pp. 1–16, 2016.

https://www.tensorflow.org/
https://www.tensorflow.org/
https://github.com/pluskid/Mocha.jl
http://pjreddie.com/darknet/
http://pjreddie.com/darknet/
https://onnx.ai/


[26] B. Zoph et al., “Learning Transferable Architectures for Scalable Image
Recognition,” arXiv:1707.07012, 2017.

[27] R. Zhao et al., “Towards Efficient Convolutional Neural Network for
Domain-Specific Applications on FPGA,” in FPL, 2018.

[28] T. Chen et al., “TVM: End-to-End Optimization Stack for Deep Learn-
ing,” arXiv:1802.04799, pp. 1–15, 2018.

[29] Ragan-Kelley et al., “Halide: A Language and Compiler for Opti-
mizing Parallelism, Locality, and Recomputation in Image Processing
Pipelines,” in PLDI, 2013, pp. 519–530.

[30] R. Wei et al., “DLVM: A Modern Compiler Infrastructure for Deep
Learning Systems,” arXiv:1711.03016, 2017.

[31] N. Vasilache et al., “Tensor Comprehensions: Framework-Agnostic
High-Performance Machine Learning Abstractions,” arXiv:1802.04730,
pp. 1–37, 2018.

[32] L. Truong et al., “Latte: a language, compiler, and runtime for elegant
and efficient deep neural networks,” in PLDI, 2016, pp. 209–223.

[33] H. C. Ng et al., “A Soft Processor Overlay with Tightly-coupled FPGA
Accelerator,” in 2nd International Workshop on Overlay Architectures
for FPGAs (OLAF), 2016, pp. 31–36.

[34] C. Liu et al., “QuickDough: A Rapid FPGA Loop Accelerator Design
Framework Using Soft CGRA Overlay,” in ICFPT, 2015, pp. 56–63.

[35] J. Liu et al., “Polyhedral-based Dynamic Loop Pipelining for High-Level
Synthesis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 2017.

[36] Y. Ma et al., “Scalable and Modularized RTL Compilation of Convolu-
tional Neural Networks onto FPGA,” in FPL, 2016, pp. 1–8.

[37] ——, “Optimizing Loop Operation and Dataflow in FPGA Acceleration
of Deep Convolutional Neural Networks,” in FPGA, 2017, pp. 45–54.

[38] ——, “An Automatic RTL Compiler for High-Throughput FPGA Im-
plementation of Diverse Deep Convolutional Neural Networks,” in FPL,
2017, pp. 1–8.

[39] H. Sharma et al., “From High-Level Deep Neural Models to FPGAs,”
in MICRO, 2016, pp. 1–12.

[40] J. Shen et al., “Towards a Uniform Template-based Architecture for
Accelerating 2D and 3D CNNs on FPGA,” in FPGA, 2018, pp. 97–106.

[41] C. Zhang et al., “Optimizing FPGA-based Accelerator Design for Deep
Convolutional Neural Networks,” in FPGA, 2015, pp. 161–170.

[42] M. Motamedi et al., “Design Space Exploration of FPGA-based Deep
Convolutional Neural Networks,” in ASP-DAC, 2016, pp. 575–580.

[43] A. Rahman et al., “Design Space Exploration of FPGA Accelerators for
Convolutional Neural Networks,” in DATE, 2017, pp. 1147–1152.

[44] S. W. Williams et al., “Roofline: An Insightful Visual Performance
Model for Floating-Point Programs and Multicore Architectures,” Com-
mun. ACM, vol. 52, no. 4, pp. 65–76, 2009.

[45] H. C. Ng et al., “Direct Virtual Memory Access from FPGA for High-
productivity Heterogeneous Computing,” in ICFPT, 2013, pp. 458–461.

[46] S. Chakradhar et al., “A Dynamically Configurable Coprocessor for
Convolutional Neural Networks,” in ISCA, 2010, pp. 247–257.

[47] M. Sankaradas et al., “A Massively Parallel Coprocessor for Convolu-
tional Neural Networks,” in ASAP, 2009, pp. 53–60.

[48] S. Cadambi et al., “A Programmable Parallel Accelerator for Learning
and Classification,” in PACT, 2010, pp. 273–283.

[49] C. Poulet et al., “CNP: An FPGA-based processor for Convolutional
Networks,” in FPL, 2009, pp. 32–37.

[50] A. Krizhevsky et al., “ImageNet Classification with Deep Convolutional
Neural Networks,” in NIPS, 2012, pp. 1–9.

[51] M. Lin et al., “Network In Network,” arXiv:1312.4400, pp. 1–10, 2013.
[52] M. Peemen et al., “Memory-centric Accelerator Design for Convolu-

tional Neural Networks,” in ICCD, 2013, pp. 13–19.
[53] J. Zhang and J. Li, “Improving the Performance of OpenCL-based FPGA

Accelerator for Convolutional Neural Network,” in FPGA, 2017, pp. 25–
34.

[54] X. Wei et al., “Automated systolic array architecture synthesis for high
throughput CNN inference on FPGAs,” in DAC, 2017, pp. 1–6.

[55] A. Manoj, C. Han, and F. Michael, “Fused-Layer CNN Accelerators,”
in MICRO, 2016.

[56] Q. Xiao et al., “Exploring Heterogeneous Algorithms for Accelerating
Deep Convolutional Neural Networks on FPGAs,” in DAC, 2017.

[57] L.-N. Pouchet et al., “Polyhedral-based Data Reuse Optimization for
Configurable Computing,” 2013, pp. 29–38.

[58] W. Zuo et al., “Improving High Level Synthesis Optimization Opportu-
nity Through Polyhedral Transformations,” in FPGA, 2013, pp. 9–18.

[59] X. Yang et al., “A Systematic Approach to Blocking Convolutional
Neural Networks,” arXiv:1606.04209, 2016.

[60] C. L. Lawson and othrs, “Basic Linear Algebra Subprograms for Fortran
Usage,” TOMS, vol. 5, no. 3, pp. 308–323, 1979.

[61] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[62] E. H. Bareiss, “Numerical Solution of Linear Equations with Toeplitz
and Vector Toeplitz Matrices,” Numer. Math., vol. 13, no. 5, Oct. 1969.

[63] A. Vasudevan et al., “Parallel Multi Channel Convolution using General
Matrix Multiplication,” arXiv:1704.04428, 2017.

[64] V. Sze et al., “Efficient Processing of Deep Neural Networks: A Tutorial
and Survey,” Proceedings of the IEEE, vol. 105, pp. 2295–2329, 2017.

[65] S. Gupta et al., “Deep Learning with Limited Numerical Precision,” in
ICML, 2015, pp. 1737–1746.

[66] N. Suda et al., “Throughput-Optimized OpenCL-based FPGA Acceler-
ator for Large-Scale Convolutional Neural Networks,” in FPGA, 2016,
pp. 16–25.

[67] Y. Guan et al., “FP-DNN: An Automated Framework for Mapping Deep
Neural Networks onto FPGAs with RTL-HLS Hybrid Templates,” in
FCCM, 2017, pp. 152–159.

[68] D. J. M. Moss et al., “A Customizable Matrix Multiplication Framework
for the Intel HARPv2 Xeon + FPGA Platform A Deep Learning Case
Study,” in FPGA, 2018, pp. 107–116.

[69] A. Lavin and S. Gray, “Fast Algorithms for Convolutional Neural
Networks,” in CVPR, 2016, pp. 4013–4021.

[70] U. Aydonat et al., “An OpenCL(TM) Deep Learning Accelerator on
Arria 10,” in FPGA, 2017, pp. 55–64.

[71] L. Lu et al., “Evaluating Fast Algorithms for Convolutional Neural
Networks on FPGAs,” in FCCM, 2017, pp. 101–108.

[72] J. Yu et al., “Instruction Driven Cross-Layer CNN Accelerator with
Winograd Transformation on FPGA,” in ICFPT, 2017, pp. 227–230.

[73] A. Podili et al., “Fast and efficient implementation of Convolutional
Neural Networks on FPGA,” in ASAP, 2017, pp. 227–230.

[74] R. Chen and V. Prasanna, “Energy Optimizations for FPGA-based 2-D
FFT architecture,” in HPEC, 2014, pp. 1–6.

[75] C. Zhang and V. Prasanna, “Frequency Domain Acceleration of Convo-
lutional Neural Networks on CPU-FPGA Shared Memory System,” in
FPGA, 2017, pp. 35–44.

[76] H. Zeng et al., “A Framework for Generating High Throughput CNN
Implementations on FPGAs,” in FPGA, 2018, pp. 117–126.

[77] T. Highlander and A. Rodriguez, “Very Efficient Training of Convolu-
tional Neural Networks using Fast Fourier Transform and Overlap-and-
Add,” arXiv:1601.06815, pp. 1–9, 2016.

[78] H. Zeng et al., “Optimizing Frequency Domain Implementation of CNNs
on FPGAs,” University of Southern California, Tech. Rep., 2017.

[79] C. Farabet et al., “Hardware Accelerated Convolutional Neural Networks
for Synthetic Vision Systems,” ISCAS, pp. 257–260, 2010.

[80] ——, “NeuFlow: A Runtime-Reconfigurable Dataflow Processor for
Vision,” in CVPR Workshop, 2011, pp. 109–116.

[81] M. H. Cho et al., “Diastolic arrays: Throughput-driven Reconfigurable
Computing,” in ICCAD, 2008, pp. 457–464.

[82] D. Mahajan et al., “TABLA: A Unified Template-based Framework for
Accelerating Statistical Machine Learning,” in HPCA, 2016, pp. 14–26.

[83] D. C. Ku and G. De Micheli, High Level Synthesis of ASICs Under
Timing and Synchronization Constraints. Norwell, MA, USA: Kluwer
Academic Publishers, 1992.

[84] S. I. Venieris and C.-S. Bouganis, “fpgaConvNet: A Toolflow for Map-
ping Diverse Convolutional Neural Networks on Embedded FPGAs,” in
NIPS Workshop, 2017.

[85] ——, “Latency-driven Design for FPGA-based Convolutional Neural
Networks,” in FPL, 2017, pp. 1–8.

[86] Y. Umuroglu et al., “FINN: A Framework for Fast, Scalable Binarized
Neural Network Inference,” in FPGA, 2017, pp. 65–74.

[87] G. Huang et al., “Densely Connected Convolutional Networks,”
arXiv:1608.06993, 2016.


