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Abstract—Reinforcement Learning (RL) is an area of machine
learning in which an agent interacts with the environment by
making sequential decisions. The agent receives reward from the
environment based on how good the decisions are and tries to
find an optimal decision-making policy that maximises its long-
term cumulative reward. This paper presents a novel approach
which has shown promise in applying accelerated simulation of
RL policy training to automating the control of a real robot
arm for specific applications. The approach has two steps. First,
design space exploration techniques are developed to enhance
performance of an FPGA accelerator for RL policy training
based on Trust Region Policy Optimisation (TRPO), which
results in a 43% speed improvement over a previous FPGA
implementation, while achieving 4.65 times speed up against
deep learning libraries running on GPU and 19.29 times speed
up against CPU. Second, the trained RL policy is transferred
to a real robot arm. Our experiments show that the trained
arm can successfully reach to and pick up predefined objects,
demonstrating the feasibility of our approach.

I. INTRODUCTION

Reinforcement Learning (RL) is a branch of machine learn-
ing concerning how to make sequential decisions. In the
typical setting of RL, there is an agent interacting with the
environment. In each time step t, the agent observes the state
of the environment st and takes an action at, according to its
decision-making policy π. The environment receives at and
gives a scalar reward rt to the agent. As the environment is
affected by the agent’s action, the environment state s will
change to st+1 in the next time step, then the agent will
observe the new state st+1, take a new action at+1, and receive
another reward rt+1. This loop goes on and on. The agent aims
to maximise the long-term cumulative reward gathered from
the environment thorough trial and error. The agent gradually
adjusts his decision-making policy π to achieve this goal.

Historically, a major driving force behind RL is game
playing, in which the RL agent is the player and the reward is
the score or the eventual win or lose. For example, Google’s
RL-based algorithm AlphaGo defeated human world champion
Lee Sedol in 2016 [1]. Besides, as many real world problems
are essentially sequential decision making problems, RL has
been applied to other domains. In robotics, the state s is the
robot’s position, velocity, etc.; the policy π is the control logic;
and the action a is the control signal sent to the robot’s motors.
Reward can be given for following the desired trajectory.
RL has been applied to controlling robotic arms, autonomous
vehicles, and humaniod robots, etc [2] [3] [4].

An important family of RL algorithms are Policy Gradient
methods. Benefited from the capability to deal with continuous
action space efficiently, Policy Gradient has been successful
for robotic control [2]. The main requirement of Policy Gra-
dient is that the agent’s policy π must be differentiable. Cur-
rently, deep neural network is the most prevalent policy, which
satisfies this requirement. Using θ to denote the parameters
in the policy, such as the weights in the neural network, the
policy π is parameterised as πθ. Given an objective function
J(πθ), such as the expected cumulative reward, the gradient
of the objective function with respect to the policy parameters
is ∇θJ(πθ). Policy Gradient methods try to maximise J(πθ)
using gradient-based optimisation, i.e. ∆θ = α∇θJ(πθ),
where α is the step size. This process leads to an improved
πθ for higher reward.

There is published work on RL for robotic control based
on simulated robotic benchmarks [3] [5]. This is possibly
due to the difficulty and cost of obtaining a real robot and
experimenting with it. Research efforts have been focusing on
improving the RL algorithms, which are evaluated in simulated
benchmarks [3] [5]. Currently, state-of-the-art Policy Gradient
algorithms demonstrate solid performance in simulated robotic
locomotion benchmarks [5]. While continuing improving the
RL algorithms themselves such that the robot can walk more
smoothly in simulation is beneficial, we choose a different
perspective in this paper. Starting from Trust Region Policy
Optimisation (TRPO), we select an advanced Policy Gradient
algorithm that works well in simulation [3]. We study how to
use this algorithm to control a real robot automatically, and
how to use FPGA-based hardware acceleration to address the
computational challenges that arise while we are doing so.

The robot we use is a robot arm with a gripper, and the task
is to automatically reach and pick up an item from the table.
We create a simulation model for the robot arm in software
and build an integrated framework connecting physical robotic
simulation and Reinforcement Learning library together. We
train a neural network based RL agent in simulation, using
the TRPO algorithm. As training is time consuming, we
propose an FPGA-based hardware acceleration strategy for
TRPO algorithm, with automated design space exploration.
We implement the trained neural network on the development
board to control the robot arm, and let the real system run in
action. We adjust the hyper parameters of the training stage
based on the robot arm’s behaviour in both simulation and real



world tests. After adequate tuning, the robot arm can perform
the task of reaching and picking up an item from the table
successfully. Specifically, the major contributions of this paper
are:
• A workflow of applying accelerated Reinforcement

Learning to control a real robot: simulation-based RL
training (TRPO algorithm), implementation on the real
robot, and hyper parameter tuning.

• FPGA-based hardware acceleration of the TRPO algo-
rithm, with automated design space exploration. Imple-
mentation on Stratix-V 5SGSD8 FPGA showed 4.65
times speed-up against Keras+Theano deep learning li-
braries running on Tesla C2070 GPU, and 19.29 times
speed-up against the libraries running on i7-5930K CPU.

• Application of the proposed workflow to a real robot arm,
using Reinforcement Learning to control the arm to reach
and pick up an item automatically.

The rest of this paper is organised as follows. Section II
covers background. Section III details the proposed hardware
acceleration of TRPO algorithm. Section IV presents a case
study with the real robot arm. Finally, Section V presents the
conclusion and suggests future work.

II. BACKGROUND

A. Trust Region Policy Optimisation (TRPO)

In this paper, we use Trust Region Policy Optimisation
(TRPO), an advanced RL algorithm, to train the RL agent
to perform the robotic control task. Here we briefly review
the key points of TRPO. Full details can be found in [3].

Consider an infinite-horizon discounted Markov Decision
Process (MDP), defined by tuple (S,A, P, r, ρ0, γ), where S
is the set of states, A the set of actions, P : S×A×S → R is
the transition probability distribution, r : S → R is the reward
function, ρ0 : S → R is the distribution of initial state s0, and
γ ∈ (0, 1) is the discount factor. Let policy πθ be a stochastic
policy πθ : S ×A → [0, 1], which is a conditional distribution
over actions given states πθ(a|s) = Pθ(At = a|St = s).
Here θ represents the policy parameters. Let η(πθ) denote the
expected discounted total reward by following policy πθ:

η(πθ) = Es0,a0,...

[ ∞∑
t=0

γtr(st)

]
(1)

where s0 ∼ ρ0(s0), at ∼ πθ(at|st), st+1 ∼ P (st+1|st, at).
The state-value function Vπ is the expected reward starting

from state st and then following policy πθ:

Vπθ (st) = Eat,st+1,...

[ ∞∑
l=0

γlr(st+l)

]
(2)

The action-value function Qπθ is the expected reward start-
ing from state st, taking action at and then following policy
πθ:

Qπθ (st, at) = Est+1,at+1,...

[ ∞∑
l=0

γlr(st+l)

]
(3)

Algorithm 1 Conjugate Gradient Algorithm
Input: A, b, Maximum Iterations MaxIter, Threshold Th
Output: Solution to the linear equation Ax = b

1: procedure CONJUGATE GRADIENT(A,b,MaxIter,Th)
2: Initialise p = b, r = b, x = 0, ρ = rᵀr
3: Initialise iter = 0
4: while ρ > Th and iter < MaxIter do
5: z← Ap . Fisher-Vector Product (FVP)
6: v ← rᵀr/pᵀz
7: x← x + vp
8: r← r− vz
9: ρnew ← rᵀr

10: p← r + (ρnew/ρ)p
11: ρ← ρnew
12: iter ← iter + 1
13: end while
14: return x
15: end procedure

By subtracting Vπθ from Qπθ , the advantage function Aπθ
indicates the advantage of a specific action a over average:

Aπθ (s, a) = Qπθ (s, a)− Vπθ (s) (4)

During each iteration, policy parameters θ will be updated.
In TRPO, the new θ is chosen by solving the following
constrained optimisation problem:

max
θ

Es∼ρθold ,a∼πθold

[
πθ(a|s)
πθold(a|s)

Aθold(s, a)

]
subject to Es∼ρθold [DKL(πθold(·|s)||πθ(·|s))] ≤ δKL

(5)

where ρθold is the discounted state-visitation frequencies in-
duced by πθold , DKL the Kullback-Leibler (KL) divergence,
and δKL the maximum KL divergence allowed.

KL divergence is a measure of difference between two
probability distributions P and Q, defined as follows:

DKL(P ||Q) =

∫ ∞
−∞

p(x)log
p(x)

q(x)
dx (6)

The optimisation problem (5) is solved in each TRPO
iteration with the following two steps:

1. Compute a search direction via Conjugate Gradient (CG).
The general framework of CG is shown in Algorithm 1.

2. Perform a line search in that direction, ensuring that the
objective is improved without violating the KL constraint.

In each CG iteration, we will need to compute z = Ap (line
5 of Algorithm 1). Vector z is called Fisher-Vector Product
(FVP). As all other computations in the CG iteration have
linear time complexity, the computation of FVP dominates
the total computing time. A is the Fisher-Information Matrix
(FIM), approximatly calculated using the training samples:

FIM ≈ 1

N

N∑
n=1

∂2

∂θi∂θj
DKL(πθold(·|sn)||πθ(·|sn)) (7)

where n = 1, · · · , N denotes each sample in the data set and
i, j denote the parameters in policy πθ.



B. Reinforcement Learning on FPGA

FPGA acceleration of Machine Learning has received great
attention in the past few years, with much of the research work
focusing on Convolutional Neural Networks (CNN).

Accelerating Reinforcement Learning on FPGA is a new
direction. Su, Liu, Thomas and Cheung proposed an architec-
ture for Q-Learning on FPGA [6]. Q-Learning is an important
family of RL algorithms that tries to learn the action-value Q
function (3), which has been successful in game playing.

For robotic control tasks, Policy Gradient methods are
more suitable. We have explored FPGA acceleration of Policy
Gradient algorithms, and developed a hardware architecture
for Trust Region Policy Gradient (TRPO) [7]. Our previous
work uses Pearlmutter Propagation to evaluate Fisher-Vector
Product (FVP), the computational bottleneck of TRPO. With
that architecture, the loop unrolling factor of each layer in
the neural network needs to be optimised to achieve high
efficiency, but such design space exploration is missing. We
address this exploration next.

III. HARDWARE ACCELERATION OF TRPO

In RL-based robotic control, the RL agent is the robot’s
controller. The agent’s policy π is usually a Multi-Layer
Perception (MLP) neural network to be trained by the RL
algorithm. In our paper, we use TRPO to train the agent [3].
Our work is based on the hardware architecture for TRPO
proposed in [7]. We focus on design space exploration, i.e.
finding the optimal loop unrolling parameter for each neural
network layer, which is the key to high performance.

A. Design Space Exploration Problem

The Design Space Exploration (DSE) problem of finding
optimal loop unrolling parameters to accelerate TRPO on
FPGA is challenging because: a) the solution space grows
exponentially with respect to the number of layers; b) loop
unrolling parameters of different layers affect each other.

Here we provide a systematic DSE approach. The general
workflow is shown in Fig. 1. Given the neural network size
and the FPGA specification, we can build performance model
(the number of cycles processing one training sample) and
resource model (the critical resource the design will consume
for a given set of loop unrolling parameters).

For the case of TRPO, the critical resource is DSP block
on the FPGA chip, as dense matrix-vector multiplication
dominates the computation. We use P to denote the set of
loop unrolling parameters, LayerSizei to denote the size of
layer i, then the DSE problem is given as follows:

min
P

Cycle

subject to DSP ≤ DSPFPGA

BW ≤ BWmem

Pi ≤ LayerSizei

(8)

This reflects three natural constraints: hardware resource con-
straint (DSP); memory bandwidth constraint (BWmem); and
problem specific constraint (unrolling factor of a given layer
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Fig. 1. Design Space Exploration (DSE) Procedure.

cannot exceed the size of that layer). We select P by solving
this constrained optimisation problem.

Our design space exploration differs from past papers ac-
celerating CNN in the following ways:

• In RL we use an MLP network, rather than CNN
• Pearlmutter Propagation [7] [8] is used in training, rather

than the conventional back propagation method
• We focus on training, rather than the inference stage

These differences lead to a different performance model,
involving the number of cycles to process one training sample
- the objective function to be minimised.

As the loop unrolling parameters must be integers, the
design space exploration problem is a constrained integer
programming problem. Currently, we write a python script
to solve it via brute force. The 4 layer neural network used
in our experiments takes less than 10 seconds to solve with
our i7-4770 CPU. For larger problem sizes, standard integer
programming software packages can be used.

B. Performance Model

When accelerating TRPO, we focus on the Fisher-Vector
Product (FVP), which is the computational bottleneck [7]. To
evaluate FVP, we need to carry out standard Forward Propaga-
tion, Pearlmutter Forward Propagation, and Pearlmutter Back
Propagation for each layer in the neural network.

Standard Forward Propagation is given as follows:

xi =
∑

j
wjiyj + bi (9a)

yi = σi(xi) (9b)

where yj are the inputs from the previous layer, wji and bi
are the weights and biases, xi is the pre-activated value, σ()
is the activation function, and yi is the output of this layer.

Let E = E(y) be the loss function, the Pearlmutter Forward
Propagation is given as follows:

R{xi} =
∑

j
(wjiR{yj}+ pjiyj) + pi (10a)

R{yi} = R{xi}σ′i(xi) (10b)
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Fig. 2. Type A and Type B blocked matrix-vector multiplication. Both are
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generating several partial results for the corresponding outputs. These partial
results are accumulated, and final results come out in the last inner loop.

where R{·} is the Pearlmutter differentiation operator [8], pji
and pi are the elements in p that correspond to wji, and bi,
respectively. p is the vector in the FVP equation z = Ap.

Standard Forward Propagation and Pearlmutter Forward
Propagation can be merged together to form Combined For-
ward Propagation. Then, using the results calculated by the
Combined Forward Propagation, we carry out the Pearlmutter
Back Propagation [7]:

R

{
∂E

∂yi

}
= e′i(yi)R{yi}+

∑
j

wijR

{
∂E

∂xj

}
(11a)

R

{
∂E

∂xi

}
= σ′i(xi)R

{
∂E

∂yi

}
(11b)

R

{
∂E

∂wij

}
= yiR

{
∂E

∂xj

}
(11c)

R

{
∂E

∂bi

}
= R

{
∂E

∂xi

}
(11d)

While these equations look complicated, when we are
evaluating them, each term, such as R

{
∂E
∂yi

}
, is just a number.

Therefore, most of the computations are essentially dense
matrix-vector multiplication, which can be efficiently paral-
lelised on FPGA via blocked matrix-vector multiplication.

We have two types of blocked matrix-vector multiplication,
Type A and Type B, which are illustrated in Fig. 2 [7].

In a Type A block, the inner loop is the loop over input
vector, and the weight matrix is traversed in a column major
manner. An output item will be produced at the end of each
inner loop. In a Type B block, the loop over input is the outer
loop, and the weight matrix is traversed in row major. Partial
results are accumulated, and final results come out in the last
inner loop.

The two types of matrix-vector multiplication can be cas-
caded in an A-B-A-B manner to efficiently carry out forward
and back propagation for a multi-layer neural network. The
first layer uses Type A block, as it reads inputs from memory

and it can read new values every cycle. The second layer’s
Type B block can start working as soon as the first batch of
the results from the first layer becomes available. When the
second layer outputs its results in the last inner loop, the third
layer’s Type A block can start. By arranging the layers in an
A-B-A-B manner, the propagation between adjacent layers can
be pipelined, which effectively reduces the number of cycles
needed for computation.

We model the number of cycles the system needs, to be used
in design space exploration. We will first look at the Type A
and Type B blocks. Then we model the whole system.

For matrix-vector multiplication, we use InLayerSize and
OutLayerSize to denote the dimension of input and out-
put, respectively. Assume input dimension is blocked into
NumInBlocks blocks, and output dimension NumOutBlocks
blocks. Then the weight matrix is blocked into NumInBlocks×
NumOutBlocks blocks. If stream padding is used, InLayerSize
and OutLayerSize should be the padded dimension numbers.

The dimension in each rectangular block is given as follows:

InBlockDim = InLayerSize/NumInBlocks

OutBlockDim = OutLayerSize/NumOutBlocks

For Type A block, the number of cycles needed is:

CycleA = InBlockDimA × OutBlockDimA (12)

For Type B block, we have data dependencies as it needs to
wait for the results from the Type A block in the previous
layer. Also, as each inner loop calculates a partial result to
be buffered and accumulated, we need to take computational
latency into account. Let InBlockDimprev be the InBlockDimA

of the previous layer’s Type A block and CL be the computa-
tional latency of calculating the partial result. Each inner loop
in Type B block needs InnerCycleB cycles:

InnerCycleB = max(InBlockDimprev,OutBlockDimB ,CL)

The total number of cycles needed for Type B block is:

CycleB = InnerCycleB × InBlockDimB (13)

When cascading A and Type B, the number of cycles is:

CycleAB = InBlockDimA + (InBlockDimB − 1)× CycleB

The equation above places a lower bound on the cycles
needed for each inner loop in Type B block, it would be a
waste of resources to increase parallelism too high. Ideally, the
optimal configuration should satisfy the following condition:

InBlockDimA ≥ OutBlockDimB ≥ CL (14)

This is the most efficient case since the latency of Type B
block is hidden in that of Type A block. In this case, the total
number of cycles needed for the two layers is:

CycleAB = InBlockDimA×OutBlockDimA = CycleA (15)

Longer cascaded A-B-A-B-... blocks can be modelled in
the same way. The starting cycle of a block in layer #i is
always the cycle that the first item from layer #i-1 becomes



available. In this way, we can derive CycleFP and CycleBP ,
the number of cycles of the Combined Forward Propagation
and that of the Pearlmutter Back Propagation, respectively. We
overlap the Pearlmutter Back Propagation of sample #i with
the Combined Forward Propagation of sample #i, as they are
independent. Thus, the total number of cycles for processing
one training sample is:

Cycle = max(CycleFP , CycleBP ) (16)

C. Evaluation

We use the Humanoid-v1 benchmark from OpenAI Gym
for evaluation [9]. The task is to control a humanoid robot
to run, simulated by MuJoCo [10]. The observation space
S is 376-dimensional (position, velocity, center of mass of
each element, etc.), the action space A is 17-dimensional
(torque control commands). This is the most complex MuJoCo
benchmark in OpenAI Gym. It is also used in paper [5] that
evaluates a wide range of RL algorithms, including the TRPO.

1) Design Space Exploration: We use an MLP with two
hidden layers to control the robot, sized at 376 (input) -
128 - 64 - 17 (output). We use P0, P1, P2, P3 to denote the
loop unrolling pamameters, from input layer to output layer.
Following the calculating procedure presented in Section III.B,
the performance model eq. (16) could be derived:

Cycle =
LayerSize0

P0
∗LayerSize1

P1
+

LayerSize2
P2

∗LayerSize3
P3

To construct the DSE optimisation problem eq.(8), we also
need a DSP usage model. We use fixed-point numbers with
23 fractional bits for computation. The number of integer bits
are set based on the numerical range of each variable. After
working out data types, we can model DSP usage accurately
based on bit-width (how many DSPs each operation takes) and
parallelism (how many operations). In our case, we have:

DSP = 4P0P1 + 8P1P2 + 7P2P3 + 19P1 + 19P2 + 2P3

We use a Maxeler MAX4 system with Stratix-V 5SGSD8
FPGA, which has 1963 DSPs (DSPFPGA = 1963). For our
system and the TRPO architecture, the bandwidth constraint
can be represented as a bit-width constraint, limiting the input
layer’s parallelism P0. The input vector from the memory,
which contains P0 double precision numbers, 64-bit each,
must not exceed the width of the bus, which is 3072-bit. Thus
we have BW = 64P0, BWmem = 3072.

Substituting the above expressions for Cycle, DSP and
BW constraints into the design space exploration problem
eq.(8), the optimal loop unrolling factors P0, P1, P2, P3 can
be obtained by solving it. The solution and the corresponding
FPGA resource usage are reported in Table I.

2) Performance Evaluation: Given the training data, solv-
ing the search direction via Conjugate Gradient (CG) is the
most time consuming part, and FVP dominates CG. The train-
ing data come from the MuJoCo simulation (50000 samples).
We write a CG solver in C, running on a Xeon E5-2697V2
CPU, in which the FVP is calculated by a Stratix-V 5SGSD8
FPGA running at 200MHz. We evaluate our C-FPGA hybrid

TABLE I
PARALLELISM AND RESOURCE USAGE OF STRATIX-V 5SGSD8 FPGA

[P0, P1, P2, P3] Logic Slices (ALM) DSP BRAM (M20K)

[24,10,4,9] 154658 / 262400 1818 / 1963 2339 / 2567

TABLE II
PERFORMANCE COMPARISON - HUMANOID-V1 BENCHMARK

TCG (TFVP) CPU TCG (TFVP) GPU TCG (TFVP) FPGA

Time 12.016s (12.014s) 2.900s (2.896s) 0.623s (0.609s)

CG Speed 1.00× 4.14× 19.29×

TABLE III
THEORETICAL PERFORMANCE PREDICTION FOR HUMANOID-V1

Stratix-V Config. (DSP) Cycles Stratix-10 Config. (DSP) Cycles

[24,10,4,9] (1818) 240 [47,16,8,17] (5474) 72

system against the Keras deep learning library with Theano
backend running on a workstation with Tesla C2070 GPU and
Core i7-5930K CPU for the task of computing TRPO search
direction via CG. Table II shows the performance comparison.

Here, TCG (TFVP) is the actual elapsed time of Conjugate
Gradient (CG) with the elapsed time of FVP computation
inside the brackets, measured in the experiments on CPU, GPU
and C-FPGA hybrid. For CG, the proposed C-FPGA hybrid
system achieves 4.65 times speed-up against the deep learning
libraries running on Tesla C2070 GPU, and 19.29 times speed-
up against them running on Core i7-5930K CPU.

Beyond high speed, the FPGA solution also has high energy
efficiency. When running the system on FPGA hardware,
the FPGA power consumption is 22.5W, as reported by the
Maxeler system monitoring tool. In contrast, the Tesla C2070
GPU consumes 238W. Taking both speed and power into
account, FPGA is 49.19 times more energy efficient than GPU.

D. Discussion

Given the neural network size and the FPGA, we can obtain
optimal loop unrolling factors by solving the DSE problem
automatically in python. Multiple optimal solutions with the
same number of cycles may exist, but some may be easier
to place and route than others. By solving the DSE problem
automatically, we find all non-obvious optimal solutions. We
then try these optimal solutions and find one that can utilise
92.6% of the DSPs and successfully place and route. This
helps us achieve a 43% performance gain against paper [7],
which uses the same type of FPGA for the Humanoid-v1
benchmark, but only utilises 69.7% DSPs available.

We can also use the model for planning. For example,
assuming we use a Stratix-10 FPGA (5760 DSPs), we can
reduce the number of cycles to 1/3 of that of Stratix-V, which is
shown in Table III. As the system is bounded by computation,
with around 3 times the number of DSPs in Stratix-10 we
expect to triple the performance. Moreover, as Stratix-10 can
run at a higher clock frequency than Stratix-V, the actual
performance boost will be even higher.



IV. RL-BASED ROBOTIC CONTROL

In this section, we will first describe the general workflow of
Reinforcement Learning based robotic control, then we present
the robot arm case study to show how the workflow is applied
to a real robot.

A. The General Workflow

When using Reinforcement Learning to control robots, the
general workflow of the project can be summarised in Fig. 3.

1) Specifications: The starting point is the robot specifi-
cation and the task specification. The robot specification is
needed to build the simulation model. The task specification is
needed to build the environment model, select the appropriate
RL algorithm, and design the reward function.

2) Modelling and Hyperparameter Tuning: Based on the
specifications, a simulation model of the robot and the envi-
ronment can be built, which will be used in training.

The choice of training algorithm also depends on the task.
As TRPO works well for a wide range of robotic locomotion
tasks, we use it as the training algorithm [3].

The hyperparameters for training are also determined at this
stage, such as the size of the neural network and the parameters
for the training algorithm. In particular, an important hyper
parameter is the reward function, which depends on the task.
The initial values of hyper parameters can be set according
to published results performing similar tasks. The hyper pa-
rameters need to be tuned if current values do not work well.
Hyper parameter tuning is a trial and error process itself.

3) Training in Simulation: With a simulation model of
the robot and a suitable RL algorithm, the RL agent (the
controller of the robot) can be trained in simulation. Training
in simulation is computationally intensive, but it has the
following important advantages:
• Simulation is much faster and cheaper than operating the

real robot.
• Training in simulation largely prevents the real robot from

being damaged by an immature controller.
• The computational challenge can be addressed by hard-

ware acceleration, such as the FPGA-based framework
proposed in Section II.

4) Simulation Test: The trained RL-agent can be tested in
simulation. If it controls the robot well in simulation then we
can proceed to the next stage, otherwise we need to adjust the
models and/or hyper parameters and re-train.

5) Implementation on the Real Robot: The trained RL-
agent can be implemented on the real robot. The RL-agent
used for robotic control is usually a neural network, which
can be efficiently accelerated by FPGA. For non-trivial robotic
control in real time, hardware acceleration is necessary.

6) Real World Test: The operation of the robot is evaluated
in reality. If it works adequately then the project is finished;
if it does not work well, which is not surprising since the
simulation cannot capture every fine detail of the robot and
the environment, we will need to adjust the model and/or the
hyperparameters and start over. This is an iterative trial and
error process.

Training in Simulation

Implementation on the Real Robot

Task 

Specification

Simulation Model

Hyperparameters

Robot 

Specification

Robot and Environment Modelling

Hyperparameter Tuning

Simulation Test

Real World Test

Fail

Pass

Fail

Pass

Finish

FPGA

Fig. 3. RL-based Robotic Control Development Procedure. FPGA can assist
both the simulation-based training (training stage) and the implementation of
the trained controller (inference stage).

B. Task Specification and Robot Specification

We use the Lynxmotion robot arm with a gripper [11],
shown in Fig. 4. Apart from the gripper, the robot arm has
four joints: the base, the shoulder, the elbow and the wrist.
Each servo is powered by a motor, controlled by Pulse-Width
Modulation (PWM) signal. The robot arm is controlled by a
development board with a MAX-10 FPGA and an Atom CPU.
The task is to reach and pick up a whiteboard pen.

To tell the positions of the joints and the pen, we place
geometric tags (pentagon, square, triangle) on them and use
an Intel RealSense R200 3D Camera to track the geometric
tags. The RealSense Camera is placed 60cm away from the
robot arm at a fixed location. Raw data from the camera
are processed by Intel LibRealSense software and OpenCV
running on the Atom CPU on the development board to obtain
the (X, Y, Z) coordinates, which are sent to the RL-based
controller. Fig. 5 shows the geometric tags being tracked.

C. Simulation Environment

We use MuJoCo for physical simulation [10]. The simu-
lation model of the robot arm created in MuJoCo is shown
in Fig. 6. The MuJoCo software is connected to the OpenAI
Gym, an RL library [9]. The OpenAI Gym runs on the top of



Fig. 4. System Configuration

Fig. 5. Geometric tag tracking. We use Intel RealSense Camera to track the
geometric tags so as to obtain (X, Y, Z) coordinates of the joints and the pen.

machine learning libraries Keras and Theano. We implement
the TRPO algorithm in the OpenAI Gym.

OpenAI Gym, Keras and Theano are all python software.
As our FPGA system does not have an FPGA-python interface
currently, the training stage runs in software for now. An
FPGA-python interface available in the future will enable
effective system integration.

D. Hyperparameters

1) Reward Function: In RL, the agent tries to maximise
the cumulative reward. Therefore, when using RL to control
the robot, we must make sure that the only way to maximise
the reward is to move along the desired trajectory.

For our robot arm, the task is to reach and pick up an
item from the table. As the gripper hardware only has two
modes, ‘grasp’ and ‘release’, its control is straightforward and
is implemented with a few API function calls (not controlled
by RL). As soon as the gripper reaches to the target item, the
grasp function will be called to pick it up.

Therefore, the task for the RL agent is to move the robot
arm so that the gripper reaches to the target item automatically.
We design the reward function as follows:

Rt = −100 ∗ d(gripper, target)2 − ||a||22 (17)

where d(gripper, target) is the Euclidean distance between
the gripper and the target item, and ||a||2 is the 2-norm of the
gripper’s acceleration.

Since −100 ∗ d(griper, target)2 is negative unless the
gripper reaches the target, it always punishes the RL agent.
The closer to the target, the smaller the punishment, which

Fig. 6. Physical simulation model of the robot arm. The simulation model is
created and simulated with the MuJoCo software [10]. The red ball represents
the item to be grasped, which can be randomly positioned during simulation.
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Fig. 7. Mean cumulative reward value vs. iteration number.

encourages moving towards the target. Also, this ‘always
punishing’ term encourages the RL agent to finish its task as
quickly as possible to avoid future punishments. The second
term −||a||22 is a regularisation term to prevent vibration. It
punishes the RL agent as long as the acceleration is non-zero,
which encourages it to move the gripper at a constant speed.
100 is a factor balancing the two objectives.

The reward function is essentially describing the task in an
RL manner, thus it mainly depends on the task but not the
robot. The same reward function can be used to train other
robots to reach and pick up the item, although each different
robot requires its own MuJoCo simulation model for training.

2) Other Hyperparameters: We use an MLP neural net-
work with two hidden layers, both sized at 16. The remaining
hyperparameters all follow those in the TRPO paper [3].

E. Training in Simulation

We use TRPO to train the RL agent in simulation. Fig. 7
shows the mean cumulative reward we get in each iteration.
According to our reward function (17), the maximum possible
reward is 0. The mean cumulative reward jumps quickly to 0
within 200 iterations and stays there. Thus, with the correct
setting, TRPO trains the RL agent effectively and efficiently.

F. Implementation and Test with the Real Robot Arm

We port the trained RL agent (neural network) to the robot
arm controller and run the system in reality. After observing
the real world behaviour, we adjust the hyper parameters to
further improve performance. The main adjustment is adding
the −||a||22 term to the reward function eq. (17), which
significantly reduces robot vibration. The final video can be
viewed at https://www.youtube.com/watch?v=aLklVQa8tXM.
A screenshot from the video is provided in Fig. 8.



Fig. 8. Experiment with real robot arm. The trained RL agent (neural network)
is implemented on the robot arm controller. The robot arm successfully
reached to the pen and picked it up, automatically controlled by the neural
network trained in simulation. This photo is a screenshot from the video,
showing the final moment when the pen is picked up. The whole video can
be viewed at https://www.youtube.com/watch?v=aLklVQa8tXM

Currently, the trained neural network is implemented in C
and runs on the Atom CPU on the development board. This
is because the robot arm is relatively simple so that a small
neural network can control it well without much computational
overhead. For a more complex robot performing non-trivial
tasks, hardware acceleration of the controller will be necessary.

V. CONCLUSION AND FUTURE WORK

In this paper, we explore FPGA-based acceleration for
Reinforcement Learning (RL), targeting robotic control ap-
plications. The general workflow is to train the RL agent
in simulation, then implement the trained RL agent on the
controller of the real robot. Hyper parameters for training can
be adjusted based on simulation and real world results.

We use MLP neural network as the RL agent and use
Trust Region Policy Optimisation (TRPO) to train it. In the
training stage, FPGA can be used to accelerate Fisher-Vector
Product (FVP), the computational bottleneck of TRPO. Our
contribution to the training stage is the automated design
space exploration to obtain the optimal loop unrolling factors
according to the neural network sizes and resource constraints,
which is the key to high performance. The proposed system
is evaluated using the MuJoCo robotic locomotion benchmark
Humanoid-v1, showing that the proposed solution running
on Stratix-V FPGA achieves up to 4.65 times speed-up against
Keras+Theano deep learning library running on Tesla C2070
GPU, 19.29 times speed-up against them running on i7-5930K
CPU, and 43% faster than a previous FPGA implementation.

We also apply the proposed workflow to a real robot arm
with a gripper. The task is to control the robot arm to reach to
and pick up an item from the table. We design the reward
function to encourage the RL agent to move the gripper
quickly and smoothly to the target item. We build a simulation
model for the robot arm using MuJoCo software and train the
RL agent with TRPO algorithm. The trained neural network
implemented on the robot arm controller is able to successfully
move the robot arm towards the target item and pick it up.

Future work is threefold. First is system integration. One
solution is to implement the python machine learning libraries’

equivalent in C and integrate with FPGA. Ideally, if an FPGA-
python interface becomes available in the future, our FPGA
design can be integrated with the python libraries directly for
seamless hardware acceleration in the training stage.

Second is to explore the acceleration of physical simulation.
TRPO’s input data come from the physical simulation of the
robot, currently carried out by MuJoCo, a single threaded
software running on CPU only. Performance can be improved
by accelerating the physical simulation on FPGA.

Third is to improve the training mechanism. In [4], multiple
real robots are trained in parallel with knowledge sharing
between them to accelerate the training process. A promising
direction is to deploy similar strategy in our simulation based
training to further increase parallelism for better efficiency.
This could potentially lead to a multi-FPGA design.

The most exciting prospect of this research is its potential
for improving robotic control by accelerating RL policy train-
ing. This paper explores this potential with a simple robot and
a simple task; in the era of automation there is tremendous
scope in exploring how the proposed approach can be applied
to increase productivity, such as accelerating the training of
industrial robots for future factory automation.
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