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Abstract—Human action recognition (HAR) has been widely
employed in various applications such as autonomous cars and
intelligent video surveillance. Among the algorithms proposed
for HAR, the 3D-CNNs algorithm can achieve the best accu-
racy. However, its algorithmic complexity imposes a substantial
overhead over the speed of these networks, which limits their
deployment in real-life applications. This paper proposes a novel
customizable architecture for 3D-CNNs based on block floating-
point (BFP) arithmetic, where the utilization of BFP significantly
reduces the bitwidth while eliminating the need to retrain the
network. Optimizations such as locality exploration and block
alignment with 3D blocking are performed to improve perfor-
mance and accuracy. An analytical model and tool are developed
to predict the optimized parameters for hardware customization
based on user constraints such as FPGA resources or accuracy
requirement. Experiments show that without retraining, a 15-
bit mantissa design using single-precision accumulation on a
Xilinx ZC706 device can be 8.2 times faster than an Intel i7-
950 processor at 3.07 GHz with only 0.4% accuracy loss.

I. INTRODUCTION

Recent technological advancements and cost reduction of
cameras have resulted in a huge demand for human action
recognition (HAR) in various domains such as surveillance,
assisted living, autonomous vehicle, etc. Very often, these cam-
eras are installed in an environment with limited bandwidth
and power budget, and it is therefore imperative to have HAR
handled in the vicinity of the cameras with embedded devices
to reduce data transfer and power consumption [1].

Deep 3-dimensional convolutional networks (3D-CNNs)
have demonstrated their outstanding classification performance
in HAR compared to other algorithms. However, the algo-
rithmic complexity and memory bandwidth demands of 3D-
CNNs impose a huge overhead on the processing speed.
Therefore, different hardware devices such as FPGAs, ASIC
and GPUs have been utilized to accelerate 3D-CNNs for
HAR. In particular, FPGAs are gaining popularity because of
their better reconfigurability and shorter turn-around time than
ASICs and higher energy efficiency than GPUs.

In spite of these advantages, there are several challenges
when accelerating 3D-CNNs on FPGA for HAR:
1) Compared to 2-dimensional convolutional networks (2D-

CNNs), 3D-CNNs require a lot more memory and com-
putational resources since they consist of a large number
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of layers with a massive amount of computations. Widely
studied approach to FPGA implementation of 2D-CNNs
may not be suitable for 3D-CNNs [2].

2) FPGA implementations of 2D-CNNs tend to utilize low
bitwidth fixed-point arithmetic to increase the overall
throughput, and retraining is required to guarantee the clas-
sification accuracy. However, proper selection of bitwidth
and the subsequent retraining process usually necessitate
days of analysis and computation for 3D-CNNs.

3) The accuracy loss after quantization varies in different
neural networks [3]. In particular, previous work on FPGA
acceleration of 3D-CNNs with fixed-point arithmetic does
not showcase reasonable classification accuracy [4].

To address the above challenges, we introduce a novel
FPGA architecture of 3D-CNNs based on block floating-point
(BFP) arithmetic [5], where the use of BFP can reduce the
bitwidth while eliminating the need of retraining. A thorough
exploration of the mantissa bitwidth and accumulation meth-
ods for BFP with respect to the accuracy and performance is
also presented. BFP adopts fixed-point arithmetic to emulate
floating-point (FP) representation by assigning a block of data
with an exponent instead of having an individual exponent
for each data. The advantages of using BFP in 3D-CNNs are
twofold: First, it significantly reduces the memory and DSP
requirements compared to the standard FP calculation. Second,
as all the calculations are still based on FP arithmetic, the
network can offer competitive classification accuracy without
the need to retrain the network, which can take more than 4
to 5 days even on a TITAN X GPU. This is important because
nowadays a new network model can appear within months.

Moreover, we provide an automatic tool that determines the
optimal parameters to customize the proposed 3D-CNNs archi-
tecture based on the given constraints including the resource
budget and the accuracy requirement. This also ensures the
scalability of the 3D-CNNs accelerator when the hardware
design is implemented onto a larger FPGA.

The main contributions of this work are the following:

• A customizable FPGA implementation of 3D-CNNs that
performs fast and accurate HAR with BFP which eliminates
the need to retrain the network (Section III).

• Different optimization strategies including locality optimiza-
tion and block alignment with 3D blocking which improve
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Fig. 1: A comparison of the 2D and 3D convolution and
pooling layers with pooling size 2× 2× 2.

TABLE I: Parameters used in the FPGA implementation of
3D-CNNs for HAR acceleration.

Parameter Description
H the height of input feature map
W the width of input feature map
Kc the kernel size of 3D convolution
Kp the kernel size of 3D pooling
S the stride of 3D convolution kernel
Nc the number of channels
Nf the number of filters
Nl the number of frames

both the performance and accuracy (Section III).
• An experimental analysis of single-precision (SP) versus

double-precision (DP) accumulation of BFP demonstrating
that SP can offer at least 2 times speedup with identical
accuracy compared to DP (Section V).

• An automatic tool that determines the optimal parameters for
network customization to balance the performance-accuracy
trade-off based on user constraints (Section IV).

II. BACKGROUND

This section provides an overview of the 3D-CNNs em-
ployed in the proposed implementation for HAR acceleration
by making an analogy to traditional 2D-CNNs. Also, a com-
prehensive description of BFP arithmetic and its implications
on FPGA are given in addition to a review of related work.

A. 3-dimensional Convolutional Networks

1) 3-dimensional Convolution and Pooling: Basically, 3D-
CNNs have the capability of incorporating the third dimension
information into the analysis. Compared to 2D-CNNs, this
results in a difference in the convolution and the pooling layer.

Figure 1a displays a comparison of the 2D and 3D convo-
lution layers. Assume that the input data consists of multiple
frames, 2D convolution simply accumulates all the results from
different video frames and outputs one image when it is used
in HAR. However, 3D convolution preserves the temporal
information in all different video frames and generates an
output volume, which is a collection of frames. To provide
a better illustration, a detailed explanation of 3D convolution
layer is presented in Algorithm 1 where the notations and
parameters are given by Table I. Note that the same set of
parameters are also adapted in the rest of this paper.

Similar to 3D convolution, 3D pooling will also perform cal-
culations along the adjacent video frames. Figure 1b presents

an example of 3D pooling with pooling size 2 × 2 × 2 in
which the pixels with the same color produces one output
pixel. This decreases the number of frames and the size of the
feature maps as the network goes deeper, which is similar to
the pooling layers in 2D-CNNs.

Algorithm 1 Pseudocode of 3D Convolution.
1: for channels = 1 to Nc do
2: for filters = 1 to Nf do
3: for frames = 1 to (Nl + 2× P −Kc + 1)/S do
4: for i = frames to frames+Kc do
5: output fm[filters][frames]+=
6: coef[filters][channels]×input fm[channels][i]

B. Block Floating-Point (BFP) Arithmetic

1) Representation: Similar to floating-point (FP), BFP rep-
resentation utilizes a mantissa and an exponent to represent
a wide range of value. However, BFP separates the data into
different blocks. The numbers in the same block have a joint
scaling factor that corresponds to the largest exponent value
within that block. Hence, the memory required to store the
data of BFP can be significantly reduced. Figure 2 illustrates
the representation of FP and BFP and their memory usage.

N
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N
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Fig. 2: Representation and the memory usage of FP and BFP.

The block size and the number distribution are the two
major factors that affect the precision loss of BFP. As numbers
belonging to one block share the same exponent value, the
mantissa of each number needs to be shifted to align. When
the variance of numbers in one block is very large, the shifting
can be greater than Lm which causes severe precision loss.
Furthermore, the variance between the numbers within a block
may become larger when the block size increases. As a result,
a smaller block size can contribute to much less precision loss.

2) Inner Product: The inner product of BFP can be sep-
arated into two parts: summation and multiplication of the
mantissas and addition of the exponents. Assume that A and
B are two vectors, the BFP representations of A and B are

A = M
′
A × 2ξA , B = M

′
B × 2ξB ,

where M
′

A and M
′

B are the aligned mantissas of A and B,
ξA and ξB are the largest exponents in A and B respectively.
The result of the inner product c = M

′

AM
′

B is given by:

c = [m
′
1,a ×m

′
1,b +m

′
2,a ×m

′
2,b + ....+m

′
N,a ×m

′
N,b]× 2ξA+ξB ,

where m
′

i,a and m
′

i,b are the ith elements in M
′

A and M
′

A

respectively. There are two methods to perform the summation
and multiplication of the mantissas: double-precision (DP)
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Fig. 3: C3D architecture with eight convolution layers, five
max pooling layers and two fully connected layers.

or single-precision (SP) accumulation. In DP, the bitwidths
of multipliers, adders and any intermediate results are all
1+2×Lm. Truncation only occurs in the final accumulated re-
sult. In SP, 1+Lm bitwidth adders and multipliers are utilized
and truncation is performed after every addition and multipli-
cation. Although the implementation of DP can achieve much
less precision loss, it requires more computational resources.
Therefore, an evaluation of DP versus SP is done to determine
the trade-off between resource consumption and accuracy.

C. Related Work

Previous FPGA implementations for HAR are mainly based
on simple algorithms such as Histogram of Oriented Gradient
in 3D [1] or Support Vector Machine [6]. However, the
performance and accuracy can be disappointing if an enormous
class of actions is required to classify, especially when only a
small dataset with limited classes of human action is used in
their evaluations.

C3D [7], which is one of the most commonly used 3D-
CNNs for HAR, is employed as the network model in the
proposed FPGA implementation. This network can achieve
85.2% recognition accuracy on Sports-1M dataset [8], which
consists of 487 classes of actions. The details about the C3D
network is shown in Figure 3. The network takes videos as
inputs by splitting them into 16 non-overlapped frame clips
and resizing them into 112×112 with 3 channels. The network
produces the predicted actions as the classification outputs.

Although a substantial amount of efforts has been devoted to
accelerating CNNs on FPGA [9], only a few of them study the
reconfigurable acceleration of C3D. In [4], the authors propose
an FPGA implementation of C3D based on 16-bit fixed-point
representation. Pixel blocking is used to maximize the data
reuse and minimize the memory overhead. However,the data
locality has not been fully explored and the accuracy is only
55.1% on Sports-1M dataset [8] which is unacceptable for
many real-life applications. Shen et al. [2] also develop an
FPGA design for accelerating C3D and the architecture is
based on a uniform template. 3D Winograd algorithm is used
to reduce the arithmetic complexity of convolution and 16-
bit fixed-point is adapted for evaluations. Despite the high
performance with 430.7 Gops on VC709, the accuracy of the
accelerator is unexplored and its usefulness in HAR is unclear.

While BFP has been used in FPGA designs for many years
[10], its error analysis for CNNs has only been presented
recently. In [11], Köster et al. utilize 16-bit BFP (Flexpoint)
to train 2D-CNNs with only negligible accuracy loss. Song
et al. [12] present their error analysis for 2D-CNNs based

TABLE II: Number of transfers required and memory usage
for the input and output data based on different loop sequences.

Loop Sequence No. of Memory Usage Memory Usage
(Outermost→Innermost) Trans. of Input Data of Output Data

FILTER-CHANNEL-FRAME 1 Nc×Nl×H×W ×bw Nl ×H ×W × bw

FILTER-FRAME-CHANNEL Nl Nc×Nl×H×W ×bw Kc ×H ×W × bw

FRAME-FILTER-CHANNEL N2
l Nc ×H ×W × bw Kc×Nf×H×W×bw

FRAME-CHANNEL-FILTER N2
l Nc ×H ×W × bw Kc×Nf×H×W×bw

CHANNEL-FILTER-FRAME 1 Nl ×H ×W × bw Nf ×Nl×H×W ×bw

CHANNEL-FRAME-FILTER Nl Nl ×H ×W × bw Nf ×Nl×H×W ×bw

on Caffe framework [13]. However, these works are only
implemented on the software level for 2D-CNNs. Although
Aydonat et al. [14] utilize shared exponent technique in their
Deep Learning Accelerator (DLA) to accelerate 2D-CNNs,
there is no thorough exploration for the mantissa bitwidth
and BFP accumulation methods in regard to the accuracy and
performance from the hardware perspective.

This paper extends the accuracy evaluation of BFP to 3D-
CNNs, provides a detailed investigation for BFP accumulation
method, and proposes the first BFP-based 3D-CNNs on FPGA.
Compared to the previous work, our proposed, customizable
FPGA design of C3D can achieve 84.8% accuracy with 33
frames per second (fps) which are sufficient for HAR in many
real-life applications.

III. FPGA ACCELERATOR DESIGN

In this section, locality optimization of the network coeffi-
cients is first presented by comparing different loop sequences
and data access patterns. Then, the implementation of the 3D-
CNNs accelerator which targets at SoC platform is described
by introducing each of the modules within the design and their
interactions in detail.

A. Locality Optimization for Network Coefficients

In the 3D convolution layer, the number of network coeffi-
cients is Nc ×Nl × (Kc)

3 which is too large to be stored in
the on-chip memory on FPGA. Therefore, only portions of the
coefficients data can be cached in the block RAMs while the
rest has to be stored in the off-chip memory. As the bandwidth
between the on-chip and off-chip memory is limited, it is
desirable to explore the optimal data access pattern to improve
the locality of the network coefficients and to minimize the
number of data transfer.

As shown in Algorithm 1, there are 4 loops in total.
Different loop sequences result in different data access patterns
which in turn affects the locality of the network coefficients
and on-chip memory usage. To simplify the following analysis,
we first combine the innermost loop and the loop with the
variable frames together as the FRAME loop, as Kc is a
small constant and the variable i is correlated to the variable
frames. The loops with the variables channels and filters
are denoted as the CHANNEL and FILTER loop respectively.

Table II summarizes the number of transfers required for the
entire network coefficients based on different loop sequences.
The corresponding memory usage for the input and output



data are also displayed in the same table. The leftmost column
indicates the loop sequence from the outermost to innermost
loop, and symbol bw represents the bitwidth of a pixel.

Essentially, the number of transfers required for the entire
network coefficients (size: Nc×Nl×(Kc)

3) is minimum when
FILTER-CHANNEL-FRAME or CHANNEL-FILTER-FRAME are
adopted. The memory usage for FILTER-CHANNEL-FRAME
requires (Nc×Nl+Nl)×H×W × bw bits while CHANNEL-
FILTER-FRAME consumes (Nf ×Nl+Nl)×H×W ×bw bits
of memory. As Nc is smaller than or equal to Nf , FILTER-
CHANNEL-FRAME is chosen as the access sequence for the
accelerator. Algorithm 2 illustrates the pseudo-code of the
chosen sequence FILTER-CHANNEL-FRAME, which is denoted
as frame-major access pattern in the rest of this paper for
simplicity.

Algorithm 2 3D Convolution with FILTER-CHANNEL-FRAME

1: for filters = 1 to Nf do
2: for channels = 1 to Nc do
3: for frames = 1 to (Nl + 2× P −Kc + 1)/S do
4: for i = frames to frames+Kc do
5: output fm[filters][frames]+=
6: coef[filters][channels]×input fm[channels][i]

B. Blocking and Block Alignment
As the accelerator is based on an SoC platform, we propose

a specific access and grouping mechanism onto the input
volumes so as to simplify the datapath implementation and
to increase the amount of parallelism. Basically, every frame
in the input volume is divided into equal blocks (blocking).
Blocking occurs at the same position with the same size on
every frame along the input volume. In other words, each set
of blocks which shares the same positions forms an individual
block volume. Then, each number in the block volume is
aligned based on the largest exponent in its belonging block
(block alignment), forming a BFP representation. Note that the
entire blocking and block alignment process is handled on the
processor, right before a block volume being transferred to the
on-chip memory for temporary buffering. Figure 4 provides an
illustration of the entire process.

The decision to employ a specific access and grouping
mechanism is mainly a consideration to improve its accuracy
and performance. To start, when a calculation is performed
over a small subset of the original input volume each time,
every block volume can be buffered in the on-chip memory for
low-latency access. Furthermore, the hardware design, such as
the exponent module, can be simplified when block alignment
is handled within each individual block. For example, the
exponent in 3D convolution can be added directly since the
same block of data is now aligned. A simpler design can
contribute to a lower area cost of each module which in turn
increases the number of parallelisms. Finally, the alignment
of BFP numbers is based on the individual block instead of
the entire block volume or frame because it can minimize the
precision loss.

Since different 3D convolution layers have different settings
in terms of block size, the output of a convolution layer

Fig. 4: 3D blocking occurs at the same position with the same
size on every frame along the input volume.

Fig. 5: The realignment procedure can completely overlap with
the computations on the FPGA.

needs to be realigned to fit the setting of the next layer. The
realignment procedure, which is performed on the processor,
can completely overlap with the computations on FPGA as
presented in Figure 5.

The major challenge of blocking and its alignment is the
proper selection of the block size for each layer. On the one
hand, a smaller block size can improve the accuracy, but it
also decreases the performance. For example, the arithmetic
becomes floating-point when the block size is 1. On the other
hand, although a larger block size can reduce the memory
usage, it also increases accuracy loss. Therefore, we will
elaborate the optimization of block size in Section IV.

C. System Overview

Figure 6 presents a system overview of the FPGA acceler-
ator. It consists of multiple modules that implement the 3D
convolution layer (3D Conv) with pooling layer (3D Pool)
and a fully-connected layer (FC) based on [4]. In particular,
various layers with different parameters are achieved with
one layer of 3D Conv and FC on-chip. The parameters of
different layers are specified using the processor onboard. The
processor is also responsible for miscellaneous control and
alignment of the BFP numbers. Direct Memory Access is used
to transfer the network coefficients, input frames and output
actions to/from FPGA.

D. 3D Convolution

Figure 7 presents the design of the 3D convolution and
3D pooling. The same figure also indicates their interactions
between other hardware modules/sub-modules. The size of the
convolution kernel is set to be 3 × 3 × 3 as it is revealed to
be optimal according to [7].

Fig. 6: System overview of the FPGA accelerator.



Fig. 7: Hardware architecture of 3D convolution and its
interaction with other modules/sub-modules.

As mentioned, only a block volume is transferred from the
off-chip memory to the FPGA in each iteration of computation.
A block within the transferred block volume is considered to
be a frame which consists of pixels in BFP format. Each pixel
is split into mantissa and exponent and they are directed to
their corresponding datapaths for temporary buffering. As the
dot product of BFP can actually be separated into multiplica-
tion and addition of the mantissa and addition of exponent,
the proposed architecture contains separated datapaths and
convolution kernels for the calculation of the mantissa and
exponent respectively.

Different buffers are developed to control the dataflow of the
mantissa and exponent data. In the datapath of the mantissa,
two frame buffers are developed to cache 2 contiguous input
frames. When the (i + 2)th frame flows from the line buffer
to matrix buffer, the ith and (i + 1)th frames cached in the
frame buffers flows also out. These buffers are needed because
the kernel size is now set to 3 × 3 × 3, and 3D convolution
needs to accumulate 3 contiguous frames. The matrix buffers
accept the pixels from the frame buffers and output the 3× 3
pixels needed by the sliding window of the convolution kernel.
With this mechanism, three 2D mantissa kernels can receive
the data simultaneously, which simplifies the control logic.
The 2D mantissa kernel is responsible for the convolution
operation onto the frames which essentially computes a dot
product between the kernel weights and the 3× 3 pixels from
the matrix buffer.

In the datapath of the exponent, since calculation of the
exponent only requires addition, only one exponent buffer
which contains three FIFO is needed to store the exponents of
three contiguous input frames.

3D Kernels — Since the convolution kernel is 3 × 3 × 3 in
size, the 3D convolution kernel consists of three 2D exponent
kernels and three 2D mantissa kernels. Also because of the
blocking and block alignment procedure in Section III-B, the

Fig. 8: The hardware architecture of the accumulator.

2D exponent kernel only consists of a Le-bit fixed-point adder
which is used to perform exponent addition. On the other hand,
the 2D mantissa kernel is composed of 3× 3 multipliers and
a fully-pipelined tree adder with

⌈
log2 (3× 3)

⌉
levels, where⌈⌉

is the ceiling function. As mentioned, the inner product
can be implemented with single precision (SP) or double
precision (DP) accumulation, and this affects the bitwidth used
by multipliers and adders in the 2D mantissa kernel. In the
next section, we will explore the performance and accuracy of
these two modes of calculations.

Accumulator — The major component of the submod-
ule Frame Accumulation and Channel Accumulation is the
accumulator displayed in Figure 8. These two submodules
correspond to the operations in Line 5 of the frame-major
access as shown in Algorithm 2. Essentially, reordering is
first performed on the number to find the maximal exponent.
Then the accumulator calculates the discrepancies between
the maximum and the two other smaller exponents. The
results are fed into shift module to complete the mantissa
alignment. Lastly, a tree adder with two levels is utilized to
accumulate the aligned mantissa. A 3D output buffer, which
is implemented using ping-pong FIFOs, is used to cache the
temporary mantissa result from the channel accumulation sub-
module for successive accumulation.

3D Max Pooling — Pooling is performed on the pixels
across the different frames and their BFP representations can
be based on different exponents. The mantissas have to be
aligned first which requires a similar architecture deployed
in the accumulator. Once the number is aligned, the aligned
mantissas can be compared directly and the maximum value
is obtained and buffered in the off-chip memory as the inputs
for the next convolution layer.

IV. OPTIMIZATION TOOL

This section describes a tool for optimizing parameters of
the proposed 3D-CNNs hardware based on user constraints.
The performance and accuracy of the FPGA implementation
of 3D-CNNs using BFP arithmetic are affected by factors such
as block size, bitwidth of the mantissa, single-precision and
double-precision accumulation. Our tool contains three stages
(Figure 9): Accuracy Prediction, Resource Modeling and Per-
formance Optimization, to enable design space exploration to
meet design requirements.

First, the Accuracy Prediction stage accepts a set of user
constraints including accuracy requirements, and produces all
the possible combinations of block sizes, and the correspond-
ing mantissa bits, options about SP or DP accumulations. Since
the block size determines both BRAM usage and accuracy, a
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BRAM model is used in calculating possible combinations of
block sizes. Second, the Resource Modelling stage processes
the combinations generated from the previous stage to produce
the level of parallelism allowed for each combination, based on
information about available resources from appropriate LUT
and DSP models. Third, the Performance Optimization stage
predicts optimized parameter values based on the results from
the previous stages.

A. Accuracy Prediction and BRAM Modelling

Assume that the block size is Bs, the level of parallelism is
P , the number of blocks is Nblock, the bitwidth of the mantissa
is Lm and the exponent bit is Le. BRAM is utilized in the
input and output buffers and its usage is given by:

BRAM =
(B2
s ×Nc ×Nl)× Lm + (Nblock ×Nc ×Nl)× Le

BRAMsize
,

The C3D tool [7] is a popular deep learning framework
that implements 3D-CNNs in floating-point arithmetic, and it
turns 3D convolution operations to matrix multiplications. To
predict the accuracy of BFP-based 3D CNNs, we implement
BFP-based 3D convolution by applying BFP-based matrix
multiplications, block alignment and data conversion between
BFP and floating point in C3D. Based on the BRAM model
described above, all the possible combinations that satisfy
the constraints can be calculated. Then, BFP -C3D tests the
accuracy of different combinations iteratively. Finally, only the
combinations that satisfy the accuracy requirement is output
from the Accuracy Prediction stage.

B. Resource Modelling with DSP and LUT Models

Since both the mantissa kernel and accumulator utilize
DSP , the DSP usage is:

DSP = P × [K2
c × (Kc − 1)×Dmul +Kc ×

Al × (Al + 1)

2
×Dadd],

where Dmul and Dadd are the DSP usage of multiplier and
adder. Al is the level of tree adder in one 2D kernel, which
equals to

⌈
log2 (K

3
c )
⌉
. Both Dmul and Dadd depend on the

bitwidth of mantissa, as well as the selection of SP or DP
implementations.

On the other hand, a linear regression model is utilized
to approximate the consumption of LUT as it is difficult to
predict. Its usage is given by:

LUT = ξ × P,

where ξ is a linear function pre-trained based on different
platforms with SP and DP implementations.

C. Performance Optimization

The execution time is based on the clock cycles of a 3D
convolution layer which includes:
1) The computation time Tcomputation. Since the entire design

is fully pipelined, the computation time is formulated as:

Tcomputation =
W ×H ×Nf ×Nc ×Nl

P
,

2) Transfer time of the input data Tin. Despite the benefits
of blocking and block alignment, the transfer of a block
volume can still require certain cycles to finish. The transfer
time is formulated as:

Tin =
Nin

Bandwidth× Frequency
,

where Nin is the amounts of input data.
3) Transfer time of the output data Tout, which is represented

as:
Tout =

Nout

Bandwidth× Frequency
,

where Nout is the number of output data.
By evaluating the performance of every combination based

on the above performance model, the combination with min-
imal execution time and corresponding parameters will be
generated.

V. EXPERIMENTAL RESULTS AND DISCUSSION

To recognize the performance and limitations of the pro-
posed 3D-CNNs hardware for HAR acceleration, we imple-
ment the hardware design on Xilinx ZC706 platform which
consists of a Kintex-7 FPGA and dual ARM Cortex-A9
processor. 1GB DDR3 RAM is installed on the platform
as off-chip memory. The hardware 3D-CNNs is clocked at
200MHz while the ARM processor runs at 1GHz. Vivado
2016.2 is used for synthesis and implementation. The Sports-
1M dataset [8] which includes 1.1 million videos of 487 sports
categories is used in the following experiments. The size of
input tensor is 112 × 112, the channel number is 3, frame
number is 16, and the batch size is 1.

A. Evaluation of the HAR Accuracy and Performance

Based on the descriptions in Section III and Section IV, the
customization of the 3D-CNNs hardware is mainly a trade-off
between performance and accuracy, as it is determined by the
block size and also the selection of SP or DP accumulation.
Therefore, we customize the FPGA design for two cases in
this evaluation: maximum performance and highest accuracy,
so as to determine the optimal implementation of the hardware
3D-CNNs.



Experiment I: Maximum Performance — By customizing
the 3D-CNNs hardware for the highest performance, we can
understand the lower bound of the HAR accuracy under
BFP representation based on the given FPGA. This can also
provide an understanding of the implications of SP and DP
accumulation with regards to different precision.

To achieve maximum performance, the block size of each
layer is manually set to the maximal supported value, which
is actually bounded by the BRAM resource due to blocking.
Specifically, a larger block size increases the variance of
the number within a block and subsequently aggravates the
precision loss, but it also maximizes the utilization of BRAM
and decreases the overhead of data transfer. With respect to
ZC706 platform, the maximal supported block size from the
1st to 7th convolution layer is 28, 8, 7, 7, 7, 7 and 7.

Figure 10 shows the corresponding accuracy, performance
and resource consumption using both SP and DP implemen-
tations. As displayed with the same trend on the left side of
Figure 10a, SP implementation can surprisingly achieve an
identical accuracy compared to DP implementation when the
precision, i.e. the bitwidth of mantissa, is less than or equal
to 15 bit. This is because the robustness of the C3D network
can tolerance substantial precision loss before affecting the
final HAR accuracy. Moreover, the performance of SP imple-
mentation is 2.6 times faster than that of DP implementation
(Figure 10b) when the bitwidth of the mantissa is 15 bit.
Finally, Figure 10c and Figure 10d show that the area cost
for both implementations is bounded by the DSP resource.
Given the same DSP budget, the decrease in precision does not
decrease the DSP usage until it is less than certain bitwidth, i.e.
18 bits. With a reduced demand of DSP, the level of parallelism
can be increased and this results in a slight increase in LUTs
and registers usage in Figure 10c when the precision becomes
18 bit. This also contributes to an improved processing time
for SP implementation when the precision is 18 bit.

Experiment II: Maximum Accuracy for HAR — Setting the
3D-CNNs hardware for the highest achievable accuracy can
provide insights on the lower bound of the processing time
based on the given FPGA. Since manual customization of the
network based on accuracy requirements is non-trivial, we rely
on the optimization tool to generate the relevant parameters for
hardware customization, which can be used in evaluating the
capabilities of the optimization tool.

In this experiment, we fine-tune the accuracy requirement
from 84.8% to the vicinity of maximum achievable accuracy,
i.e. 85.2%, with an increment of 0.1% in each iteration.
Each accuracy value is then supplied to the optimization tool
to generate optimal parameters for the hardware network.
Figure 11a shows the predicted runtime from the optimization
tool and the actual runtime of the hardware. Table III displays
different specifications obtained from the optimization based
on different accuracy requirements.

The increase in the accuracy requirements from 84.8%
to 85.1% results in an increase in the processing time by
0.07 to 1.4 times. We also obtain design parameters from
the optimization tool with the accuracy requirements slowly

(a) HAR accuracy versus differ-
ent precision.

(b) Processing time per frame
versus different precision.

(c) The resource consumption of
SP implementation versus differ-
ent precision.

(d) The resource consumption of
DP implementation versus dif-
ferent precision.

Fig. 10: Evaluation of the HAR accuracy and performance
with different precision based on the block size 28, 8, 7, 7, 7,
7 and 7 from the 1st to 7th convolution layer. Also displayed
is the corresponding resource consumption for each precision.

(a) (b)
Fig. 11: (a) The performance of the hardware 3D-CNNs
versus accuracy based on the parameters produced by the
optimization tool, (b) Accuracy comparison between fixed-
point and BFP representation.

decreased from 84.8%. It can be seen that the processing time
is not reduced significantly with the decrease of accuracy
requirements. When the accuracy requirement is decreased
from 84.8% to 84.5%, the processing time is only reduced
by around 5%. Therefore, the implementation with the HAR
accuracy 84.8% is considered to be the optimal design on the
given FPGA and is therefore used as the final implementation.

B. Fixed-Point versus Block Floating-Point Representation

Most of the existing FPGA implementations of CNNs rely
on fixed-point representation to achieve high performance.
To quantitatively compare the accuracy discrepancies between
fixed-point and BFP representations, the C3D tool is revised to
implement 3D-CNNs based on fixed-point and BFP arithmetic.



TABLE III: Optimal design parameters provided by the opti-
mization tool with different accuracy requirements.

Accuracy
Requirement Implementation Precision/

Mantissa Bitwidth Block Size

85.1% Single-precision 21 28, 8, 7, 7, 7, 7, 7

85.0% Single-precision 18 28, 8, 7, 7, 7, 7, 7

84.9% Single-precision 16 28, 8, 7, 7, 7, 7, 7

84.8% Single-precision 15 28, 8, 7, 7, 7, 7, 7

84.7% Single-precision 15 28, 8, 7, 7, 7, 7, 7

84.6% Single-precision 15 56, 8, 7, 7, 7, 7, 7

84.5% Single-precision 15 56, 14, 14, 7, 7, 7

In this experiment, the block size is set to be 28, 8, 7,
7, 7, 7 and 7 from the 1st to 7th convolution layer and
SP calculation is utilized in BFP implementation, which is
known to be the optimal settings for performance based on
the above evaluations. To ensure a fair comparison, the same
block size is used and retraining is not applied in the fixed-
point implementation. The result is presented in Figure 11b
which shows that BFP can always outperform fixed-point
representations in terms of accuracy regardless of the bitwidth.
This clearly showcases the benefits of implementing 3D-CNNs
with BFP representation on FPGA for HAR.

C. Performance Comparison with GPU and CPU

To compare the performance of the 3D-CNNs hardware
on Xilinx ZC706 with other platforms, we use the final
implementation that is customized for performance with SP
accumulation and mantissa width = 15, exponent width =
8. Intel i7-950 (3.07 GHz) CPU and NVIDIA TITAN X
GPU are used to run C3D as well. The compilation flag
−Ofast is activated and the rest of the settings are kept as
the default ones. We also compare our final implementation to
the previous work F-C3D [4] using the same FPGA device.

Table IV shows the performance, HAR accuracy and power
consumption on different platforms. Our final design can
achieve 33 fps with only 0.4% accuracy loss which is consid-
ered to be sufficient for HAR in many real-life applications.
Moreover, our design outperforms the C3D tool on i7-950
CPU by 8.2 times and consumes 3.6 times less power than
TITAN X GPU. Finally, the area cost of the final design based
on Zynq ZC706 is shown in Table V.

TABLE V: Area cost of the final hardware on Zynq ZC706.
LUT Register DSP48 BRAM

Available 218600 437200 900 545

Utilization 82849 195674 780 480

Percentage Used 37.9% 44.7% 86.6% 88.1%

VI. CONCLUSION AND FUTURE WORK

This work proposes a novel FPGA design of 3D-CNNs that
performs fast and accurate HAR (Human Action Recognition).
The design makes use of block floating-point arithmetic, which
provides a competitive classification accuracy and eliminates
the need to retrain the network. Different optimization strate-
gies such as locality exploration and block alignment with 3D

TABLE IV: Performance comparison of the final FPGA design
versus CPU and GPU.

CPU GPU F-C3D [4] Our Work

Platform Intel i7-950 TITAN X (Pascal) Zynq ZC706

No. of cores 8 3584 −

Compiler GCC 4.8.5 CUDA 8.0 Vivado 2016.2

Flags −Ofast −

Frequency 3.07GHz 1.53GHz 176MHz 200MHz

Precision 32bit floating point 16bit fixed
point

sign: 1bit,
mantissa: 15bit,

exponent: 8bit BFP

Technology 45nm 16nm 28nm

Processing Time
per frame (ms) 243.75 4.79 33.3 29.8

Power (W) 130 168 9.7 9.9

Energy per
frame (J) 31.68 0.8 0.32 0.29

Accuracy 85.2% 85.2% 55.1% 84.8%

blocking are developed, which improve both the performance
and accuracy. An automatic tool is prototyped for determining
the optimal parameters for network customization based on
user constraints. Future work includes incorporating energy
constraint into the optimization tool and applying Winograd
algorithm for 3D CNNs to further improve the performance.
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