
CRRS: Custom Regression and Regularisation
Solver for Large-scale Linear Systems

Andreea-Ingrid Cross∗, Liucheng Guo∗, Wayne Luk∗, and Mark Salmon†
∗Imperial College London, UK

Email: andreea.funie09@imperial.ac.uk,liucheng@tg0.co.uk,w.luk@imperial.ac.uk
†Cambridge University, UK
Email: mhs39@cam.ac.uk

Abstract—This paper presents novel regression and regular-
isation techniques based on Field Programmable Gate Array
(FPGA) technology for large-scale datasets for machine learning
and other applications. We introduce a customisable design which
allows end-users to select their regression and regularisation
techniques from a library supporting relevant methods such as
Multiple Linear Regression, Ridge Regression, Adaptive/Lasso
Regression and Elastic Net Regularisation. We introduce the
first Adaptive Elastic Net architecture for FPGAs. Tests on
dense and sparse datasets of varying sizes show 158 times
speedup and 114 times enhancement in energy efficiency, when
comparing an 8-FPGA system with the corresponding software
C++ implementation on a 12-core CPU, for an Adaptive Elastic
Net regularisation of a matrix with 11.56 ∗ 109 coefficients.

I. INTRODUCTION

Regression analysis is widely used for forecasting, variable
selection and regularisation across many scientific and engi-
neering fields, such as machine learning, deep learning [1]
and finance [2].These methods, however, are computationally
demanding and the performance of CPUs becomes unsatis-
factory. Accelerators based on FPGAs and GPUs are being
adopted to provide fast, energy-efficient and scalable solutions.
While GPUs are good at computing floating-point operations,
they often struggle to handle compact data types and irregular
parallelism. In contrast, FPGA resources are customisable, en-
abling irregular parallelism and custom data types. This paper
introduces what we believe to be the first pipelined design for
the Adaptive Elastic Net algorithm. We generalize this design
to a customisable FPGA-based regression and regularisation
solver which targets large datasets, obtaining great speedup
while preserving accuracy. One issue technologies like GPUs
and FPGAs have is their limited on-chip memory. Our study
addresses this issue by scaling to multiple FPGAs with an
appropriate partitioning of the data among them. The main
contributions of our research are as follows.
• The first pipelined Adaptive Elastic Net architecture

based on a column-wise Jacobi step operation to enable
a fully pipelined solution.

• A novel FPGA-based solver, CRRS, which allows the
selection of regression methods such as Adaptive Elastic
Net, Elastic Net, Ridge, Lasso, Adaptive Lasso or Mul-
tiple Linear Regression, providing horizontal scalability
and the ability to solve large datasets (≈ 94 ∗ 109 matrix
coefficient elements).

• Experimental results showing significant speedup when
CRRS is compared with its multi-core C++ CPU based
software counterpart, as well as with well-known libraries
such as glmnet.

II. BACKGROUND

Multiple Linear Regression. In many real-world scenarios
the relationship between multiple features (X) and a re-
sponse (Y) is modelled by fitting a line as in Equation 1 to
the observed data, using multiple linear regression (MLR).

ŷi = β̂0 + β̂1xi1 + β̂2xi2 + ...+ β̂pxip + ε̂i, i = 1..n (1)

where β̂ are regression coefficients, and ε̂i is the resid-
ual error. The Least Squares method [3] aims to identify
β̂ with a minimum residual error according to β̂OLS =
argminβ

∑N
n=1(yn − βxn)

2. The linear algebraic form of
MLR is thus Ŷ = Xβ̂ + ε̂ where β̂ = β̂0, β̂1 · · · β̂p, ε̂ =
ε̂0, ε̂1 · · · ε̂p, and X is the feature matrix. This can be further
expressed as ŷ = Xβ̂ (ε̂ = 0 in an ideal scenario), leading
to solving a linear system through the equation β̂OLS =
(XTX)−1XT y, equivalent to solving Ax = b where A =
XTX and b = XT y. We can find a solution for β̂OLS through
a number of methods such as Jacobi, Gauss-Seidel, Conjugate
Gradient, Steepest Descent etc. The Jacobi method is preferred
due to its potential for parallelism using the coefficient matrix
parallel method [4], without accumulating rounding errors.
The Jacobi iteration point form is defined below [5].

xk+1
i ⇐ 1

aii
[bi −

j=n∑
j=1;j 6=i

aij ∗ xkj] (2)

To improve the classic Jacobi method convergence rate, we
introduce and use as part of our CRRS design the weighted
Jacobi algorithm [10], which has the following point form:

xk+1
i ⇐ (1− ω) ∗ xki + ω ∗ 1

aii
[bi −

j=n∑
j=1;j 6=i

aij ∗ xkj] (3)

where ω ε R is the weight parameter.
Ridge Regression. If the MLR corresponding linear system
leads to an overfitted/underfitted system of equations [6], to
be able to pick a solution we include a further constraint [7],
namely the L1 norm penalty.
Lasso Regression. As with Ridge regression, the Lasso is a
form of feature selection which trades an increase in bias with

a decrease in variance by introducing the L2 norm penalty.
Lasso can be computed through a modification of the Least
Angle Regression (LARS) algorithm [3] and it provides sparse
models which are easier to interpret.
Elastic Net Regularized Regression. The Elastic Net is a
regularisation and variable selection method which linearly
combines the Ridge and Lasso methods. It is particularly
useful when the number of predictors (p) is much larger than
the number of observations (n)[6] and is defined as below.

β̂EN = argmin
β

1

2
||y −Xβ||22 + λ1

p∑
i=1

|βi|+ λ2

p∑
i=1

β2
i (4)

The Elastic Net reduces to Ridge regression when λ1 =
0, λ2 = 1, to Lasso regression when λ1 = 1, λ2 = 0 and to
MLR when λ1 = 0, λ2 = 0. This estimator inherits drawbacks
such as the lack of oracle property. To overcome this, an
Adaptive Elastic Net estimator (AENET) was introduced in [8]:

β̂AEN = argmin
β

1

2
||y −Xβ||22 + λ1

p∑
i=1

ŵi|βi|+ λ2

p∑
i=1

β2
i

(5)
where ŵpi=1 are the adaptive data-driven weights. For λ2 = 0
we obtain the Adaptive Lasso. The Generalised Elastic Net
[9] adopts the L0 norm to recover sparse signals with high
probability and is defined as:

β̂GEN = argmin
β

1

2
||y −Xβ||22 + λ1||β||0,δ + λ2||β||22, (6)

where ||β||0,δ =
∑N
i=1

β2
i

β2
i +δ

and δ > 0 is a parameter
that approaches zero to approximate ||β||0. This problem can
be solved using the iterative IAGENR-L0 algorithm which
reduces to solving the following linear system for xk+1:

(ATA+Diag[
2λ1

θ + ((xki)
2)2

+ 2λ2, i = 1, N])xk+1 = AT y

(7)
This algorithm is adopted for the Adaptive Elastic Net regular-
isation in order to build our hybrid CPU-FPGA design, CRRS.

III. CRRS DESIGN

In this section we exploit the internal parallelism achievable
with FPGA technology (in our case, a MAIA dataflow engine
(DFE) containing an FPGA and DRAM). We start by describ-
ing a reconfigurable design which achieves the throughput rate
of one data point per clock cycle. We explain how we enhance
our design to take advantage of larger FPGAs, where multiple
parallel processing pipelines can be deployed concurrently. We
show how we can solve MLR, Lasso, Adaptive Lasso, Ridge,
Elastic Net or Adaptive Elastic Net regularisation, as well as
how we can scale the solution to the number of available
FPGAs. To solve any regression/regularisation problem we
need to solve the underlying linear system. For this we use
the Jacobi algorithm with a column-wise weighted Jacobi step
operation for maximum parallelism on the FPGA.

We make a number of design and implementation decisions.
1) We assume the matrix correctness before sending it to
the FPGA; 2) We perform a column-wise summation and
transpose the matrix on the CPU before sending it; 3) For

the weighted Jacobi, we use the popular value of ω = 2
3

for the weight parameter [10]; 4) The initial solution x0 is
the null vector; 5) The w weight vector contains only the
1 value initially, unless stated otherwise; 6) All elements
used for computation are single precision floating point (SFP)
values; 7) The default maximum number of iterations is set
to 10, 000; 8) The default values for other scalar inputs are:
λ1 = 1 ∗ 10−3, λ2 = 1 ∗ 10−5, θ = 1 ∗ 10−6 as per [9],
isAdaptive = 0 , γ = 2, eps = 1.0e-4.

CRRS allows the following parameters to be customised:
number of FPGAs, parallelisation degree on each FPGA,
number of iterations, weight, convergence rate threshold and
penalty specific parameters. CRRS is based on the generalized
Elastic Net following the IAGENR-L0 method, but optimized
to be able to solve an AENET regularisation. We call this
novel pipeline-friendly algorithm GAENET.
Algorithm 1 GAENET

1: Pick an initial guess value x0
2: iteration← 0
3: Check for convergence
4: while convergence not reached do:
5: for p := 1 until nPipes do:
6: for i := 1 until R/nPipes do:
7: residual← 0
8: for j := 1 until C do:
9: residual← residual +A[j] ∗ x[j]

10: end for
11: interim← θ + x[i] ∗ x[i]
12: L1← 2 ∗ λ1 ∗ θ
13: if isAdaptive == 1 then:
14: L

′

1 ← L1 ∗ w[i]
15: else:
16: L

′

1 ← L1

17: newD ← Diag[i] + L1
′
/(interim ∗ interim) + 2 ∗ λ2

18: xNew ← x[i] + ω ∗ [(B[i]− residual)/newD − x[i]]
19: DidConverge(xNew, x[i])
20: Write xNew to memory, by overwriting xi
21: end for
22: end for
23: Check for convergence
24: iteration← iteration+ 1
25: end while

In Algorithm 1, nPipes represents the number of
pipes/threads. R is the number of rows and C is the number
of columns of the coefficient matrix. x is the solution vector. b
is the constant-term column-matrix element, and Diag stores
the main diagonal elements of the coefficient matrix which is
represented by the array A. ω is the weighted Jacobi parameter,
newD represents the new diagonal elements after computation
as in Algorithm 1, line 17. λ1, λ2, and θ are the penalty
specific parameters. The isAdaptive parameter allows the user
to choose between the classic and adaptive Lasso/Elastic Net.
Single Iteration CRRS Design. To aid the FPGA imple-
mentation of GAENET, we introduce a new vector, Diag
which consists of each element from the main diagonal of the

coefficient matrix. We then replace each of the main diagonal
elements from the original matrix with 0, such that they do
not add any value when included into the partial adder com-
putation performed on the FPGA. The single iteration CRRS
design can be summarized as follows: 1) Load coefficient
matrix A as an array, together with the constant-terms column-
matrix b, the initial solution x0, the initial weight vector w
and the main-diagonal elements vector Diag, to accelerator
DRAM; 2) Load all scalar values (ω, ε, λ1, λ2, θ, isAdaptive);
3) Compute GAENET and write the new x1 vector solution to
accelerator DRAM by overlapping the old x0; 4) Read the new
X1 vector solution from accelerator DRAM and output results
to CPU; 5) If the classic Elastic Net version is chosen, stop,
otherwise, compute the new weights on the CPU according
to Equation 9; 6) Repeat Steps 3 - 4. Our design consists
of a binary reduction tree, several subtraction units, dividers,
adders and multipliers and some control units, organized in
processing elements. We also use a multiplexer (adenet)
to choose between computing the adaptive or the classic
regularisation/regression method, according to the value of
the scalar input isAdaptive – 1 = adaptive, 0 = classic. We
ingest from DRAM one column from the coefficient matrix
A, together with the vector value xi. The elements we add
at iteration k + 1 are of the form aijx

k
j and the binary tree

reduces the inputs to produce the sum
∑j=n
j=1;j 6=i aij ∗ xkj ,

named residual. We create a first processing element (PE)
called interim by feeding the value Xi together with its
duplicate value, into a multiplier whose result is then fed into
an adder to produce Algorithm 1, line 11. We then have a
series of elements. L1 is a scalar which has the value 2∗λ1∗ω
precomputed on the CPU - as displayed in Algorithm 1, line
12. According to the multiplexer value isAdaptive we then
feed the result of L1 into another multiplier together with
the weight value Wi to get L1’, or we pick the result of
L1, and this represents the second PE named L1’. We feed
interim and its duplicate into a multiplier which represents
the third PE, named duplicateInterim which then gets fed
together with L1’ into a division unit, to form the fourth PE,
called newInterim. The value of 2 ∗ λ2, as displayed in
Algorithm 1, line 17 is precomputed on the CPU and brought
on the FPGA as a scalar named L2. A fifth PE is then formed
by feeding L2 into an adder together with the newInterim
PE. This then gets fed into another adder together with the
diagonal value Diagi, to form the sixth PE, named newD.
We feed the accumulated sum residual and the Bi value
into a subtraction unit to produce a seventh PE value equal
to bi −

∑j=n
j=1;j 6=i aij ∗ xkj , named inter. This value and the

newD value will enter a final division unit to produce the
eight PE named interResult, who will then enter a final
subtraction unit together with the xi value, to produce the
ninth PE named newElement. Further we have the tenth PE
named weightedElement computed from a multiplier that
uses newElement and the weight constant ω. The last PE,
xNew, is produced using an adder with the newElement and
the xi value, at a rate of one value per clock cycle.

We further improve our design by implementing several
parallel processing pipelines (pipes), allowing for multiple
blocks of rows — up to p pipes to be evaluated in parallel.

Multiple Iterations CRRS Design. We are able to compute
multiple iterations of CRRS using a hybrid CPU-FPGA ap-
proach. To allow convergence checking we implement an extra
PE, DidConverge, which, at the end of the iteration, outputs its
result back to the CPU as an integer value, 0 – convergence
not reached or 1 – convergence reached. The DidConverge
PE feeds in the new xk+1

j value and the old xkj value to a
subtraction unit whose result is then compared to a preset
threshold ε and if smaller, convergence is reached. When using
multiple iterations, our single iteration design is modified as
follows. In the 3rd step of the single iteration solver, we also
check for convergence on the FPGA and output its result back
to the CPU. For the 4th step, we only read the current xk+1

vector solution from accelerator DRAM and output its value
to the CPU if convergence is reached. We enter the 5th step if
not converged and an adaptive method version is chosen and
executed by repeating steps 3-4.

CRRS Design on Multiple FPGAs. Each accelerator has a
fixed amount of DRAM available. Our solver can scale with
the number of FPGAs available. On the CPU we check if we
can split the data equally between FPGAs, i.e. for a matrix
of n × n, with m available FPGAs, the matrix is split in m
matrices with n

m rows and n columns each. If an equal split is
not possible, we attempt to fill the DRAM of as many FPGAs
as possible with blocks of rows, with the remaining data being
allocated to a final FPGA. If more than 8 FPGAs are needed,
communication between 1U units would need to be managed
to avoid bottlenecks, but we leave this as further work.

FPGA_1

CPU

FPGA_2 FPGA_N

PI
PE

_1
1

PI
PE

_1
2

PI
PE

_1
M

DRAMDRAMDRAM_1 DRAMDRAMDRAM_2 DRAMDRAMDRAM_N

PI
PE

_2
1

PI
PE

_2
2

PI
PE

_2
M

PI
PE

_N
1

PI
PE

_N
2

PI
PE

_N
M

FPGA_i

PI
PE

_i
1

PI
PE

_i
2

PI
PE

_i
M

DRAMDRAMDRAM_i

Fig. 1: CRRS on multiple FPGAs

IV. CRRS IMPLEMENTATION

FPGA Implementation. We write the values of the x solution
vector on DRAM as they are computed. If we are not following
an adaptive method, we read the x value from DRAM only
when converged, otherwise we read it at the end of each
iteration, compute new weights w according to Equation
9 and rewrite to FPGA DRAM. Each of our FPGAs has
48GB of DRAM which is equivalent to ≈ 12 ∗ 109 single
precision floating-point (4 bytes) values. We also store the new
x solution vector values, the b constant-term column-matrix
elements, the main diagonal elements Diag, the corresponding
array of coefficients for matrix A and the w adaptive method
weights values. With a total of 8 FPGAs, we are able to

increase matrix size further, by splitting the input matrix
between multiple FPGAs.
Resource Usage. Table I shows the kernels, managers and IO
resource usage, as a percentage of the total available resources.

TABLE I: FPGA total resource usage (expressed in percent)
for single precision floating-point arithmetic implementation

Pipes 1 24
Total Logic 20.92% 59.45%
LUTs / FFs 12.16% / 8.72% 39.13% / 28.41%

BRAM / DSP 29.45% / 0.61% 74.09% / 25.67%

CPU Implementation of GAENET. The CPU implementa-
tion is built using C++11, parallelised using OpenMP and
compiled using g++ 4.9.2 with flags -O3 -march=native -
fopenmp to enable general performance, architectural and
multi-threaded optimization for Intel XEON, being parallelised
in a similar manner to the hardware implementation, by
dividing the original matrix into sub-matrices. Table II shows
the scalability of our CPU implementation for a dense matrix
of 107, 520 × 107, 520 elements by presenting the average
time taken for the CPU to perform one AENET iteration
for GAENET, after 10 independent runs. We disable Hyper-
Threading and only use 6 threads per CPU (in total 12 threads)
to prevent the CPU implementation from scaling sub-linearly.

TABLE II: CPU scalability for up to 12 threads and 1 AENET
iteration - 107, 520× 107, 520 matrix

Threads 1 2 4 8 10 11 12
CPU Time (s) 641.16 337.45 164.4 82.2 66.79 61.06 56.74

Speedup 1 1.9 3.9 7.8 9.6 10.5 11.3

V. EVALUATION

The accelerator we use is a Maxeler MPCX node containing
a Maia DFE with a Stratix V FPGA and 48 GB of onboard
DRAM. We evaluate software results on the CPU node at-
tached to the MPCX node through a Mellanox FDR Infiniband
switch, namely a Dual Intel Xeon E5-2640 with 6 cores
(testing on 12 threads) and 64 GB of onboard DRAM. Our
FPGA implementation runs at a clock frequency of 200MHz
for the 1 pipe solution, at 190Mhz for the 8 and 16 pipe
solutions and at 180MHz for the 24 pipe solution. All run
times are measured using the C++11 standard library time
function: chrono::high resolution clock::now(). The Stratix V
FPGA node adopts 28nm technology, while the Dual Intel
Xeon E5-2640 adopts 22nm.

We provide results with the initial CPU-DRAM transfer
time plus execution time, as well as just with the execution
times. FPGA performance is evaluated against a 12-thread
C++ counterpart as well as the R libraries glmnet and msaenet.
The glmnet R library can use multi-core architectures only
for cross-validation, hence we only show single threaded
performance. Despite its efficiency, glmnet does not support
Adaptive Elastic Net/Lasso regularisation. To overcome this,
we use msaenet - an efficient R library built on top of glmnet.
We show performance results for the Adaptive Elastic Net
Regression because to the best of our knowledge, this is the
first implementation of its kind on an FPGA. We test both

dense and sparse randomly generated matrices with 10% of
their total predictors associated as real predictors. All sparse
matrices generated have 40% non-zero entries. We measure
the execution and total computation times after 10 iterations.
Single FPGA - CRRS Performance Results. Table III
shows peak speedups of 20.91 times when measuring only
the execution time and 12.07 times when measuring total
computation time, for a dense matrix of 107, 520 × 107, 520
elements. We provide timings for one FPGA across a different
number of pipes.

TABLE III: Single FPGA performance results
of pipes 1 8 16 24

of iterations 1
CPU Time (s) 56.74 56.74 56.74 56.74

FPGA Exec. Time (s) 61.1 7.68 3.88 2.72
FPGA Speedup 0.92 7.39 14.62 20.86

FPGA Total Time (s) 83.1 29.68 25.88 24.72
FPGA Speedup 0.68 1.91 2.19 2.30

of iterations 10
CPU Time (s) 627.51 627.51 627.51 627.51

FPGA Exec. Time (s) 618.94 80.45 41.31 30.01
FPGA Speedup 1.01 7.80 15.19 20.91

FPGA Total Time (s) 640.94 102.45 63.31 52.01
FPGA Speedup 0.98 6.13 9.91 12.07

As expected, when CPU-DRAM transfer time is included,
we notice a significant decrease in the single iteration CRRS
version’s speedup. We reduce the impact across multiple
iterations for classic methods by only transferring the data
to DRAM once at the beginning, rewriting the new solutions
to DRAM as they get computed, and reading the final result
only once when reaching convergence/maximum number of
iterations. For the adaptive methods, a transfer overhead is
introduced, as we need to read the current X vector solution,
compute the new weights vector W on CPU, and overwrite
old W values with new ones on DRAM. We show results for
AENET, so the maximum overhead time is included.
Multiple FPGAs - CRRS Performance Results. Table IV
shows results for 1 and 10 iterations of the AENET method
applied on a 107, 520×107, 520 dense matrix. We use multiple
FPGAs with 24 pipes each for maximum parallelism. The CPU
controls synchronization, so all multi-FPGA performance re-
sults include synchronization time. We notice a linear increase
in speedup with the number of FPGAs, and peak speedups of
158.31 times when measuring just execution time, or 86.47
times including CPU-DRAM transfer time.

Figure 2 shows how CRRS scales across 8 FPGAs when
performing one iteration of the GAENET algorithm. Due to
insufficient CPU RAM for a matrix with more than ≈ 12∗109
single precision floating point elements, we cannot measure
real speedup for any larger matrix. We estimate speedup
for 215, 040 × 215, 040 and 307, 200 × 307, 200 matrices by
extrapolating CPU execution time from other tests performed
over varying sizes matrices. These tests measure the CPU
implementation of GAENET, msaenet, and the 8-FPGA-based
CRRS execution times. We display the extrapolation function
for predicted speedups for dense and sparse matrices. We
also show the R2 measurement which measures the fit of the

Fig. 2: 12-core GAENET vs 1-core MSAENET vs 8-FPGA CRRS Performance Comparison for Execution Times

TABLE IV: Multiple FPGAs performance results
of FPGAs 1 2 4 8

of iterations 1
CPU Time (s) 56.74 56.74 56.74 56.74

FPGA Exec. Time (s) 2.72 1.38 0.72 0.36
FPGA Speedup 20.86 41.12 79.14 158.29

FPGA Total Time (s) 25.91 12.95 7.04 3.53
FPGA Speedup 2.19 4.38 8.06 16.07

of iterations 10
CPU Time (s) 627.51 627.51 627.51 627.51

FPGA Exec. Time (s) 30.02 15.24 7.93 3.96
FPGA Speedup 20.91 41.18 79.18 158.31

FPGA Total Time (s) 54.14 27.04 14.48 7.26
FPGA Speedup 11.59 23.21 43.33 86.47

extrapolation function and we notice all functions are over
0.99. We display 10% bars of error from the values to the
extrapolation line and show that our results are always within
bound, hence drawing the following conclusions within 10%
error: 1) For one iteration of AENET targeting the 12-core
C++ CPU GAENET for a matrix with ≈ 94.37 ∗ 109 values,
an 8-FPGA based CRRS is up to 240 times faster for a dense
dataset, and 190 times faster for a sparse one. 2) For one
iteration of AENET targeting the highly-efficient msaenet for
the same matrix, an 8-FPGA based CRRS could be up to 390
times faster for a dense dataset, and 310 times for a sparse one.

When testing our design on the U.S. Census dataset
(10, 000×45, 000 SFP elements) for an Elastic Net algorithm,
the 8-FPGA-based CRRS performs up to 2 times faster than
a 8 Tesla P100 using the open-source GPU library H2O.
Energy and Power Consumption Results. Table V shows
that running our design for one iteration of the AENET method
on 8 Stratix V FPGAs, each with 24 pipes, can be up to 114
times more energy efficient than its 12-core CPU counterpart.
TABLE V: Total Energy/Power Consumption for CPU vs
FPGA for 1 AENET iteration with a 107, 520×107, 520 matrix

Technology 12-core CPU 1 FPGA 8 FPGA
Power (Watt) 90.00 16.40 124.80

Energy (Joules) 5,106.60 44.61 44.93

VI. CONCLUSION AND FUTURE WORK

Our study shows the effectiveness of FPGAs for accelerating
a number of regression and regularisation methods through our
custom regularisation and regression solver, CRRS. We also
introduce the first AENET pipelined architecture, implemented

on FPGAs. We further show how CRRS is able to provide an
efficient scalable solution which allows us to solve large-scale
datasets that cannot fit the on-board DRAM of a single FPGA.

We perform tests on dense and sparse datasets and show
that our floating-point precision multi-FPGA regression and
regularisation solver is able to compute an iteration of the
AENET in under a second, with its total computation time
including CPU-DRAM transfer time across 10 iterations being
less than 10 seconds, when evaluating CRRS on a dataset with
≈ 11.56∗109 values. When comparing our approach with the
well-known glmnet R library on both dense and sparse datasets
we show that CRRS can achieve a speedup of up to 390 times.

We plan to further develop our design to support mixed-
precision, thus enabling users to obtain their desired trade-
off between accuracy and speed, and to compare performance
against a CPU cluster and cloud-based FPGA acceleration.

VII. ACKNOWLEDGMENTS

The support of UK EPSRC (EP/I012036/1, EP/L00058X/1,
EP/L016796/1 and EP/N031768/1), the European Union Hori-
zon 2020 Research and Innovation Programme under grant
agreement number 671653, the Maxeler University Pro-
gramme, Altera, Intel and Xilinx is gratefully acknowledged.

REFERENCES
[1] G. Kang, et al., Shakeout: A New Regularized Deep Neural Network

Training Scheme, AAAI-16, 2016.
[2] J. Li et al., Predicting Exchange Rates Out of Sample: Can Economic

Fundamentals Beat the Random Walk?, Journal of Financial Economet-
rics, 13(2), pp. 293-341, 2015.

[3] X. Yan et. al, Linear Regression Analysis: Theory and Computing, World
Scientific Publishing Co., 2009.

[4] D.P. O’Leary, R.E. White, Multi-splittings of matrices and parallel
solution of linear systems, SIAM J. Algebr. Discrete Methods, 6(4), pp.
630-640, 1985.

[5] M. Oieshanskii, et al., Iterative Methods for Linear Systems: Theory and
Applications, Society for Industrial and Applied Mathematics, 2014.

[6] Hui Zou et al., Regularisation and variable selection via the Elastic Net,
Journal of the Royal Society: Series B, 67 (2), pp. 301-320, Blackwell
Publishing, 2005.

[7] R. A. Maronna, Robust Ridge Regression for High-Dimensional Data,
Technometrics, 53(1), pp. 44-53, 2011.

[8] H. Zou et al., On the adaptive elastic-net with a diverging number of
parameters, Ann. Statist., 37(4), pp. 1733-1751, 2009.

[9] S. Li et al., A generalised Elastic Net regularisation with smoothed l0
penalty, Advances in Pure Mathematics, 7, pp. 66-74, 2017.

[10] A. Imakura, et al. A parameter optimization technique for a weighted
Jacobi-type preconditioner, JSIAM, 4, pp. 41-44, 2012. https://goo.gl/
HFhVXu, 2017.

https://goo.gl/HFhVXu
https://goo.gl/HFhVXu

	Introduction
	Background
	CRRS Design
	CRRS Implementation
	Evaluation
	Conclusion and Future Work
	Acknowledgments
	References

