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Abstract—Convolutional neural network (CNN)-based object
detection has been widely employed in various applications
such as autonomous driving and intelligent video surveillance.
However, the computational complexity of conventional convo-
lution hinders its application in embedded systems. Recently, a
mobile-friendly CNN model SSDLite-MobileNetV2 (SSDLiteM2)
has been proposed for object detection. This model consists of
a novel layer called bottleneck residual block (BRB). Although
SSDLiteM2 contains far fewer parameters and computations than
conventional CNN models, its performance on embedded devices
still cannot meet the requirements of real-time processing. This
paper proposes a novel FPGA-based architecture for SSDLiteM2
in combination with hardware optimizations including fused
BRB, processing element (PE) sharing and load-balanced channel
pruning. Moreover, a novel quantization scheme called partial
quantization has been developed, which partially quantizes SS-
DLiteM2 to 8 bits with only 1.8% accuracy loss. Experiments
show that the proposed design on a Xilinx ZC706 device can
achieve up to 65 frames per second with 20.3 mean average
precision on the COCO dataset.

I. INTRODUCTION

Over the past few years, object detection has been employed

in a wide range of applications such as autonomous driving,

face detection and traffic monitoring. Whereas, traditional

methods for object detection such as sliding window and

region-based algorithms suffer from low accuracy [1]. The

development of deep learning has led to significant advances in

object detection tasks. Various convolutional neural networks

(CNNs) such as SSD [2], Faster R-CNN [3], and YOLO [4]

have been proposed for object detection with high accuracy.

The success of these networks sparks great research interests

in deploying them on embedded systems such as aerial drones

and security cameras. However, the accuracy improvement

of deep learning-based algorithms comes at a cost: the al-

gorithm complexity imposes large overhead on the speed of

these networks, which limits their deployments on embedded

systems. For example, Faster R-CNN can only achieve single-

digit frame rates even on a high-end graphics processing unit

(GPU) [5].

Recently, a lightweight building layer called bottleneck

residual block (BRB) [6] has been proposed, which is com-

posed of point-wise [7] and depth-wise convolutions [8]. Based

on BRB, the SSDLite-MobileNetV2 (SSDLiteM2) can achieve

∗ The first author is financially supported by China Scholarship Council.§ Corresponding author.

nearly 8.3 times compression rate compared with the original

SSD model while maintaining the same level of accuracy.

Although the model size of SSDLiteM2 is smaller than that

of other high-accuracy models, it can only achieve 5 frames

per second (fps) on a high-end embedded CPU [6], which still

cannot meet the requirement of real-time processing. There-

fore, there is a great demand for the hardware acceleration of

SSDLiteM2 for object detection.

Various hardware platforms including field programmable

gate array (FPGA), application specific integrated circuit

(ASIC) and graphics processing unit (GPU) can be used to

accelerate deep learning-based object detection. Among these

hardware platforms, FPGAs are gaining popularity because of

their better reconfigurability and shorter turn-around time than

ASICs and higher energy efficiency than GPUs [9] [10].

However, there are several challenges when accelerating

SSDLiteM2 on FPGA for object detection:

1) To support point-wise and depth-wise convolutions, one

approach [11] deploys different computational engines for

different convolutions separately, but it does not achieve

high hardware efficiency.

2) To achieve real-time response, conventional compression

techniques for lightweight models often sacrifice the ac-

curacy and thus cannot meet the applications with high

accuracy requirement.

To address the above challenges, we introduce a novel

FPGA-based architecture together with the processing element

(PE) sharing optimization to improve the hardware efficiency.

Based on the roofline model of SSDLiteM2, a fused BRB

is proposed to improve overall performance by caching all

intermediate results on the on-chip memory. Furthermore, a

load-balanced channel pruning is presented, which not only

compresses the SSDLiteM2 model but also improves the

hardware efficiency. Several software optimizations including

partial quantization and bias folding are proposed to decrease

the amount of computation and parameters while maintaining

the same level of accuracy. The optimized SSDLiteM2 called

C-SSDLiteM2 is implemented on the proposed FPGA-based

architecture, which achieves real-time performance for object

detection task.

The main contributions of this work are the following:

• A novel FPGA-based architecture for SSDLiteM2, which
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supports multiple types of convolutions with different kernel

sizes (Section III).

• Several innovative hardware optimizations such as fused

BRB, PE sharing and load-balanced channel pruning, which

improve the overall performance as well as the hardware

efficiency (Section III-B).

• Complementary software optimizations including partial

quantization and bias folding, which reduce not only the

computational complexity but also the amount of parameters

(Section III-C).

II. BACKGROUND

A. Depth-wise Convolution and Bottleneck Residual Block

Depth-wise convolution is a lightweight building layer

in modern CNNs. Figure 1 illustrates standard convolution

versus depth-wise convolution. Compared to the standard

convolution, depth-wise convolution only applies one filter

on each channel, which significantly decreases the amount of

computation and parameters.

(a) Standard Convolution (b) Depth-wise Convolution
Input Output Input Output 

Fig. 1: The standard convolution and depth-wise convolution
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Fig. 2: The structure of bottleneck residual block

A bottleneck residual block (BRB) is mainly composed

of three convolutional layers, namely expansion convolution,

depth-wise convolution and projection convolution. The struc-

ture of BRB is illustrated in Figure 2, where the kernel size

of depth-wise convolution is 3×3. The expansion convolution

and projection convolution are the standard convolutions with

the kernel size of 1 × 1 (point-wise convolution). Table I

summaries the parameters utilized in this paper. There is a

TABLE I: Parameters used in the FPGA implementation of

SSDLiteM2 for object detection acceleration.

Parameter Description
H The height of input feature map
W The width of input feature map
Kdw The kernel size of depth-wise convolution
Nc The number of channels
Nf The number of filters
t The expansion factor

TABLE II: The input and output tensors within BRB.

Input Tensor Convolution Output Tensor
H ×W ×Nc Projection Convolution H ×W ×Nc × t
H ×W ×Nc Depth-wise Convolution H ×W ×Nc × t

H ×W ×Nc × t Expansion Convolution H ×W ×Nf

shortcut addition when the stride of depth-wise convolution is

1, which is utilized for residual learning [12]. Each convolution

in BRB is followed by a batch normalization (BN) layer. The

rectified linear unit with threshold being 6 (ReLU6) is only

applied after the expansion convolution and the depth-wise

convolution. Table II summaries the input and output tensors

of each convolution, where the expansion factor t is utilized

to expand the internal dimension in BRB.

B. SSDLite-MobileNetV2

An object detection problem can be separated into two tasks:

one is predicting the bounding boxes for the localization, the

other is the associated object classification for the proposed

bounding boxes. The SSD architecture [2] is a popular CNN

framework for object detection, which consists of two com-

ponents, feature extractor and bounding box predictor. The

feature extractor, which is also called base network, is usually

a truncated classification network such as VGG-16 [13], fol-

lowed by a set of auxiliary convolutional layers which enable

features extraction at multiple scales and decrease the input

size of each subsequent layer. The bounding box predictor is

a group of small convolutional filters used to predict category

scores and box offsets for a fixed set of default bounding boxes

(anchor boxes [14]).

The SSDLite is a mobile-friendly variant of SSD, where the

regular convolutions in bounding box predictor are replaced by

the depth-wise convolutions. Based on the SSDLite framework,

the SSDLite-MobileNetV2 (SSDLiteM2) is proposed in [6],

which utilizes MobileNetV2 as the base network. Figure 3

illustrates the network structure of SSDLiteM2.

C. Related Work

Before the advent of deep learning, the state-of-the-art

approach for object detection is based on the histogram of

oriented gradients (HOG) algorithm [15]. Several FPGA-based

accelerators [16], [17] have been proposed for HOG-based

object detection. However, their low accuracy hinders their

deployment in real-life applications [18].

As deep learning evolved, several CNN models have been

proposed for object detection with high accuracy. Faster R-
CNN [3] is one of the object detection models, which extends
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Fig. 3: The network architecture of MobileNetV2-SSDLite

Fast RCNN [14] with Region Proposal Network (RPN). Simi-

larly, the SSD [2] utilizes a set of pre-defined boxes to perform

the localization and classification at multiple scales. YOLO [4]

re-frames object detection as a regression problem, where only

a single convolutional network is utilized to simultaneously

predict multiple bounding boxes and class probabilities. Var-

ious FPGA-based designs have been proposed to accelerate

these models. Zhao et al. [1] accelerate the YOLO and Faster
R-CNN on FPGA with several hardware optimizations. Ma et

al. [19] thoroughly explore the design space of CNN-based

algorithms on FPGA and propose a novel hardware architec-

ture for CNN models. However, the speed of these designs still

cannot meet the requirement of real-time processing. Although

Nakahara et al. [20] propose an FPGA-based binarized neural

networks (BNNs) accelerator which can achieve 40.81 frames

per second in the object detection task, its accuracy is not

evaluated on a large dataset. Therefore, there is a great demand

for a hardware accelerator for object detection with real-time

processing capability and high accuracy.

III. FPGA ACCELERATOR DESIGN

In this section, the overview of the proposed design is first

presented. Then several hardware and software optimization

techniques are proposed. Finally, the hardware architecture is

illustrated in detail.

A. Design Overview

The overview of the proposed FPGA-based accelerator is

illustrated in Figure 4, which is mainly composed of the

computational engine, data stream controller, off-chip and on-

chip memory. To improve the scalability, the single processing

engine architecture [21] is used in our work, where the

computational engine is designed to run one layer or block at

one time, and the whole network is processed by repeatedly

running the computational engine. Each processing element

(PE) consists of several multipliers and a pipelined adder tree,

which is used to perform the multiply-accumulation in con-

volutional layers. The data stream controller, which consists

of several buffers, is dedicated to the data communication

between the computational engine and on-chip memory.

B. Hardware Optimization

Data Stream Controller

Computational Engine

On-chip Memory

Off-chip Memory

PE PE PE

Fig. 4: Overview of FPGA-based accelerator

1) Fused BRB: As mentioned in Section II, the BRB

is mainly composed of the projection convolution, depth-

wise convolution and expansion convolution. To estimate the

performance limitation of these three convolutional layers,

the roofline model is used in this paper. The roofline model

mainly consists of one roofline curve which characterizes the

performance limitation, and several vertical lines that represent

an algorithm intensity, where the roofline curve is given by the

computational resources and off-chip bandwidth of the specific

hardware, and a vertical line is determined by the number of

operations in a algorithm. The interaction between the roofline

curve and the line of algorithm intensity gives the theoretical

peak performance point, which is either compute-bound or

memory-bound.

Based on the methodology proposed in [22], the roofline

model for the Xilinx Zynq ZC706 with 100 MHz clock

frequency and 1.2 GB/s of DRAM bandwidth is developed 1

and shown in Figure 5. As can be seen from the figure,

all the expansion, projection and depth-wise convolutions are

memory-bound, and hence the overall performance of BRB

will be also bounded by the limited memory bandwidth. To

improve the overall performance, the fused BRB is proposed

in our work. All the intermediate results of the BRB are cached

in on-chip memory, which eliminates the need for data transfer

between on-chip and off-chip memory for the BRB. After the

fused BRB optimization, the BRB becomes compute-bound,

which is given by the red line in Figure 5.

Fig. 5: Roofline model of SSDLiteM2

1Assuming that the operation refers to 32-bit multiply-accumulation, only
DSP resource is utilized to perform the calculation and each operation costs
5 DSPs.
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One issue comes with the fused BRB is that the on-chip

memory is not enough to cache all the intermediate results of

the BRB. To address this issue, the pixel blocking technique

[23] is used in this paper, which divides the input feature maps

into several equal blocks and caches each set of blocks on chip.

The block sizes of each layer mainly depend on the network

setting and the available on-chip memory resources.

2) PE Sharing: Since the design is based on the single

processing engine architecture, the computational engine is

only designed to run one BRB at one time. To fully pipeline

the design, the computational resource allocation for the three

convolution layers should be proportional to their amount of

computation. However, the computation and corresponding

proportions of the three convolutional layers vary in different

BRBs, it is impossible to fully pipeline the design while

running the whole network. To address this design challenge,

the PE sharing strategy is proposed in this paper, which

eliminates the need of resource allocation by sharing the PEs

of depth-wise convolution with the point-wise convolution.

Since the kernel sizes of depth-wise and point-wise con-

volutions are different, the PEs designed for depth-wise con-

volution cannot be directly used for point-wise convolution.

To address this issue, loop unrolling and loop interchanging

are considered in our work. The pseudo code of the original

point-wise convolution is illustrated in Algorithm 1. Loop un-

rolling is first applied to the loop with the variable channels,

which splits the accumulation into � Nc

Kdw×Kdw
� groups of

Kdw × Kdw, where the �� is the ceiling function. Then, the

unrolled loop with parameters Kdw × Kdw is interchanged

as the innermost loop, which makes point-wise convolution

possess the same computational pattern as the depth-wise con-

volution. The optimized point-wise convolution is illustrated

in Algorithm 2. After the loop unrolling and interchanging,

the PEs designed for Kdw ×Kdw depth-wise convolution can

be reused to perform the multiply-accumulation operations in

point-wise convolution, which eliminates the need of resource

allocation for these two different convolutions.

Algorithm 1 Original Point-wise Convolution

1: for filters = 0 to Nf do
2: for channels = 0 to Nc do
3: for height = 0 to H do
4: for width = 0 to W do
5: output fm[filters][height][width]+=
6: coef[filters][channels] ×
7: input fm[channels][height][width];

Algorithm 2 Optimized Point-wise Convolution

1: for filters = 0 to Nf do
2: for channels = 0 to � Nc

3∗3 � do � Loop Unrolling
3: for height = 0 to H do
4: for width = 0 to W do
5: for i = 0 to 32 do � Loop Interchange
6: output fm[filters][height][width]+=
7: coef[filters][channels+ i] ×
8: input fm[channels+ i][height][width];

3) Load-balanced channel pruning: Although the PE shar-

ing can improve the resource efficiency, it may also cause

sparse matrix multiplication when the channel number of

point-wise convolution is not divisible by the kernel size of

depth-wise convolution. Assume that the computational engine

is composed of two PEs and each PE is designed for depth-

wise convolution with the kernel size being 3 × 3. Figure 6a

illustrates the case of sparse matrix multiplication when the

channel number of point-wise convolution is 11. Since each

PE can only process 9 channels in the input data, it requires 2

PEs to perform the point-wise convolution with 11 channels,

which results in the unused computational resources in the

second PE.

Computational Engine with Channel = 11

Input Feature Map1 Idle

(a) Sparsity

Processing Element 1
c1 c2 c3 c4 c5 c6 c7 c8 c9 c11c10

Processing Element 2

Computational Engine with Channel = 9

Processing Element 1
c1 c2 c3 c4 c5 c6 c7 c8 c9 c11c10

Processing Element 2
c1 c2 c3 c4 c5 c6 c7 c8 c9

(b) Balanced

Input Feature Map2

Fig. 6: Computational engine with and without sparsity

To avoid sparse matrix multiplication, the load-balance

channel pruning is proposed. Channel pruning is the com-

pression technique proposed in [24]. In this paper, we extend

the channel pruning to load-balanced channel pruning, which

not only aims at model compression but also considers the

hardware efficiency. Instead of decreasing the channel num-

ber randomly, the load-balance channel pruning prunes the

channel number of point-wise convolution to the number of

Kdw ×Kdw. Because the pruned channel number is divisible

by Kdw × Kdw, every PE will be fully occupied. Figure 6b

presents an example of balanced computational engine. Since

the channel number is pruned to 9, each input feature map in

point-wise convolution only requires one PE. In this case, the

second PE can be fully utilized to process other input feature

maps.

The benefits of load-balance channel pruning are twofold:

Firstly, the sparse matrix multiplication can be avoided when

the PEs of depth-wise convolution are used to perform the

point-wise convolution. Secondly, the amount of parameters

and calculation can be further reduced during the pruning

process.

C. Software Optimization

1) Partial Quantization:
One of issues in the conventional quantization is that the

accuracy loss varies in different models. In particular, our

experiment shows that the accuracy drops significantly when
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the quantization is applied to the light-weight models such

as SSDLiteM2. To address this problem, partial quantization

is proposed in our work, which partially quantizes the SS-
DLiteM2 with negligible accuracy loss.

32 bits
32 bitsmixed

precision32 bits

8 
bits

8 
bits

8 
bits

8 
bits

32 
bits

32 
bits

Input

Weights
Conv Bias

& BN
Down-
Scaling ReLU6 Output

 Feature 
Extractor

 Pre-
Processing

 Pos-
Processing

Bounding 
box 

Predictor

 (a) Partial quantization on SSD framework 

 (b) A typical building block in feature extractor under partial quantization 

Fig. 7: Partial quantization

An SSD-based object detection model mainly consists of

four components, namely, the pre-processing, the feature ex-

tractor, the bounding box predictor and the post-processing.

To maintain the accuracy, the proposed partial quantization

preserves the computation of the pre-processing, the bounding

box predictor and the post-processing with 32-bit, which is

illustrated in Figure 7(a). Note this will not introduce large

overhead since nearly 85% of computation lies in the feature

extractor. Furthermore, in the feature extractor with mixed

precision, all the layers, except for the batch normalization

and bias layers, are quantized to 8 bits according to the

linear quantization scheme in [25]. A typical building block in

feature extractor after partial quantization scheme is illustrated

in Figure 7(b). Note that the precision in batch normalization

and bias layers is 32bits to keep the accuracy.

2) Bias Folding:
Under the partial quantization scheme, the bitwidths of both

bias and batch normalization layers are 32 bits. To decrease

the amount of parameters and computation, the bias layer can

be “folded” into the batch normalization layer.

During the inference stage, the batch normalization can be

expressed as:

Obn =
Obias − E√

V − ε
, (1)

where the E, V , and ε are population statistics and Obias is the

result of the bias layers. Since E, V , and ε are constant values

during the inference stage, equation (1) can be simplified as:

Obn = n×Obias +m, (2)

where n = 1√
V−ε

and m = − E√
V−ε

. By expanding the Obias,

the equation (2) can be formulated as:

Obn = n× (Oconv + bias) +m, (3)

which becomes:
Obn = n×Oconv + l, (4)

where Oconv is the output of convolutional layer and l is

defined as:
l = n× bias+m

In equation (4), both n and l are calculated before the infer-

ence, and cached in the on-chip memory. Therefore, only one

multiplier and one adder are required for batch normalization

and bias layers.

D. Hardware Design

1) Hardware Architecture: Based on the hardware and soft-

ware optimization techniques presented above, the hardware

architecture is shown in Figure 8, which is composed of the

input cache, coefficient (Coef) buffer, computational engine,

ReLU6 and reshape modules.
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Fig. 8: Hardware Architecture

The processing of BRB starts with the projection convolu-

tion. The input feature maps of projection convolution are first

stored in the input cache module for the data reuse. Then, the

cached data flows into the computational engine to perform

the projection convolution, bias and batch normalization se-

quentially. Note that both the bias and batch normalization

have been integrated into the BN module due to the bias

folding. Based on the fused BRB optimization, the results

of projection convolution are cached in the output buffer

module for the use of the next convolutional layer. After the

ReLU6 and reshape modules, the cached results stream into

the same computational engine again to perform the depth-

wise convolution according to the PE sharing optimization.

Since the depth-wise convolution is a channel-wise operation,

the accumulator in the output buffer module is disabled at this

stage. While processing the expansion convolution, the outputs

of depth-wise convolution are fed back into the computational

engine without going through the reshape module. Note that

the ReLU6 is disabled in expansion convolution. In the last

stage, the shortcut addition is enabled when the stride of depth-

wise convolution is one, where the input data of projection

convolution and the results of expansion convolution are added

together by the accumulator in the output buffer module.

Note that the proposed hardware architecture also supports

the standard convolution with the kernel size being 3 × 3.

Similarly with the processing of BRB, the input feature maps

are stored in the input cache module for the data reuse. Once

the computation starts, the cached data will stream into the

reshape module directly and then flow into the computational

engine. The accumulator in the output buffer module is en-
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abled for standard convolution. After the ReLU6 module, the

results are transferred back to the off-chip memory.

2) Computational Engine: The computational engine is

composed of PEs, accumulator, down-scaling and output

buffer modules, which is illustrated in Figure 8.
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Fig. 9: Computational engine

Processing Elements — Each PE consists of Kdw × Kdw

multipliers and a pipelined adder tree with logK2
dw levels,

where the bit-widths of input and output are 8-bit and 32-bit

respectively. The number of PEs represents the parallelization

level of the computational engine.

Accumulator and Down-scaling — The accumulator is com-

posed of a group of adders, which will be enabled when i) the

channel accumulation in standard convolution and ii) shortcut

addition in BRB. The down-scaling module is used to map

results from 32 bits to 8 bits after the accumulator.

Output buffer — There are only two buffers deployed on

the output buffer module for three convolutions, where the

output buffer of the projection convolution will be reused by

the expansion convolution. The multiplexers (Mux-s) are used

to control the datapath for different convolutions.

Reshape — The reshape module consists of a padding module

and different types of buffers. The padding module is used to

insert zeros into input feature maps. The line buffer takes the

padded input data one by one, and produces the data line by

line. Then, the matrix buffer receives the data from the line

buffer and outputs K × K pixel matrix to the computation

engine.

Padding Line
Buffer

Matrix
Buffer1 x 1 K x K

Fig. 10: Reshape module

IV. EXPERIMENTAL RESULTS AND DISCUSSION

The proposed design is implemented on a Xilinx ZC706

platform which consists of a Kintex-7 FPGA and dual Arm

Cortex-A9 processor. 1GB DDR3 RAM is installed on the

platform as an off-chip memory. The FPGA design is clocked

at 100MHz while the ARM processor runs at 1GHz. Vivado

2016.2 is used for synthesis and implementation. The COCO

dataset [26] which includes 2.5 million labeled instances of

91 object types in 328k images is used in the following

experiments.

A. Implementation Detail
Figure 11 presents the implementation detail of the

CPU+FPGA heterogeneous design. There are mainly three

components in the system: FPGA design on the Processing

Logic (PL), ARM CPU on the Processing System (PS), and

DDR3 on the external memory. Since the design is based

on the single processing engine architecture, various BRB

layers with different parameters are repeatedly executed on

the same FPGA design. The configuration parameters of each

BRB are specified by PS side through the APB bus before the

processing. Due to the limited on-chip memory, the results of

each BRB will be cached in DDR3, and the DMA is utilized

to transfer data and coefficients from DDR to PL.
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DDR Controler
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Processing Logic

A
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ge

AXI Interface

FPGA
Design
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Fig. 11: System overview

Because the bounding box predictors are 32 bits under the

partial quantization and its computation only accounts for less

than 10% of the total amount of calculation, we put it on

the PS side to overlap it with the feature extractor, which is

illustrated in Figure 12.

B. Model Size and Accuracy
Two experiments are conducted in this section: the first

experiment is to showcase the improvement of partial quanti-

zation, the second one presents the accuracy and model size of

the fully optimized model that is utilized in our FPGA design.

TABLE III: The model size and accuracy of SSDLiteM2 under

different quantization methods.

SSDLiteM2 Accuracy Parameters Compression
(mAP) Rate

Original 22.1 76.8Mb 1

Fully Quantized 11.8 19.2Mb 4

Partial Quantized 20.5 25.5Mb 3.01
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TABLE IV: The network detail of C-SSDLiteM2

Component Input Operation t Nf n s Params

2242 × 3 Conv 3× 3 - 27 1 2 0.006 Mb
1122 × 27 BRB 1 16 1 1 0.011 Mb
1122 × 16 BRB 6 18 2 2 0.068 Mb

Feature 562 × 18 BRB 6 27 3 2 0.20 Mb
Extractor 282 × 27 BRB 6 63 4 1 1.29 Mb

282 × 63 BRB 6 90 3 2 2.02Mb
142 × 90 BRB 6 144 3 2 4.91 Mb
72 × 144 BRB 6 288 1 1 2.9 Mb
72 × 288 Conv 1× 1 - 1080 1 1 2.55 Mb

Bounding Box Predictor - -
-

- - - 8.4Mb

Total - - - - - - 22.35 Mb

Accuracy - - - - - - 20.3 mAP

To demonstrate the effectiveness of partial quantization, we

compare the partially quantized SSDLiteM2 with the original

and fully quantized models, which is shown in Table III. As

can be clearly seen from Table III, the partially quantized

SSDLiteM2 is 3.01 times smaller than the original model with

20.5% mean average precision (mAP) 2 on the COCO dataset.

Compared with the fully quantization, the partial quantization

improves the mAP by 8.5% with only 6.3Mb more parameters.

With all the optimizations applied to SSDLiteM2, we

propose a compressed SSDLiteM2 model named the C-
SSDLiteM2. The network detail is presented in Table IV, where

each line describe a sequence of identical layers with repeated

number n and expansion factor t. The first layer of each

sequence has a stride s and all others use stride 1. Because the

load-balanced channel pruning is mainly utilized to eliminate

the sparse matrix multiplication, it only prunes 5% to 10%

numbers of channels to maintain the accuracy. Finally, the

fully optimized C-SSDLiteM2 is 3.43 times smaller than the

original SSDLiteM2 with only 1.8% mAP loss on the COCO

dataset.

C. Performance Comparison

To compare the performance of proposed design on Xilinx

ZC706 with other platforms, we implement the original SS-

DLite on Intel Xeon E5-2680 v2 CPU and NVIDIA TITAN

X Pascal GPU based on Tensorflow framework [25]. The

CuDNN libraries are used for optimizing the GPU solution,

and the compilation flag −Ofast is activated for the CPU

implementation. Although there is another FPGA-based bina-

rized NNs accelerator for object detection [20], the accuracy

is not evaluated on the large dataset such as the COCO

dataset, and we are unable to compare our results to their

2The mAP in this paper refers to mAP@[.5:.95] with the intersection over
union (IoU) threshold from 0.5 to 0.95

implementation. Table V shows the performance and power

consumption on different platforms. Note that since the depth-

wise convolution is not well optimized by CUDA and cudnn,

the original SSDLiteM2 on GPU does not show a high speed-

up compared with the CPU implementation.

Our proposed design can achieve nearly 65 fps, which is

considered to be sufficient for object detection in many real-

life applications. Compared with the original SSDLiteM2 on

Xeon E5-2680 v2 CPU and TITAN X Pascal GPU, our FPGA

design is 3.5 and 1.8 faster, and consumes 41.8 and 32 times

less power respectively. To make a fair comparison, we also

implement the C-SSDLiteM2 on the CPU and GPU platforms,

which are also presented in Table VI. However, we observe

that the processing speed of C-SSDLiteM2 is even slower

than the original SSDLiteM2 in CPU and GPU platforms. A

potential reason may be the support of 8 bits integer arithmetic

is not well optimized on CPU and GPU devices. Finally, the

area cost of the final design based on Zynq ZC706 is shown

in Table VI.

TABLE V: Performance comparison of the final FPGA design

versus CPU and GPU.

CPU GPU Our Work

Platform Intel Xeon TITAN X Zynq
E5-2680 v2 Pascal ZC706

No. of cores 10 3584 −

Compiler GCC CUDA 8.0 Vivado
4.8.5 cudnn 7.05 2016.2

Flags −Ofast − −
Frequency 2.8GHz 1.53GHz 100MHz

Technology 22nm 16nm 28nm

Power (W) 115 168 9.9

Model SSDLiteM2 C-
SSDLiteM2 SSDLiteM2 C-

SSDLiteM2 C-SSDLiteM2

Precision 32bit partially 32bit partially partially
float quantized float quantized quantized

Processing Time
per Frame (ms) 54.6 83.6 28.6 97.8 15.43

Frame per
Second (fps) 18.3 11.9 34.9 10.2 64.8

Energy per
Frame (J) 6.27 9.61 4.8 16.43 0.15

TABLE VI: Area cost of the final hardware on Zynq ZC706.

LUTs Registers DSP48s BRAMs

Available 218600 437200 900 545

Utilization 148484 191899 728 311

Percentage Used 67.9% 43.8% 80.8% 57%

V. CONCLUSION AND FUTURE WORK

This work proposes a novel design that accelerates the

compressed SSDLiteM2 on FPGA for object detection. The

FPGA-based design is optimized by the fused bottleneck

residual block (BRB), processing element (PE) sharing and

fused batch normalization (BN). To compress the SSDLiteM2,
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several compression techniques including partial quantization

and load-balanced channel pruning are proposed, which not

only aim at model compression, but also enhance the efficiency

of the proposed hardware. Our FPGA-based object detection

accelerator on a Xilinx ZC706 device can achieve nearly

65 frames per second for 224 × 224 × 3 images with 20.3

mean average precision on the COCO dataset. Further work

includes exploring SSDLiteM2 for various applications, study-

ing optimizations automated design merging [27] and custom

precision arithmetic [28]–[30], extending the architecture to

support deconvolution [31], automating its optimization for

specific FPGA devices, and improving design portability with

overlay such as QuickDough [32].
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