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Abstract—Generative adversarial networks (GANs) are a class
of artificial intelligence algorithms used in unsupervised machine
learning, implemented by a system of two neural networks:
a generative network (generator) and a discriminative network
(discriminator). These two networks compete with each other to
perform better at their respective tasks. The generator is typically
a deconvolutional neural network and the discriminator is a
convolutional neural network (CNN). Deconvolution performs a
fundamentally new type of mathematical operation which differs
from convolution. While the FPGA-based CNN accelerators
have been widely studied in prior work, the acceleration of
deconvolutional networks on FPGA is rarely explored. This pa-
per proposes a novel parametrized deconvolutional architecture
based on an FPGA-friendly method, in contrast to the trans-
posed convolution implementation in CPUs and GPUs. Hardware
design templates which map this architecture to FPGAs are
provided with configurable deconvolutional layer parameters.
Furthermore, a memory-efficient architecture with a new tiling
method is proposed to accelerate the generator of GANs, by
storing all intermediate data in on-chip memories to significantly
reduce off-chip data transfers. The performance of the proposed
accelerator is evaluated using a variety of GANs on a Xilinx
Zynq 706 board, which shows 2.3x higher speed and 8.2x off-
chip memory access reduction than an optimized Vanilla FPGA
design. Compared to the respective implementations on CPUs
and GPUs, the achieved improvements are in the range of 30x-
92x in speed over an Intel 8-core i7-950 CPU, and 8x-108x in
terms of Performance-per-Watt over an NVIDIA Titan X GPU.

I. INTRODUCTION

Generative adversarial networks (GANs) [1] have recently

received an increasing amount of attention and produced

promising results on performing human tasks, especially in

image generation [2], [3] and video generation [4], [5]. With

the capability of learning the underlying distribution of data,

these networks are so powerful that they can produce visually

impressive new data that resemble the real world data.

A typical GAN consists of two competing neural network

models, i.e., the generative model (generator) and the dis-
criminative model (discriminator). The generator is often to
be a deconvolutional neural network [2] and it aims to produce

synthetic samples from the same distribution that the training
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Fig. 1. The framework of generative adversarial networks (GANs).

data follow. Meanwhile, the discriminator, which is normally a

convolutional neural network, aims to distinguish whether the

sample produced by the generator is synthetic or original. The

framework of GANs is shown in Figure 1. The generator takes

noise as input and tries to fool the discriminator by creating

samples as if they come from the real distribution of data.

The discriminator receives samples from both the generator

and the training data, and uses traditional supervised learning

techniques such as CNNs to classify the images as real or fake.

The corresponding results can then be back propagated to the

generator in order to change its parameters to perform better.

As training goes on, the discriminator performs better and

better at dividing real and fake samples, so the generator has

to produce more realistic samples to deceive the discriminator.

This competition improves both networks and finally leads to

a generator which can produce indistinguishable samples from

the real data. After training, the discriminator can be discarded

and the generator can be used for different applications.

Despite its popularity in the community of deep learning,

hardware accelerators of the generator or deconvolution net-

works have rarely been explored while FPGA-based CNN

accelerators were extensively studied previously. The gener-

ator depends on a new type of operator, i.e., deconvolution

(DeConv), which performs a fundamentally new type of

mathematical operation compared with convolution (Conv).

Although DeConv can be implemented as a convolution opera-

tor (which is the case in CPU and GPU platforms), this method

needs to insert a large number of zeros in its input data. As

such, it is inherently inefficient for the FPGA because of the

additional unproductive arithmetic operations, and performing

multiply-add operations on the inserted zeros results in much

less efficient computations [6]. An FPGA-efficient DeConv

algorithm is proposed in [7] to avoid inserting zeros. This

33

2018 International Conference on Field-Programmable Technology (FPT)

978-1-7281-0214-6/18/$31.00 ©2018 IEEE
DOI 10.1109/FPT.2018.00016



method, however, suffers from an overlapping sum problem

[7], [8]. More significantly, FPGA-based accelerators of both

CNNs and GANs often require frequent data transfers between

on-chip and off-chip memories due to the enormous size of

intermediate data and limited memory resource on FPGAs

[9], [10]. It imposes a large overhead on both latency and

energy consumption. This work focuses on the acceleration of

the generator of GANs for fast inference on FPGAs, since

the discriminator is discarded after training and only the

generator is performed during inference. We tackle both of

the challenges mentioned above in this work.

In this paper, a novel and fully customized architecture

is proposed to efficiently map the hardware-friendly DeConv

method on an FPGA. The overlapping sum problem is dealt

with in this architecture by introducing additional hardware

blocks with little overhead on resource and latency. Hardware

templates are designed to implement this architecture with

configurable parameters in Verilog HDL to support different

DeConv layers in GANs. A new tiling method together with

a memory-efficient architecture is then proposed to accelerate

the generator, where all intermediate data are stored in on-chip

memory thus eliminating most of the off-chip data transfers.

The main contributions of this work are:

1) A deeply customized and optimized DeConv architecture
with a crop module to support output shapes of arbitrary size,

while the overlapping sum is processed in hardware with small

resource overhead; Hardware design templates which can be

reconfigured on FPGA for a variety of GANs and applications;

2) A memory-efficient architecture based on the novel tiling
method to accelerate the generator for fast inference. The

proposed accelerator takes into account the unique data access

pattern of DeConv, and therefore achieves higher throughput

compared to a vanilla design on FPGA;

3) Evaluation of the hardware accelerators on state-of-
the-art GANs with a set of DeConv kernel configurations.

The proposed accelerator achieves significant performance

improvement compared to the vanilla accelerator and the

respective CPU and GPU implementations.

II. BACKGROUND AND RELATED WORK

A. The Generator and Deconvolution

The architecture of the generator is a sequence of deconvo-

lutional layers stacked together, as shown in Figure 2. DeConv

is the core and basic unit of the generator and it consumes

the majority of the computation. DeConv, also known as up-

sampling or transposed convolution, aims to extrapolate new

information from the input feature maps. This contrasts with

Conv that aims to interpolate the most relevant information

from the input. DeConv layer takes feature maps of size

NC ∗ H ∗ W and a group of coefficient matrix of shape

NF ∗NC ∗ k ∗ k as inputs, and produces output feature maps
of size NF ∗ HO ∗WO. The input and output size in height

and width dimensions are related as follows:

HO = s ∗ (H − 1) + k − 2 ∗ p (1)

WO = s ∗ (W − 1) + k − 2 ∗ p (2)

Noise

Deconv 1 Deconv 2 Deconv 3 Deconv 4

Generated Image

Deconvolutional Layers

4 x 4 x 1024 8 x 8 x 512 16 x 16 x 256
32 x 32 x 128

64 x 64 x 3

Fig. 2. A typical architecture of the generator of GANs, which is used in
DCGAN [2] for scene modelling.

where k, s and p denote the values of kernel size, stride and
padding for a given layer respectively. Please note that differ-

ent DeConv parameters (such as k = 4, s = 2 or k = 5, s = 2)
can be configured to implement the same generative network

shown in Figure 2 for different applications. This is exactly

the motivation for us to provide parametrized hardware design

templates to support different layer configurations.

Algorithm 1 describes the DeConv layer of the generator

in a high level which consists of the filter loop and channel

loop. For each filter of output, at first one channel of input with

shape of H ∗W (I[c]) is taken out to be deconvolved with
the kernel matrix (K[f, c]); then the results of each channel
of input maps are accumulated to produce one filter of output

(O[f ]). This process is repeated for NF times to produce all
filters of the output feature maps. The implementation of the

deconv operation on the two 2-D matrices shown in line 3 of
Algorithm 1 will be covered in detail in Section II-B.

Algorithm 1 Deconvolution Algorithm of the Generator.
Input: input feature map I of shape NC ∗H ∗W ;
Input: A coefficient matrix K of shape NF ∗NC ∗ k ∗ k;
Output: output feature map of shape NF ∗HO ∗WO;

1: for f = 1 to NF do
2: for c = 1 to NC do
3: O[f ] + = deconv(I[c],K[f, c])
4: end for
5: end for

B. 2-D Deconvolution Algorithms

Software-based: The CPU- and GPU-based 2-D DeConv
are implemented as transposed convolution, by adding appro-

priate amount of zero padding around and/or between the input

feature maps [11]. A deconvolution described by kernel size

k, stride s and padding p is performed as a convolution with
k′ = k, s′ = 1, p′ = k− p− 1 and adding s− 1 zero padding
between each input data.

Hardware-based: An FPGA-friendly method was proposed
in [7], [12] by multiplying the coefficient kernel with each

input pixel and summing the overlapping area in output maps.

This method is demonstrated in Figure 3. It proceeds through

four steps: (1) multiply a single input pixel by the 2-D

coefficient matrix; (2) sum the results of step (1) where the

outputs overlap; (3) repeat (1) and (2) for all input pixels; (4)
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Fig. 3. An illustration of the hardware-based 2-D DeConv method. Raw input
size is 3x3 and output size is 6x6, with DeConv configuration: k = 3, s = 2,
p = 1. The black boxes indicate the overlapped rows and columns.

remove the elements from output feature maps in the border of

size p. The last step which crops the output feature maps is also
needed by the software-based method and it can be different

for different deep learning frameworks such as Tensorflow [13]

or Caffe [14].

Comparison: Please note that these two methods produce
identical results for the same input. However, when targeting

FPGA, the key disadvantages of the software-based method

are:

• The zero-padding operation is inherently inefficient when
implemented in an FPGA, and it involves a non-uniform

data access pattern when DeConv window slides over the

zero-inserted input;

• Performing multiply-accumulate on the inserted zeros
causes computational inefficiency due to multiplications

with zero.

The second method, by contrast, is more FPGA friendly

by avoiding zeros insertion and it thus improves the com-

putational efficiency. Besides, it is more extensible and can

adapt to different layer configurations. Therefore, we propose

an optimized DeConv architecture based on this method in

this work. In contrast to Conv which needs padding its

input, DeConv requires a crop step for output to produce the

required output shapes. The main challenge of the hardware

implementation of DeConv lies in dealing with the overlapping

sum problem in the outputs.

C. Related Work

Previous FPGA-based CNN accelerators aim to optimize

the convolution from computation reduction such as using

fast Fourier transform (FFT) [15] and winograd algorithm

[16], to data quanization [17] and hardware level optimizations

[18] such as memory hierarchy. However, some of these

optimizations such as FFT method are only suitable for Conv,

and cannot be directly applied to DeConv and GANs.

Recent FPGA-based accelerators for DeConv networks are

presented in [6]–[8]. Yazdanbakhsh et al. [6] proposed an end-
to-end FPGA accelerator for GANs that combined MIMD

and SIMD models while separating data retrieval and data

processing units at the finest granularity. Chang et al. [8]

proposed a design methodology for FPGA-based CNN ac-

celerator for image super-resolution algorithm, a combination

of multiple Conv layers and a single DeConv layer with

efficient parallelization. However, both designs in [6], [8] are

based on the software-based method and thus computationally

inefficient compared to the hardware-based method in this

work as we mentioned earlier. Zhang et al. [7] proposed an
accelerator using Vivado HLS tool based on the second method

which is the same as our work. They proposed a reverse

looping method that determines which inputs are needed to

get the desired output, in order to process the overlapping

sum problem. However, with their method, the positions of

input pixels should be calculated through the formulas for each

loop iteration, and loop dimensions are increased as large as

the output image, which imposed overhead on communication

with the host processor and increased system latency thereby

precluding real-time applications [8].

In terms of the data load and transfer problem which is

often the de facto bottleneck for FPGA-based acceleration
of very deep CNNs, loop tiling is performed to split the

original workload into smaller ones for hardware execution.

The tiling method (also named as blocking) is to divide the

input feature maps into several parts so that they can be

stored in on-chip buffers for data reuse and thus suited for

memory-limited FPGA devices. Previous researches mainly

focused on optimizing the tiling factors in the design space

exploration process [19], but the system’s performance still

suffers from the data transfer overheads among memories.

Aydonat et al. [20] proposed an OpenCL-based accelerator
for CNNs by caching all intermediate feature maps on-chip

in stream-buffers. However, their methodology requires very

large on-chip memory capacity. Li et al. [21] studied efficient
tiling method for convolution but its accuracy is sacrificed due

to replacing the boundary pixels of tiles with zero values to

remove the data dependencies in adjacent tiles.

However, none of the above efforts that target FPGAs have

considered to reduce the memory accesses produced by the

generative networks. To the best of the authors’ knowledge,

this is the first work that proposes hardware architecture

of GANs’ generator with memory-efficient tiling method,

in order to address the memory-bound problem to provide

effective FPGA-based acceleration.

III. PROPOSED DECONVOLUTIONAL ARCHITECTURE

This section presents the optimized architecture for the

hardware-based DeConv algorithm. A crop module is designed

to support removing the border of any size in the output blocks.

To automate the hardware generation process, hardware tem-

plates are provided with configurable DeConv parameters and

adjustable parallelism to accommodate a range of networks

and devices with constrained resources.

A. Parametrized DeConv Architecture

The proposed DeConv architecture is shown in Figure 4.

The input data are stored in on-chip memory for data reuse

between filter processing as shown in the filter loop in line 1
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Fig. 4. The proposed DeConv architecture with configured parameters to
supports different layers of GANs.

of Algorithm 1. For s < k, there are k − s columns or/and
rows overlapped between the output blocks for the adjacent

input pixels. Therefore, a register array with size k ∗ (k−s) is
instantiated to buffer these overlapped data for summation. In

each cycle, one data is read from the memory and sent to k
multipliers where the data is multiplied by one column of the

coefficient matrix. The results are then buffered in one row of

the k ∗ (k− s) registers and shifted every cycle. To deal with
the column overlap, the results of the multipliers are added

by the data in the last column of the registers before they are

fed into the partial result buffer or output buffer. To deal with

the row overlap, the outputs of the first k − s adders are also
added to the partial results before they are accumulated and

stored in the output buffer.

Compared to the Conv architecture, the difference is that

beside the multiply-accumulate (MAC) operators in the kernel,

the register array is introduced between the multipliers and

adders to sum the column overlaps, and partial result buffers

are inserted between the adders and the accumulators to sum

the row overlaps. We ensure the correctness of this hardware

module using a control logic that places the required data at the

right clock cycles. The proposed architecture can support dif-

ferent parameters of DeConv layer, i.e., (k, s, p) and therefore
can be reused for a variety of GANs. It is further optimized

for parallel processing by instantiating multiple kernels and

storing multiple data in one memory address.

B. Crop Module

The crop function in DeConv is necessary for generating the

right shape of output by removing the unwanted data in the

border of results from multiply-accumulator. We implement

the crop module in hardware directly taking the output from

the DeConv kernel as input. The design of this module is

shown in Figure 5. Two counters: line counter and row

counter, are used to obtain the position of the pixels in the

output shape and then the data is determined to be valid or

disabled (cropped) to the next module or memories. By taking

two parameters (x and y shown in Figure 5) which can be
configured at runtime as inputs, it is capable of removing the

border of any size in the output blocks, in order to support

different deep learning frameworks. When p = 0, the crop
module is bypassed and the entire output results from DeConv

kernel are passed to the next stage.

FIFOdata

write
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>x

>y

&

1

0 &

data_valid

M
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Line 
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Row 
counterDeConv
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M
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Fig. 5. The block diagram of the crop module to produce output shape of
arbitrary size for different deep learning frameworks.

C. Hardware Design Template

A hardware template is a generic implementation with

configurable parameters and described in a hardware descrip-

tion language (HDL). To improve the design productivity

and efficiency, we implement the DeConv architecture as

a hardware template design using Verilog HDL, which can

be generalised and deployed onto multiple devices. In or-

der to accelerate different GANs, the above architecture is

customized to support different DeConv layers with multiple

(k, s, p) configurations. The design template with supported
parameters covers three cases of processing: 1) when k = s,
there are no overlapping sum computations; 2) when s < k, the
design sums the overlapping regions between output blocks;

3) when p = 0, the crop module is bypassed. As such,
without extra hardware design work, our template design can

be used for a variety of generators in GANs for different

applications. In Section V, we evaluate the template designed

at three configurations: (k, s, p) = (2, 2, 0), (4, 2, 1), (5, 2, 2)
which cover all the cases to be considered. In addition,

the DeConv kernels are optimized for parallel processing to

improve resource utilization and performance. The degree of

parallelism is also one of the configurable parameters to satisfy

the resource constraints of large or small scale chips.

IV. MEMORY-EFFICIENT GENERATOR ACCELERATOR

In this section, we propose a new tiling method to accelerate

the generator of GANs so as to reduce off-chip memory

accesses for FPGA-based accelerators. A vanilla design is also

proposed as a baseline for comparison.

A. Proposed Tiling Method

Existing FPGAs are memory limited and the capacity of on-

chip memory is not large enough to store all the coefficients

and intermediate data in large-scale networks during inference.

As a consequence, FPGA-based accelerators resort to external

DRAMs to store these data. However, the massive amount of

off-chip memory accesses are costly in terms of energy and

latency [22], [23], and input data cache must be implemented

by means of on-chip buffers for data reuse.

This problem is often addressed with tiling or blocking,
which divides the input maps of each layer into multiple blocks

that fit into the on-chip buffers. Loop tiling is performed in

the height and width dimensions of input maps rather than

the channel dimension. That is to say, the original inputs of

shape NC ∗ H ∗ W are divided into small blocks of shape
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NC∗TH∗TW , where TH < H and TW < W . An illustration of
the standard tiling method for two successive layers is shown

in Figure 6(a). The input map A is firstly divided into 9 blocks
and each block is processed sequentially to produce the output

map B. Then for the second layer, the input B is divided into
4 blocks due to the reduced channel value compared to A.
For each layer, the tile or block size 1 is re-selected to avoid

very large loop dimensions due to relatively small tile size

for layers with large NC . This blocking method is required
by convolution, since the second convolutional layer’s result

relies on the output data of the adjacent tiles. For example,

C1 not only depends on B1 but also partial data of B2, B3
and B4. These data dependencies require the implementation
resorting to off-chip memory to buffer the intermediate data.

This method can also be used to implement DeConv networks

in hardware. Its advantage is that it can fully utilize the on-chip

buffers by adjusting tile size for different layers. However, the

intermediate data has to be stored in off-chip memories and

thus increasing the extra DRAM access latency.

Nevertheless, there is no data dependency in the input

maps between successive DeConv layers. For this reason, we

propose a memory-efficient tiling approach for DeConv layers

that aims to take the advantages of multi-layer fusion and

to buffer the intermediate data without resorting to off-chip

memory. The proposed method is shown in Figure 6(b). Based

on the memory resource of the target device and the maximum

number of NC in the generator, the largest tile size is first
determined. Then the number of blocks are fixed for each

layer and each input block is processed until the final layer

to obtain the corresponding output block. As such, the entire

network can be seen as divided into independent sub-networks

which are processed sequentially. Compared to the traditional

method, it has the cost of larger on-chip memory since both

the input and output data need to be buffered. The memory

utilization can be relatively low for some layers with small

1In this paper, the tile size refers to the height and width dimensions, i.e.,
TH ∗ TW but excludes the channel dimension.

Input Buffer

CPU

Control Unit DMA

DDR 
Memory

DeConv

FPGA

HOST

Input, intermediate data Output image

Fig. 7. The block diagram of the vanilla generator accelerator.

NC , as the tile size is fixed between layers. Nevertheless, it
only requires data transfers of input data and output image, and

all intermediate data are processed on-chip. As a consequence,

it reduces most of the off-chip memory accesses.

B. Vanilla Generator Accelerator

We propose the vanilla FPGA-based accelerator of the gen-

erator based on the conventional tiling method as the baseline.

The overall system is shown in Figure 7. It is composed of

several major components, which are the computation unit

(DeConv), on-chip buffers, external memory and on-/off-chip

interconnect (DMA). Deconv is the basic computation unit of

the generator and its architecture and implementation details

have been described in Section III. All data for processing are

stored in external memory. Due to the limitation of the on-chip

memory size, data are first cached in on-chip buffers before

being fed to the computation unit. For each layer, the input

feature maps are first read from DDR by block and stored

in on-chip buffers; then after processed through DeConv unit,

the corresponding block of the output feature maps is sent

out to the DDR memory; for the successive layer execution,

the whole input maps are divided to new block size based on

the on-chip buffer size and NC . The control of the hardware
execution and the configurations of each layer are performed

in the host CPU.

C. Memory-Efficient Generator Accelerator

The architecture of the proposed memory-efficient acceler-

ator is shown in Figure 8, which is based on a single run of

the network in on-chip. The overall architecture is similar to

the baseline, but two on-chip buffers (let’s say A and B) are
utilized to store the input and output maps of each layer. The

feature maps of all the layers are divided into a fixed number

of blocks based on the maximum channel of the network to

fit into the on-chip memories on the target FPGA. One input

block is first cached on chip and processed until the final block

of output image is produced and transferred to DDR memory.

This process is repeated for all blocks to obtain the final output

image. A detailed data flow of two successive layers is as

follows: for the first layer, one block of input feature maps

are cached in buffer A and processed through DeConv, while
the results are cached in buffer B; To run the second layer, the
data in buffer B performs as input and are processed through
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TABLE I
A SUMMARY OF THE EVALUATED GENERATORS OF GANS

Name Year Application Input Shape Output Shape MAX NC # DeConv

DCGAN [2] 2016 Generate indoor scenes 4*4*1024 64*64*3 1024 4

C-GAN [5], [24] 2018 Generate photo-realistic images 4*4*256 256*256*3 256 6

UP-GAN [25] 2017 Generate Chairs, Tables and Cars 8*8*256 128*128*3 256 4

DN-GAN [25] 2017 Generate Chairs, Tables and Cars 8*8*128 128*128*1 128 4

Input/Output
Buffer A

CPU

DMAControl Unit

DDR 
Memory

DeConv

FPGA

HOST

Input/Output
Buffer B

Layer Count

Input Output image

Fig. 8. The block diagram of the proposed generator accelerator.

DeConv. Correspondingly, the result of the second layer are

cached in buffer A. This process works like ping-pong until
one input block is finished to the last layer, then the second

input block is continued. The direction of the data flow is

controlled by a layer counter.

Compared to the baseline, the proposed architecture is at

the expense of memory resource on FPGA by doubling the

data buffers. The benefit comes from the fact that it doesn’t

require the DDR memory to buffer the intermediate data any

more, and off-chip transfers are only needed for the input data,

network parameters and output images. Therefore, it is much

more memory-efficient and energy-efficient. Data parallelism

concerning the DeConv kernel is further explored to fully

utilize the resources for both accelerators.

V. EVALUATION AND EXPERIMENTS

We evaluate the performance of the two accelerators for

the generator of several state-of-the-art GANs with different

configurations using an FPGA device (Xilinx XC7Z045), with

comparison to the respective implementations on an Intel i7-

950 CPU and NVIDIA Titan X GPU.

A. Benchmarks

A variety of GANs proposed in recent literature for different

applications are used as case studies. Table I summarizes the

evaluated generators of the GAN models. All of these gen-

erator models are configured with three DeConv kernels, i.e.,

(k, s, p) = (2,2,0), (4,2,1) and (5,2,2), by utilizing the provided
hardware templates. These kernels can be used for any specific

GAN model to provide trade-off between the accuracy and

processing speed to meet different user’s requirement on their

respective tasks or datasets. Overall, these GAN models can be

used for various applications including high-resolution image

generation [2], audio to video mapping [5] and 3D object

generation [25].

B. Experiment Setup

We implement the two accelerators on a Xilinx Zynq ZC706

board which consists of a Xilinx XC7Z045 FPGA chip, dual

ARM Cortex-A9 Processor and 1 GB DDR3 memory. Both

accelerators are designed using 16-bit fixed-point precision

and developed using Verilog HDL. The whole system is

implemented with Vivado Design Suite 2016.2 which performs

synthesis and implementation. All designs run on a single 150

MHz clock frequency. The DDR3 memory in our design has

a datapath width of 64 bits and it operates at the same clock

frequency (150 MHz) as the FPGA engine. All results are post

place and route except if it is stated otherwise.

For comparison, the respective software implementations

run on CPUs and GPUs use the deep learning software

framework Tensorflow [13] on CentOS 7.2 operating system.

The CPU platform is Intel Core i7-950 CPU@3.07GHz (8

cores). The GPU platform is Nvidia TITAN X (Pascal) (3840

CUDA cores with 12GB GDDR5 384-bit memory).

C. Resource Utilization

Table II gives the resource utilization (LUTs, FFs, etc.)

of a single DeConv kernel (without parallelism) for each

configuration in the target device. The number of DSPs is

linear to the square of kernel size, since only multipliers are

implemented in DSPs and the adders are implemented using

LUTs to save DSPs. The last two kernels use more LUTs and

FFs since they need additional logic to process the overlapping

sum which is not required by the first configuration.

TABLE II
RESOURCE UTILIZATION OF A SINGLE DECONV KERNEL UNDER THE

THREE EVALUATED CONFIGURATIONS.

Configuration
(k, s, p)

LUTs FFs DSPs

(2,2,0) 1444 1570 4
(4,2,1) 3779 2246 16
(5,2,2) 5080 2471 25

For both accelerators, the DeConv kernels are instantiated

multiple times to take advantage of parallel processing, in

order to fully utilize the resources. The resource usage of

the two accelerators with each configuration is shown in

Figure 9. The computational resources such as LUTs, FFs
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Fig. 9. The resource utilization of the two accelerators on the target FPGA
(XC7Z045), where B LUTs and P LUTs represent the LUTs utilization of
the baseline and proposed accelerator respectively.

and DSPs are mainly spent on the DeConv kernel module.

Since both accelerators have the DeConv module with the

same parallelism under each configuration, they have the same

DSP usage. However, the memory-efficient accelerator has

a slightly increased LUTs and FFs usage compared to the

baseline due to the additional control logic for the data-

flow between two data buffers and DeConv kernel. Both

accelerators have more than 80% of BRAM utilization due

to the limited memory size on the target FPGA chip.

D. Speedup and Energy Efficiency

We first evaluate the off-chip memory access reduction

and speedup for inference of the memory-efficient accelerator

compared to the baseline for the evaluated generators of GANs

in Table I under each configuration. The results are shown

in Figure 10. In average, it achieves 6.2x of off-chip data

transfer reduction across the benchmark GANs, and up to

8.2x reduction for DCGAN model. Since the total size of

the intermediate data is independent of the kernel size and

thus they are the same among the three configurations, the

achieved improvements of each model are the same across

all configurations. The reduction will be more significant for

large-scale networks with deep layers and large channels as

they need more data transfers by the baseline accelerator.

In terms of the processing speed, the proposed accelerator

provides up to 2.3x speedup compared to the baseline. The

speedup is less notable for large DeConv kernel size such

as k = 5 compared to that of k = 2. This is because
the degree of parallelism is limited on the target device for

large DeConv kernel size, due to the limited computation and

memory resources. Therefore, for networks such as DCGAN

and/or when utilizing large kernel size, the computation time

is dominant and communication time is a minor part. In such

situation, the baseline can provide comparable performance to

the proposed one. Nevertheless, the processing speed of the

memory-efficient accelerator outperforms the baseline in all

configurations of the evaluated GAN models.

Finally, we compare the speedup of our accelerator against

the respective CPU and GPU implementations. The results are
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Fig. 10. The speedup with the proposed accelerator over the baseline. The
green line indicates the total off-chip data transfer reductions across the
benchmark GANs.
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Fig. 11. The speedup of the proposed accelerator compared to the respective
CPU (up) and GPU (down) implementations.

shown in Figure 11. The speedup is in the range of 30x-92x

and 58x in average compared to the designs on an Intel 8-

core i7-950 CPU. Compared to the respective GPU design,

the speedup is in the range of 0.8x-12x and 3.6x in average.

For DCGAN and UP-GAN models with k = 5, our accelerator
is a bit slower (around 0.8x) than the GPU. Nevertheless, in

all other cases, the proposed accelerator outperforms the GPU

design. From the results in Figure 11, we observe that the

FPGA-based accelerators provide higher speedups over GPUs

for small kernels (such as k = 2) and small networks (such
as DN-GAN). This happens because the Titan GPU cannot

achieve full thread utilization, while the FPGA is able to utilize

a high percentage of its resources even for small networks.

Figure 12 shows the energy efficiency improvement in terms

of Performance-per-Watt of the proposed accelerator compared

to the respective CPU and GPU implementations. The power

consumption of each device is measured using a wall plug

power meter during the execution of the application. Compared

to the respective designs on CPUs and GPUs, the achieved

improvements are more than 400x over the CPU, and in the

range of 8.3x-108x over the NVIDIA Titan X GPU. The

results confirm that our accelerator yields much lower power

consumption and significant energy efficiency compared to
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Fig. 12. The energy efficiency in terms of Performance-per-Watt of the
proposed accelerator compared to the respective CPU (up) and GPU (down)
implementations.

GPUs. As such, it is more promising for embedded and mobile

applications.

E. Discussion
In summary, the proposed accelerator achieves better per-

formance compared to the vanilla design, by storing all the

intermediate data in on-chip buffers at the cost of memory

resource. It also provides significant speedups compared to the

CPU design and energy-efficiency improvement over GPUs.

Based on the results we obtained for the evaluated GAN

models, we provide some directions on the design choices for

accelerating the generator of GANs on FPGAs:
1) For non-deep networks which have a small number of

layers and consist of layers with large channels and filters

(such as DCGAN), they are often computation bound. When

accelerating these networks on FPGA, the vanilla accelerator

provides comparable performance to the memory-efficient one.

Therefore, the vanilla design is preferred as it has lower

memory overhead and is more suited for memory-limited

devices when targeting these networks;
2) The proposed memory-efficient accelerator is preferred

for deep or wide networks. In particular, when small DeConv
kernel is used or large-scale FPGA chip is targeted, high de-

gree of parallelism can be achieved within the accelerator and

the communication time becomes the bottleneck. In this case,

the memory-efficient accelerator provides notable performance

improvement compared to the vanilla design.

VI. CONCLUSION

This paper focuses on the acceleration of the genera-

tors of GANs for fast inference on FPGAs. We propose a

parametrized and deeply optimized hardware architecture for

deconvolutional layers, and provide hardware templates with

configurable parameters to support a variety of GAN models

in order to improve designer productivity. To efficiently map

the generator on memory-limited FPGAs, we introduce a novel

tiling method. The proposed method comes with a memory-

efficient architecture that eliminates the requirement of off-

chip memory to buffer the intermediate data and thus reduces

off-chip data transfers largely. Experimental results show that

our memory-efficient accelerator achieves notable speedups

over the vanilla accelerator. Compared to the respective CPU

and GPU designs, the proposed accelerator provides significant

energy efficiency improvement. Future work includes targeting

the proposed accelerator for various applications, automat-

ing their development and evaluating their implementations

against various technologies including embedded GPUs.
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