
Reconfigurable Hardware Generation
for Tensor Flow Models of CNN Algorithms
on a Heterogeneous Acceleration Platform

Jiajun Gao1, Yongxin Zhu1,2(&), Meikang Qiu3, Kuen Hung Tsoi4,
Xinyu Niu4, Wayne Luk5, Ruizhe Zhao5, Zhiqiang Que5, Wei Mao6,
Can Feng6, Xiaowen Zha6, Guobao Deng6, Jiayi Chen6, and Tao Liu6

1 School of Microelectronics, Shanghai Jiao Tong University, Shanghai, China
zhuyongxin@sari.ac.cn

2 Shanghai Advanced Research Institute, Chinese Academy of Sciences,
Shanghai, China

3 Harrisburg University of Science and Technology,
Harrisburg 17101, PA, USA

4 Shenzhen Corerain Technologies Co. Ltd., Shenzhen, China
5 Imperial College London, London, UK

6 The Commercial Aircraft Corporation of China, Shanghai, China

Abstract. Convolutional Neural Networks (CNNs) have been used to improve
the state-of-art in many fields such as object detection, image classification and
segmentation. With their high computation and storage complexity, CNNs are
good candidates for hardware acceleration with FPGA (Field Programmable
Gate Array) technology. However, much FPGA design experience is needed to
develop such hardware acceleration. This paper proposes a novel tool for design
automation of FPGA-based CNN accelerator to reduce the development effort.
Based on the Rainman hardware architecture and parameterized FPGA modules
from Corerain Technology, we introduce a design tool to allow application
developers to implement their specified CNN models into FPGA. Our tool
supports model files generated by TensorFlow and produces the required control
flow and data layout to simplify the procedure of mapping diverse CNN models
into FPGA technology. A real-time face-detection design based on the SSD
algorithm is adopted to evaluate the proposed approach. This design, using 16-
bit quantization, can support up to 15 frames per second for 256*256*3 images,
with power consumption of only 4.6 W.

Keywords: FPGA � Framework � CNNs � Hardware acceleration

1 Introduction

In the era of big data, massive data is collected in people’s everyday life. How to
extract high semantic information and conduct efficient data analysis from these raw
data is always a hot topic recently. Convolutional Neural Networks (CNNs) [1] based
algorithms have achieved great performance and high accuracy in many applications
related to computer vision, such as object detection [2] image segmentation [3] and

© Springer Nature Switzerland AG 2018
M. Qiu (Ed.): SmartCom 2018, LNCS 11344, pp. 87–96, 2018.
https://doi.org/10.1007/978-3-030-05755-8_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05755-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05755-8_9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05755-8_9&domain=pdf
https://doi.org/10.1007/978-3-030-05755-8_9

speech recognition [4]. State-of-the-art CNN-based object detection algorithms like
SSD [5], YOLO [6], etc. have been applied to realistic applications and can reach near-
human accuracy.

However, the CNN algorithms are very computationally intensive which becomes a
major issue in their application to real time tasks on embedded devices. Due to their
highly-parallel and bit-oriented architecture, FPGAs have been widely adopted to
accelerate these algorithms. According to survey [7], FPGA-based accelerators achieve
higher performance in terms of execution time compared with CPUs, consume much
less power than GPUs, and tend to be more flexible and configurable than ASICs.

FPGAs can provide high performance for specified network topology at a time
through off-line reconfiguration. To implement one CNN model with FPGA, designers
should understand the network topology and the flow control with FPGA modules. It is
not friendly to the developers who focus on high level machine learning models or
neural network architectures. Moreover, off-line reconfiguration also takes considerable
efforts and add to complexity of application development [8]. To make FPGAs
accessible to a broad community of CNN application developers who are versed in
CNN algorithms but lack hardware design experience, we provide a design tool,
CNNBUILDER, to help deal with the challenge. Our main contribution in this paper is
a reconfigurable hardware generation tool for CNN algorithms targeting a heteroge-
neous acceleration platform and we make our contributions as follows:

(1) We propose a design tool, CNNBUILDER, which adopts a unified structure to
cover different CNN models and save them locally as model description files. This
enables our approach to support a high-level programming interface adopted by
TensorFlow.

(2) To enable automation of flow control and FPGA re-configuration, we adopt a
directed graph structure to describe a design in a model description file.

(3) A memory management facility has been developed to automate memory address
allocation to adaptively generate data layout to make the most effective use of
limited on-chip resources.

This paper aims to make energy-efficient FPGA accelerator easy to use, and to
extend the versatility and improve designer productivity in project development. The
rest of the paper is organized as follows: Sect. 2 introduces related work on mapping
high-level neural network models to FPGAs. Section 3 introduces relevant CNNs and
FPGA accelerator architectures. Section 4 presents our proposed framework design,
including unified data structure design, memory allocator design and flow control
design. Section 5 provides evaluation result with SSD model to show the improvement
in performance and productivity.

2 Related Work

There exists some similar work in this area on mapping high-level neural network
models to FPGAs. Sharma et al. [9] devised a design tool DNNWEAVER that auto-
matically generates a synthesizable accelerator for given (DNN, FPGA) pair from a

88 J. Gao et al.

high-level specification in Caffe. Wang et al. proposed a framework DeepBurning [10]
to simplify the procedure of mapping diverse neural networks into FPGAs.

Compared with the above two frameworks, our approach exposes a high-level
programming interface based on TensorFlow model files instead of Caffe in [9] and
[10]. Secondly, similar to DNNWEAVER [9] and DeepBurning [10], our design tool
covers multiple neural network models and maps them into FPGA. However, our
approach follows a streaming architecture and does not involve instructions, while
DNNWEAVER adopts an instruction set architecture. Lastly, DNNWEAVER [9] and
DeepBurning [10] only support FPGA implementations, while our approach supports
both CPU and FPGA technologies. The device type can be configured through script
files, which allows easy realization of heterogeneous acceleration.

3 Background

3.1 CNN

A typical CNN model always contains an input and an output layer, as well as multiple
hidden layers. The most frequently used layers in CNN are: convolutional layer,
pooling layer and activation layer. The CNN algorithm we implement with
CNNBUILDER in this paper is SSD [5], and its structure is shown in Fig. 1. SSD’s
architecture builds on the VGG-16 architecture but discards the fully connected layers.
VGG-16 is used to extract feature maps and after that SSD applies 3*3 convolution
filters for each cell to make predictions.

3.2 FPGA Accelerator Architecture

The architecture of our proposed FPGA accelerator, shown in Fig. 2, takes several
components into consideration, including computation units design (mainly convolu-
tion computation unit), on-chip memory, external memory and interaction between the
on-chip data and the off-chip data. Convolution is the most important unit for CNN-
based algorithm which convolves the input feature maps with the convolutional kernel
and produces the output feature map. Because of the on-chip memory resource con-
straint, it is hard to fit the entire CNN into FPGA board. So, all data for processing are
stored in external memory first, and then cached in on-chip buffers layer by layer before

Fig. 1. SSD architecture

Reconfigurable Hardware Generation for Tensor Flow Models of CNN Algorithms 89

they are processed by computation units. In addition, there is also an AXILite Bus
which is responsible for the control logic between FPGA Program logic (PL) and the
processor (PS). The convolution computation unit is mainly based on design in [2].

4 Design Tool Description

4.1 Overview

Figure 3 depicts the overall architecture of our approach. We define three kind of files:

(1) Model description file. A unified structure, which will be described in the next
section, is adopted to support different CNN models. This file contains the
essential information of the computation dataflow graph of a specific CNN model.

(2) Coefficient data file. The weight parameters of each layer will be captured as
binary files with layer name. These files will be loaded into an FPGA afterwards.

(3) Data layout configuration file. This file is used to describe the size of input
feature map and output feature map. With this file, our tool can pre-allocate
memory space automatically.

As depicted in Fig. 3, CNNBUILDER automatically transforms the programmer-
provided CNN model files generated by a TensorFlow platform to model description
file, coefficient files and data layout configuration files. Then, with these files, our
design tool maps CNN models into an FPGA. In this way, developers can start with
TensorFlow and training models. Our tool can then be used to produce an FPGA
implementation from TensorFlow descriptions.

Fig. 2. FPGA accelerator architecture

90 J. Gao et al.

4.2 Unified Data Structure Design

Our approach provides a unified data structure to abstract away the details of FPGA
accelerator design. We use Google’s protocol buffer to design the structure and abstract
different kinds of CNN models into this structure. We define DFGNode to capture
different layers in CNN models and it contains the following information:

• Name is the name of the node, which is always the same as the corresponding layer
in the model. It is the unique ID to identify the node.

• Input represents the input node or input nodes of current node.
• Operation represents the operation to be executed in this node. The operations

CNNBUILDER supports now are: convolution, max-pooling, fully-connected.
• Device Type can be set to be either FPGA or CPU, which decides whether to use

FPGA accelerator for current node.
• Data Type can be set as FLOAT or FIXED32 or FIXED16, which corresponds to

the device type. If the device type is set as CPU, data type will be FLOAT. If the
device type is set as FPGA, data type should be FIXED32 or FIXED16.

• Operation parameter contains necessary information of operation parameters and
every node contains one operation parameter.

We have defined different operations to support different CNN models. Details of
these operations are shown as follows:

Input for input node: There is only one node with input operation in specified CNN
model. It contains dimension information of the input feature map.

Conv2D for convolution: device type can be FPGA or CPU to operate on different
platforms. As mentioned in FPGA accelerator architecture, we have designed adding
bias, activation, pooling (max-pooling2*2 in this paper), and batch normalization in
convolution module and set some signals to activate corresponding functions. Acti-
vation in table can be ReLU, Tanh, Sigmoid, and the default value for activation param
means no activation function is used.

MaxPool2D for max-pooling: This node is designed for CPU platform. We sub-
sample each 2*2 window of input feature map to a single maximum pooled output. The
height and width of the window are fixed to 2.

FullyConnected for fully connected: Fully connected layer is implemented as
matrix multiplication between weight matrix with dimensions (rows * columns) and
input matrix with dimensions.

Fig. 3. Framework of CNNBUILDER

Reconfigurable Hardware Generation for Tensor Flow Models of CNN Algorithms 91

There are some operations with no parameters, such as Drop-out. We use the
structure to store the information of the model. Figure 4 shows a convolution node and
a max-pooling node in model description script.

4.3 Memory Allocator Design

This part will elaborate the design of memory management interface to allocate
memory automatically. Besides model description file, we also extract coefficient data
files and data layout configuration files. Coefficient data files contain the parameters of
each layer. And the data layout configuration files include the size of input feature map
and output feature map, as well as the shape of the coefficient tensors.

The memory allocator is based on a Best-fit with Coalescing algorithm with basic
functions including memory allocation, release, and fragment management. The idea
behind this algorithm is to divide the memory into a series of memory blocks, each of
which is managed by a block data structure. From the block structure, information such
as the base address of the memory block, the usage state of the memory block, the
block size, the pointer to the previous and the next block can be obtained. The entire
memory can be represented by a block structure with a double-linked list as shown in
Fig. 5.

Fig. 4. Conv2D and MaxPool2D in model description file

Fig. 5. Framework of memory allocator

92 J. Gao et al.

The information of the shapes of the input feature map, the weight data and the
intermediate feature map is included in the data layout configuration files. Based on
layout configuration files, a memory allocator will fetch and store data sets to pre-
allocated addresses. It will allocate memory of the same size depicted in the config-
uration files for each layer. After that, input feature map and weight data will be loaded
to specified address in the tool at first and then be loaded into on-chip buffers when
related operation are performed. Our approach makes use of pairs of layer name and
base address to save information for flow control, which will be covered in the next
section.

4.4 Automatic Parser and Runtime Control Design

For each model description file generated with unified data structure, we design a
parser to map the specified CNN model into FPGA. For these DFGNodes except input
node, we can use directed edges with input node as source and current node as target to
construct a Data Flow Graph (DFG). DFG is a class that contains essential infor-
mation of the computation dataflow graph of a specific CNN model. With DFG, we
realize runtime control as shown in Fig. 6.

Firstly, memory allocator will conduct environment preparation. Then, our design
tool searches for the input node in DFG and find the starting address of the corre-
sponding data by the name of current node. After that, it loads these data into an on-
chip buffer through DMA. It will detect the status register of DMA until the end of the

Fig. 6. Runtime control flowchart

Reconfigurable Hardware Generation for Tensor Flow Models of CNN Algorithms 93

DMA transfer. It fetches the information of the node and sets related signals by writing
registers including starting signal of computation. The intermediate output feature map
will be dumped to specified address through DMA and saved as input of next node. For
any unprocessed DFGNode, our tool repeats the process until all nodes in DFG are
traversed. After that, it returns pairs of the name of output node and the starting address
of the corresponding data.

5 Evaluation

5.1 Implementation Details

The FPGA based accelerator is provided by Shenzhen Corerain Technology. It is built
on a Xilinx Zynq ZC706 board which consists of a Xilinx XC7Z045 FPGA, a dual
ARM Cortex-A9 Processor and 1 GB DDR3 memory. The FPGA XC7Z045 is pro-
grammed with the convolutional neural network accelerator mentioned in this paper.
The ARM processor is used to initialize the accelerator and run our design tool. All
designs run on a single 150 MHz clock frequency and the DDR3 memory has a data-
path width of 64 bits. The ARM core reorganizes the input feature map and coefficient
data, and then stores them to specified address generated by memory allocator
described in the previous section. The FPGA accelerator accesses the DRAM memory
through AXI switches.

Our design tool aims to map trained CNN model into FPGA and focuses on the
inference instead of training models. Since it differs in FPGA platforms and the design
of FPGA accelerator compared with prior work, it is hard to compare the proposed
design tool with them directly. Here is the evaluation method in this paper: an expe-
rienced engineer knows deep learning and FPGA accelerator design well from Corerain
Technology write the code to drive FPGA manually and the time used will be com-
pared with the corresponding design in our approach. Meanwhile, the accuracy and
power consumption will also be evaluated.

Application. In this paper, our design tool maps trained SSD5 model into FPGA. In
order to be better implemented on the FPGA, the SSD5 model is adjusted with input
size of 256*256*3.

In experiments, we map the well-trained SSD model onto FPGA with our design
tool and records the time it takes to complete a round of network forward-propagation
with the input set. We are going to compare the performance of using and not using
CNNBUILDER. Function correctness is based on FDDB (Face Detection Data Set and
Benchmark) [11] to evaluate the accuracy.

5.2 Experimental Results

Performance and Power, we use FDDB [11] as input and record the run time it takes
to process the feature maps with and without our tool targeting FPGA design. Our tool
can support CPU as well and we also record the time taken on CPU platform. The
results are shown in Table 1. MC represents manually-coded driver for the application

94 J. Gao et al.

and it is a reference for our design tool in our experiments, which is denoted as AG
(Automatic Generation).
Compared with manually coded implementation, automatic generated drivers from our
approach contains more software operations which leads to extra time consumption. As
shown in Table 1, the average convolution time using our tool is 150 ms, which is very
close to 142 ms with manually coded implementation. In manually coded implemen-
tation, the lines of code to be handwritten is nearly a thousand and for each CNN
model, these implementations need to be modified manually.

FPGA’s power consumption is obtained from the board using a power meter. With
no program running, the power consumption of the FPGA board is 3.6 w. When
implementing the SSD algorithm, the power consumption of designs developed with
our tool is 4.6 w, only 1.07 times of that with manually-coded driver.

Accuracy. In this experiment, FDDB [11] is used to evaluate the functional correct-
ness and the accuracy of position coordinates and size of face detection frame with our
design tool. The result of manually coded implementation and our design tool is the
same and the true positive rate reaches up to 82.76% in the case of a false positive
number of 50. The result of golden-reference application implemented with SSD model
is 82.92% with the same false positive number. Considering accuracy loss due to the
fixed-point operation, the precision loss is bearable. Besides, we compare the results of
intermedia layers to find that the results generated by manually coded implementation
and our design tool are identical.

6 Conclusion

This paper presents a design tool, CNNBUILDER, to simplify the design flow of CNN-
based accelerators for machine learning and extend the versatility of the CNN-based
accelerators. Our approach makes it easy for software developers to compose CNN
models and implement their applications. Our approach adopts a unified data structure
to store the information of different CNN models and then map them into FPGA. With
our design tool, application developers without FPGA design experience can easily

Table 1. Our design tool with FPGA and CPU implementations

Device FPGA CPU
Platform ZC706 Intel Core i5
Compiler Vivado GCC (4 cores)
Clock 150 MHz 2.30 GHz
Precision 32-bit fixed-point 32-bit floating-point
MC Conv. time 142 ms 366 ms
AG Conv. time by CNNBUILDER 150 ms 366 ms
MC power 4.3 W -
AG power by CNNBUILDER 4.6 W -

Reconfigurable Hardware Generation for Tensor Flow Models of CNN Algorithms 95

implement their design on the energy-efficient FPGA platform containing both FPGA
and CPU. Meanwhile, we show that the accuracy of designs from our approach is
guaranteed with only minor overhead in run time and power consumption. Our design
tool improves the productivity of CNN based accelerator implementation by signifi-
cantly reducing the time required to modify designs manually for new models.

Acknowledgment. This work is partially supported by National Key Research & Development
Program of China (2017YFA0206104), Shanghai Municipal Science and Technology Com-
mission and Commercial Aircraft Corporation of China, Ltd. (COMAC) (175111105000),
Shanghai Municipal Science and Technology Commission (18511111302, 18511103502), Key
Foreign Cooperation Projects of Bureau of International Co-operation Chinese Academy of
Sciences (184131KYSB20160018) and Shenzhen Corerain Technologies Co. Ltd.

References

1. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)
2. Zhao, R., Niu, X., Wu, Y., Luk, W., Liu, Q.: Optimizing CNN-based object detection

algorithms on embedded FPGA platforms. In: Wong, S., Beck, A.C., Bertels, K., Carro, L.
(eds.) ARC 2017. LNCS, vol. 10216, pp. 255–267. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-56258-2_22

3. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image
segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, Alejandro F. (eds.)
MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-24574-4_28

4. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmen-
tation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
- CVPR 2014, pp. 3431–3440 (2015)

5. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N.,
Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-46448-0_2

6. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556v6 (2014)

7. Abdelouahab, K., et al.: Accelerating CNN inference on FPGAs: a survey (2018)
8. Lacey, G., Taylor, G.W., Areibi, S.: Deep learning on FPGAs: past, present, and future.

arXiv e-print 2 (2016)
9. Sharma, H., et al.: From high-level deep neural models to FPGAs. In: 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, Taiwan,
pp. 1–12 (2016)

10. Wang, Y., et al.: DeepBurning: automatic generation of FPGA-based learning accelerators
for the neural network family. In: Design Automation Conference, pp. 1–16. IEEE (2016)

11. FDDB: A Benchmark for Face Detection in Unconstrained Settings. Technical Report UM-
CS-2010-009, Deptartment of Computer Science, University of Massachusetts, Amherst
(2010)

96 J. Gao et al.

http://dx.doi.org/10.1007/978-3-319-56258-2_22
http://dx.doi.org/10.1007/978-3-319-56258-2_22
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-24574-4_28
http://dx.doi.org/10.1007/978-3-319-46448-0_2
http://arxiv.org/abs/1409.1556v6

	Reconfigurable Hardware Generation for Tensor Flow Models of CNN Algorithms on a Heterogeneous Acceleration Platform
	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 CNN
	3.2 FPGA Accelerator Architecture

	4 Design Tool Description
	4.1 Overview
	4.2 Unified Data Structure Design
	4.3 Memory Allocator Design
	4.4 Automatic Parser and Runtime Control Design

	5 Evaluation
	5.1 Implementation Details
	5.2 Experimental Results

	6 Conclusion
	Acknowledgment
	References

