
Customisable Control Policy Learning for Robotics
Ce Guo∗, Wayne Luk∗, Stanley Loh Qing Shui∗, Alexander Warren† and Joshua Levine†

∗Imperial College London, United Kingdom
Email: {c.guo, w.luk, qing.loh17}@imperial.ac.uk

†Intel Corporation, United Kingdom
Email: {alexander.warren, joshua.levine}@intel.com

Abstract—Deep reinforcement learning algorithms integrate
deep neural networks with traditional reinforcement learning
methodologies. These techniques have been developed and used
for various applications to produce exciting results in many
fields, including robotics. However, physical robots require a
large amount of training episodes which can damage the robot
if directed by immature policies. Training using simulations can
serve as a viable alternative before a robot is deployed in the
field. This study addresses a computational challenge of deep
reinforcement learning by developing a hardware architecture
for the Deep Deterministic Policy Gradient (DDPG) algorithm.
Additionally, we identify the customisation opportunities for a
full-stack development framework with reinforcement learning
to discover control policies for robotic arms. Finally, we transfer
policies encoded in fixed-point numbers from our FPGA DDPG
implementation to a robotic arm to evaluate the feasibility of our
learning platform.

I. INTRODUCTION

The conventional development procedure of robots involves
programming a set of action policies. The explicit specifica-
tion of policies is adopted when the working environment
is uncomplicated and the robot has a limited number of
simple sensors. However, working environments of modern
robots are increasingly complicated and unpredictable. Robots
are equipped with various modern sensors, such as lidars
and cameras, to cope with complicated environments while
ensuring safety. Programming these robots becomes tedious
and error-prone. One way to improve the programming quality
and productivity is to train robots by rewarding expected
actions rather than hard-coding policies. A critical technology
for training robots is reinforcement learning.

A direct way to train robots with reinforcement learning
is to run learning algorithms on the physical robotic system.
However, training on physical robots may not be practical
because a robot can cause physical damage to humans, the
environment and itself during training. The risk of physical
damage is especially high at the early stages of training when
the policy set is immature. Apart from safety issues, the
training procedure is often too slow. In particular, reinforce-
ment learning algorithms require a large amount of robot-
environment interaction before finding a reasonable policy set.
Moreover, the environment may not be able to give an instant
reward for the robot after each action, because the value of
the reward depends on sensor data or human attendance.

Training robots in a simulated environment is an alternative
that reduces cost and improves efficiency. Simulated robots
cause no physical damages. Also, the interactions can be fast

as they occur digitally. However, the policy learning procedure
still consumes a large amount of time even with simulation
because the training process of function approximators in-
volves time-consuming function optimisation. In this study, we
employ Field Programmable Gate Arrays (FPGAs) to accel-
erate reinforcement learning for robotic arms. FPGAs provide
substantial speedups to various deep learning algorithms which
benefit reinforcement learning.

To the best of our knowledge, policies learned on FPGAs
in existing work [1] can only process discrete action spaces.
Moreover, due to the limited complexity of policies, the system
in [1] can only drive the robotic arm in a two-dimensional
space. This paper is the first to transfer policies learned
on an FPGA to a physical robotic arm to move objects
with continuous actions in a three-dimensional space. Key
contributions of this paper include the following:

1) A customisable hardware architecture for the deep de-
terministic policy gradient (DDPG) method [2]. (Sec-
tion III)

2) A policy learning platform for the DDPG architecture
including a 3D-printed robotic arm and its simulator in
the virtual space. (Section IV)

3) An empirical study on the efficiency and quality of
policy learning on CPUs and FPGAs. (Section V)

II. BACKGROUND

This section reviews the deep deterministic policy gradient
(DDPG) method and existing hardware accelerators for rein-
forcement learning.

A. Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient (DDPG) method
[2] is rooted in Deep-Q-Networks (DQNs). Algorithms derived
from DQNs [3], [4] show increasing success in reinforcement
learning problems with high-dimensional state and action
spaces. The original deep-Q-networks solve problems with dis-
crete action spaces. However, practical applications often have
continuous action spaces. A natural solution is to discretise the
action space. Unfortunately, the discretised action space scales
exponentially with the number of degrees of freedom in the
continuous problem.

Actor-critic methods circumvent the problems of continu-
ous action spaces by introducing a function approximator to
choose the action for any set of states. Combined with another
function approximator to determine the value of a state-action



pair, the actor-critic method is able to work efficiently in both
continuous state and action spaces. Back-propagation is carried
out first on the critic network. Once the update is complete,
back-propagation is carried out again on the critic network,
but this time the back-propagation goes back through the
action inputs to the actor network, triggering a gradient update.
Policy gradient methods are frequently used with stochastic
policies where policies are represented using a probability
distribution. Actions are sampled and used to estimate the
return of the transition. Gradient ascent is then applied to
maximise the total reward. The use of deterministic policies
and policy gradients is a recent development in reinforcement
learning thought to not have a model-free form. However, it
was recently found that a such a form did exist, which enables
continuous state/action space problems to be learnt without
the need for complex environmental information. The DDPG
method is one of the pioneering model-free methods for such
a class of problems.

Key steps of the DDPG algorithm include the following: (1)
Action selection. Given the current state, the action selection
step performs a forward propagation using the actor network
to find a proper action to execute. (2) Action execution. Given
the action from the previous step and the current state, the
environment changes to a new state. (3) Experience sampling.
This step consists of storing state, action, reward and transition
information from the current step as well as generating random
numbers in order to select the set of experiences to be used
as training samples. (4) Back-propagation. The gradients for
the actor and critic networks are computed. (5) Network
update. A function optimiser updates the evaluation network
using the gradients. The update rule contains many expensive
multiplication and division operations along with exponential
operators.

B. Reinforcement learning on FPGAs

Robotic systems based on reinforcement learning usually
have latency requirements or power constraints. For instance,
the control signals of motors need to be generated in real
time responding to sensor data, while autonomous wheeled
robots are usually battery-powered for high mobility. ASICs
and FPGAs are well known for their low latency and low
power consumption. However, hardware-based reinforcement
learning implementations have not been a popular topic in
research. As such, there is little support from third-party
software, libraries and simulators. Whilst hardware-based in-
ference engines for neural networks are relatively common,
their application to reinforcement learning problems are few.
Papers on hardware-based reinforcement learning include an
accelerator for deep Q-Learning in 2017 [5] and two papers
on trust region policy optimisation in 2017 [6] and 2018 [1].

The dearth of research provides a significant opportunity
to investigate the effectiveness of combining reinforcement
learning and hardware acceleration. This allows for specialist
robotic systems to be built without commercial robots which
can constrain the learning problem. Large cost savings are also
achieved as traditional off-the-shelf robotic systems are often

highly expensive due to the associated production and design
time value.

III. HARDWARE ARCHITECTURE FOR DDPG

We describe a customisable hardware architecture to speed
up the DDPG method in this section. The architecture on the
FPGA platform collaborates with a CPU host to learn policies
efficiently. Specifically, the CPU streams network parameters
and the state transitions to the FPGA. The FPGA computes the
gradients of the network parameters and sends the gradients
back to the CPU. An optimisation algorithm on the CPU
platform then updates the network parameters using these
gradients.

The neural networks in DDPG are constructed using a
cascade of alternating layers. The structures for the forward
pass for the action network and the target network in the back-
propagation step are identical, except that the evaluation net-
work parameters are used for the actor gradient computation
while the target network parameters are used for the critic
gradient computation. This allows the same set of hardware
resources to support both the forward pass and the backward
pass.

Through the use of parameter and input controllers, param-
eters and environment experiences are selectively streamed
out of the on-chip memory to the processing elements (PEs)
of each layer. Section III-A and III-B respectively describe
the PEs for the odd layer and the even layer. Section III-C
discusses the CPU-FPGA interaction including streaming and
padding.

A. Odd layer

In order to form a continuous pipeline for the DDPG, we
extended the multiplication method described in [6] to support
matrix-matrix multiplications. At each clock cycle, an element
from each block of the weight matrix is multiplied by a subset
of elements from the input matrix.

Fig. 1 illustrates the process for the first valid clock cycle
of the matrix multiplication. Each element in a blue row
of the weight matrix is multiplied by the element at the
corresponding position in a blue column of the input. The
products of each set are summed, forming a multiply-and-add
(MADD) tree. The example matrix multiplication facility in
Fig. 1 has 4× 4 = 16 MADD trees.

For the second clock cycle, the process is repeated with the
second element of the blue rows and columns. Through the use
of a multiplexer, the new output is added to the accumulated
value to receive the cumulative sum. Once the output of the
last element of each row is added to the accumulator, the dot
product between each selected row with all selected columns
in the input is computed. The bias is added and the activation
function of the layer is evaluated. The activation gradients
are also computed in the activation unit and stored in on-chip
memory for the backward pass later. A signal to the next layer
indicates whether the outputs of the odd layer is valid to avoid
calculations with incomplete outputs.



Fig. 1. Matrix multiplication in odd layers

As the orange columns of the input matrix arriving from
the previous layer may not be ready, the dot products for
the odd layer are computed in column-major order of the
weight matrix. The odd layer’s matrix multiplication algorithm
operates on the premise that the entire input vector, i.e. a blue
column, is available. The second set of dot products for our
example are computed using the orange rows of the weight
matrix and the blue columns of the input matrix. Once all
rows of the weight matrix have been used for the dot products,
the input controller begins to select elements from the orange
columns to compute the next set of outputs. A running count
of valid inputs identifies the availability of the selected input.
If the selected input is not available, the matrix multiplication
stalls to guarantee the correctness of the product.

B. Even layer

Inputs to an even layer have a different pattern from an odd
layer. A full dot product is computed in the previous layer
at regular intervals assuming no stalling. Therefore, the even
layer receives a set of inputs at regular intervals. Reusing the
matrix-multiplication processing element for the odd layer is
inefficient as the PE would be stalled due to the periodic trickle
of inputs.

To have the even layers perform useful computations in such
a scenario, the weight selector traverses through row-major
order first before a different column is selected. This allows

multiple computations to use the same input before the next
input is required to continue with the dot product.

Partial results of each row are stored in an array of ac-
cumulators. Once the next element of the same row is used,
the partial results are added to the output of the MADD tree.
Similarly to the odd layer, the output from the even layer is
considered valid if the last element of each row is selected.
The key difference between an even layer and an odd layer is
that the output from the even layer releases a burst of valid
outputs instead of a consistent stream.

C. CPU-FPGA interaction

One of the caveats of the DDPG algorithm is that the input
to the critic network requires the output of the actor network. It
is not trivial to coordinate the flow of intrinsic state inputs from
the CPU and derived action outputs from the actor network to
arrive at the same processing element of the first critic layer.
We differentiate between the two sets of weights to be applied
to the two types of inputs and split them into two separate
layers. Computations run independently in these two distinct
layers and their outputs are given to a fusion layer which
synchronises the data from the two input streams. No bias
term is added and a linear activation function is used in order
to produce correct results. The inputs are first stored in the on-
chip memory and read when there are sufficient inputs in both
sets of memory. The bias for the critic layer is added to the
fusion layer and the activation function is applied thereafter.
The activation gradient is also stored in the fusion layer.

To parallelise the computations across the PEs of each layer,
the original matrices from the CPU must first be transformed
so that the order of inputs into the MADD trees is correct as
illustrated in Fig. 2. We reorder the inputs on the CPU platform
as it is resource-intensive and difficult to implement on the
FPGA platform. There is a slight computational overhead for
the transformation, but the overhead is minuscule.

To minimise the initial rollout period of the DDPG pipeline,
the order of the weights for the even layers is based on the
transpose of the weight matrix. Instead of waiting for all
weights to stream into their respective layers, this optimisation
allows all layers to immediately begin forward propagation as
long as any weight/input pairs are ready.

Stream padding is necessary for matrix dimensions that do
not match the parallelism factor. This is easily and quickly
achieved on the CPU using memory copy instructions. Addi-
tionally, stream padding is used as a buffer against loop latency
issues found in the even layer’s accumulator banks. In order
to compute the correct results from the even layer, the output
block dimension has to be padded to be at least the same value
as the loop latency.

The output of the loss layer is fed back into the last layer of
the critic network. As a result, the type of matrix multiplication
PE has to be changed. Odd layers will require an even layer
PE and vice versa. Once any feedback input enters a layer,
the Hadamard product between the input and the activation
gradient (stored during the forward propagation step) results
in the gradient of the bias term which is passed back to the



(a) Odd layers

(b) Even layers

Fig. 2. Weight transformation

CPU to perform bias updates. It is simultaneously stored in
the on-chip memory to be used to compute the gradients.

In order to reduce the amount of DSPs used for computing
the weight gradients and feedback gradients, a pair of 2-input
multiplexers are used to select the inputs based on the type of
gradient being computed in that clock cycle. The node delta
is computed first in order to complete the rollout of inputs
to all layers in order to maximise throughput. Once the last
set of node delta is computed, the selector switches and the
matrix-multiplication PE begins computing the gradient which
is subsequently transferred back to the CPU host.

IV. POLICY LEARNING PLATFORM

This section presents an efficient policy learning platform
for robotic arms using the proposed hardware architecture. The
platform is different from the one in [1] regarding kinematics
and the action space. This section provides a detailed descrip-
tion of the platform as a reference of the problem complexity
and an example of mechanic settings. The platform includes (i)
a 3D-printed robotic arm which executes the policies learned
on the DDPG architecture, (ii) a simulator of the arm which
produces data for the DDPG architecture.

A. 3D-printed physical robot

Amongst many academic circles, off-the-shelf robotic arms
are generally used for research in various fields of engineering
and science. They are designed to be general purpose and
contain reasonably powerful motors and feedback sensors to
minimise the efforts on mechanics. Naturally, such flexibility
comes at a significant cost in terms of price and customisabil-
ity. In this study we combine the robot and task specifications
to design a feasible robotic robotic arm configuration.

We use a 4-DoF (Degrees of Freedom) robotic arm. The
robot consists of four rigid links connected with three joints.
The first link counting from the ground stands upright on a
rotating base while the other three links are free to move in
the space. A robotic arm with a large number of degrees of
freedom is inherently more flexible but becomes more difficult
to control for three reasons:

1) Regarding mechanical engineering, a large number of
links necessitates a larger number of motors and actu-
ators to control the links. Motors are generally bulky
and heavy. Motors close to the base would have to be
much stronger in order to lift each subsequent link-
motor extension. With too many link-motor extensions,
the required motor can be costly.

2) Regarding computer simulation, a high DoF requires a
long simulation time as the state-space of the problem
scales exponentially with the DoFs.

3) Regarding reinforcement learning, a higher DoF results
in more complicated system dynamics. The reinforce-
ment learning method has to employ a more sophisti-
cated model, such as a deeper neural network, to capture
the interaction patterns.

We customise a parameterisable, open-source, and 3D-
printable robot [7] by Zortrax, a 3D printing company. The
design itself is inspired by the KUKA robotic arm which is
commonly used for industrial applications. The customised
robotic arm utilises stepper motors for actuation, which is
different from the servo-driven KUKA robot. The step angle
of the stepper motors is 1.8 degrees, which enables the arm
to move in precise steps and to make minute rotations. Such
minor movements are not possible using servos at the same
price level, as sufficient current has to be channelled to the
servo to overcome the deadband. The robotic arm components
are printed using a 3D-printer.

Key customisations on mechanics include the following.
The link lengths are adjusted to fit our customised robot
specification. The pitches of the gears are adjusted to min-
imise backlash. Large parts are dissected into smaller sub-
components in order to fit into the build area of our 3D printer.
We use an electromagnet to act as the effector of the robot.
The electronics used are sized according to the new weight
distribution and energy requirements.

Fig. 3 shows the boundary positions of the robotic arm in
the experiments. Fig. 4 presents two photos of the 3D-printed
robotic arm.



Fig. 3. Boundary positions of experimental robotic arm

(a) Box not attached (b) Box attached

Fig. 4. 3D-printed robotic arm

B. Simulation

Simulation improves the learning efficiency by eliminating
physical interactions. In our learning platform, two pieces of
code are developed respectively to simulate the robot and its
environment.

The state space and action space are defined as follows.
The state space of the robotic arm environment contains
the distances of the links to the box. Each component of a
distance vector is represented as a real number. The goal states
represent the intended position the robotic arm is to bring the
box to. In addition to the distance vectors, the state space
also includes two Boolean inputs that indicate if the box is
picked up by the arm and if the box is sufficiently close to
the goal state. The action space consists of 5 outputs, 4 of
which represent the rotation rate of each motor. The sign of
the output represents the direction of rotation. The last output
represents the activation criterion of the electromagnet. Since
the electromagnet operates using digital logic, a threshold is
set on the robot controller to activate if the value is sufficiently
high. The action output and current state are processed by
an environment step function which rotates the linkages by a
step proportional to the action value. The reward observed and
the transition state are returned to the reinforcement learning
algorithm in order to store them in the experience buffer.

The simulator continuously monitors the state of the robotic
arm. In order to simulate picking up the box, the distance
between the position of the third link ~p3 = (x3, y3, z3) and
the top of the box ~p� = (x�, y�, z�) is checked every step. If
the distance is sufficiently small and the output value of the
action corresponding to the magnet is greater than 0, the top of
the box will be stuck to the robot’s effector in the simulation.
The box will only remain stuck if the magnet is activated for
any subsequent steps. If the condition is not met, the box will
begin free-falling until it reaches the ground.

V. EVALUATION

This section presents an empirical study to demonstrate the
potential of the proposed policy learning platform based on
the DDPG architecture. Section V-A presents the setup of
experiments. Section V-B and V-C respectively discuss the
efficiency of learning and the quality of policies.

A. Experiment Setup

We impose constraints on our platform as a collection of
inequalities. The more loosely bound these constraints are,
the more adaptable the robot has to be which will cause
steps further in the framework to be even more difficult. The
objective of the experiment is to move a box from a start
position to a goal position. A constraint in our experiment is
the scale of the problem. We impose the following constraints:
The mass of the box is no more than 120 grams. The side
length of the box is 80mm. The start position ~p◦ = (x◦, y◦, z◦)
satisfies:

200mm ≤x◦ < 400mm (1)
y◦ = 0mm (2)

200mm ≤z◦ < 400mm (3)

The goal position ~p• = (x•, y•, z•) satisfies:

200mm ≤x• < 400mm (4)
0mm ≤y• < 150mm (5)

200mm ≤z• < 400mm (6)

Reward functions have to be shaped specifically to guide
the policy optimisation process [8]. We design a composite
shaped-reward function [9] which returns an increasing reward
to the robotic arm. Each component is weighted differently
based on multiple trials of the simulation. The full task is
subdivided into several components. The reward function of
state S is:

R(S) = −
4∑

i=1

wiri(S) (7)



where

r1(S) = d(~p3, ~p�) (8)

r2(S) =
π

2
− arccos

√
(x2 − x3)2 + (y2 − y3)2

d(~p2, ~p3)
(9)

r3(S) =

{
0 if d(~p3, ~p�) < ε

max(amag, 0) otherwise
(10)

r4(S) = d(~p�, ~p•) (11)

where w1 . . . w4 are weight coefficients for the four reward
components; d(·, ·) is the Euclidean distance between a pair
of vectors; amag ∈ [−1, 1] is the control signal for the
electromagnet; ~p• is the goal position.

An interpretation of the four components in Eq. 8–11 is
as follows: r1(S) is the Euclidean distance between the end
effector and box; r2(S) uses the tip positions of the second
link and the end effector to find the angle with respect to
the ground plane; r3(S) discourages the robotic arm from
expending energy by switching on the electromagnet unless
it is attempting to pick the target object; r4(S) represents the
Euclidean distance between the box and the goal which also
serves as the termination condition.

In the experiments on the learning efficiency, all timings
are taken based on a NumPy implementation of the DDPG
using Python 3. The 8-thread software runs on a workstation
with an Intel Core i7-6700 CPU (14nm, 4 cores, 3.4 GHz). The
proposed hardware architecture is implemented on the Maxeler
MAX4 platform with an Intel Stratix-V FPGA (28nm, 200
MHz). The host computer for the FPGA uses an Intel Xeon
E5-2640 CPU (32nm, 6 cores, 2.5 GHz). We customise the
hardware proposed in Section III with respect to three DDPG
models as follows:

1) FPGA-based DDPG model. Each network has a single
hidden layer with 108 ReLu nodes. The output layer of
the actor networks consists of 5 TanH nodes while the
output layer of the critic network consists of a linear
node. The batch size of the inputs is 32. This set of
hyper-parameters are tuned and found to work well
for the environment while maintaining a relatively fast
learning speed.

2) FPGA-based DDPG model with expanded action space.
While designing the hardware implementation of the
DDPG, it is found that the output layers require a
minimum of 24 nodes in order for the correct results
to be received. This implies that, for environments with
relatively simple action spaces (< 24), the calculations
involving padded zeros do not affect the policy learnt
in any way. Thus, the timings of this hypothetical
model with an expanded action space is also taken as a
benchmark against our FPGA-DDPG implementation.

3) Deeper model. While training models using the standard
DDPG, it is found that increasing the number of layers
can lead to a significant increase in training time while
also increasing the susceptibility to overfitting in our
robotic arm environment. Moreover, we find that a

single layer of hidden nodes works best. However, more
complicated reinforcement learning problems tend to
require deeper neural networks in order to learn higher
order features. In order to accommodate this, we expand
the second model with an additional hidden layer with
108 nodes for each network.

On the FPGA platform, all multiplications are done using
32-bit fixed-point numbers with 8 integer bits and 24 fractional
bits. Fixed-point computations are much faster than floating-
point computations and therefore allow a higher pipelining
factor. It is possible to tune individual layers to have the op-
timal number of integer bits given the environment. However,
we use 8 integer bits as we assume that we do not know the
expected magnitudes of the parameters throughout the training
process.

A straightforward method to maximise speed is to compute
the critic gradients to replicate the same forward propagation
structure from the actor learning process and use a second
stream for the target parameters. However, this is practically
impossible given the limited resources of our FPGA platform.
As a compromise between speed and resources, we reuse the
resources for the forward propagation in the critic network.
Once the forward pass of the back-propagation algorithm for
the actor network is completed, the fast memory (FMEM)
implemented with BRAM begins streaming the parameters of
the target network to the layers. The matrix multiplication PEs
begin computing the target network outputs. For the backward
pass of the critic network, the loss layer streams the feedback
values to a separate network which also computes the actual
values for the temporal difference. This modification allows
two sets of actor-critic neural networks to be compressed into
a single design while only using approximately 1.5 times the
resources of a single set.

The resource usage of the models is shown in Table I and
II. Note for model 3, we only build the actor learning network
in order to have a higher chance of success in the fitting stage
of compilation. Due to resource limitations, we employ two
FPGAs, one each for the actor and critic learning process.
Since the learning processes are independent of each other,
we run both designs concurrently.

TABLE I
RESOURCE USAGE FOR MODEL 1 AND 2

Resource Utilisation Available Percentage
Logic utilisation 143569 262400 54.71%
- Primary FFs 304025 524800 57.93%
- Secondary FFs 14221 524800 2.71%
Multipliers (18x18) 3769 3926 96.00%
DSP blocks 1913 1963 97.45%
Block memory (M20k) 1913 2567 74.52%

B. Learning efficiency

Table III shows the efficiency of gradient computation
and transmission using the FPGA-based DDPG designs. Nor-
malised timings are based on the 200% lithography differences
between the Core i7-6700 CPU and the Stratix-V FPGA.



TABLE II
RESOURCE USAGE FOR MODEL 3

Resource Utilisation Available Percentage
Logic utilisation 129013 262400 49.17%
- Primary FFs 267999 524800 51.07%
- Secondary FFs 12124 524800 2.31%
Multipliers (18x18) 3749 3926 95.26%
DSP blocks 1896 1963 96.59%
Block memory (M20k) 1930 2567 75.19%

Although each episode takes less than one second to finish,
a complete training task may need to go through thousands
or millions of episodes depending on the complexity of the
system dynamics. The execution time column presents the
execution time for one episode of training. The speedup
columns record the speedup of the FPGA-DDPG designs
against the NumPy-based software on CPU. Theoretically, an
Infiniband connection can transmit data faster than a PCIe 2.0
x4 connection. However, the Linux driver of the Infiniband
connection in our system limits the speed.

TABLE III
COMPUTATION AND TRANSMISSION OF GRADIENTS

M Connection FPGA exe. time (ms) Speedup Norm. speedup
1 PCIe 0.250 2.57 5.14
2 PCIe 0.250 3.68 7.36
3 Infiniband 2.311 1.33 2.66

The results suggest that if we stream the gradients and
parameters back and forth between the CPU and FPGA, the
amount of acceleration is low due to the IO bottleneck. This
shows that it is highly beneficial to keep the entire training
process within the FPGA while minimising transmissions
between the CPU host and the FPGA. For larger models, a
group of FPGAs will have to be used which will result in
communication overhead between FPGAs. However, the band-
width between FPGAs is much larger compared to Infiniband.

We now compare the total amount of time used to complete
1300 training episodes each involving the computation of 300
gradients. This comparison covers a Python NumPy imple-
mentation and a C implementation of the simulator described
in IV-B that calls the FPGA kernel function. Note that timings
may vary as some episodes terminate early because they
achieve the goal state. An exact comparison is difficult as the
algorithms progress differently even with the same random
seed because the original DDPG uses floating-point computa-
tions while the FPGA version uses fixed-point computations.

TABLE IV
POLICY LEARNING WITH GRADIENT TRANSMISSION

Model NumPy (s) C+FPGA (s) Speedup Norm. speedup
1 361.2 88.6 4.07 8.14
2 401.2 88.6 4.53 9.06

Table IV shows the results on the full policy learning
procedure. Similar to the results on gradient computation, the
timing values are heavily inflated due to the high reliance

on the bandwidth between the CPU and FPGA. In order to
more accurately assess the speed improvement of the hardware
implementation, we implement a version of the algorithm
that streams only once from the CPU to the DRAM of the
acceleration card during initialisation. The gradients are stored
in the DRAM that can be extracted to the CPU via Infiniband.

Isolating the data transmission and computation allows us
to measure the speedup granted by the computation kernel.
Model 2 is used for this experiment. The results for gradient
computation are presented in Table V.

TABLE V
GRADIENT COMPUTATION WITHOUT TRANSMISSION

Model FPGA exe. time (ms) Speedup Norm. Speedup
1 0.0492 13.1 26.2
2 0.0492 18.7 37.3

As the IO bottleneck caused by the PCIe interface results in
significant stalling of the FPGA, we calculate the full poten-
tial of the proposed hardware architecture by estimating the
theoretical maximum acceleration, as shown in Table VI. The
table shows the acceleration if the entire DDPG including an
optimiser is fully implemented on the FPGA at 200 MHz. The
parameters of the neural network only needs to be streamed in
once. However, an optimiser is not implemented on the FPGA
in this study. Thus parameters had to be streamed back out in
order to perform the updates on the host CPU and subsequently
streamed back into the FPGA for the next iteration.

TABLE VI
THEORETICAL ACCELERATION FOR POLICY LEARNING

Model Cycles Time (ms) Speedup Norm. speedup
1 5450 0.028 23 47
2 5450 0.028 33 67
3 17000 0.085 35 71

The gradient computation takes up a significant portion of
the training process of the DDPG. This is further exacerbated
for larger networks. The second choice for acceleration would
be the network update algorithm which takes approximately
half of the time required for gradient computation. The other
steps do not scale significantly with the network size. However,
a pure FPGA implementation would significantly reduce any
IO bottleneck between the CPU and FPGA.

If the simulation kernel is too complex to effectively
implement on the FPGA, action and state vectors can be
streamed across the PCIe/Infiniband during training time as
a compromise. This paper focuses our efforts on the gradient
kernel, the most complex part of the DDPG. Since the update
kernel is not the focus of this project, the gradients are
streamed back to the CPU host to perform the updates using
software. This results in a significant IO bottleneck which
masks the true benefit of our hardware implementation.

C. Policy quality

We transfer the simulation policies produced by Model 1
in Section V-A to our custom robotic arm to evaluate their



quality. In order to assess the viability of the policy transfer
from the simulated environment to the real world, a series
of experiments are repeated on the real robot. Once training
on the simulation is complete, the actor network parameters
are saved locally. Parameters from different episodes of the
training are saved, starting from 400 episodes and every 200
episodes thereafter up to 1200.

Six tasks are evaluated in this experiment. The common start
position of Task A and B is (400, 0), and the goal positions are
(400, 150) and (200, 0). The start position for Task C and D is
(300, 0), and the goal positions are (400, 150) and (200, 150).
The start position for Task E and F is (200, 0), and the goal
positions are (400, 150) and (400, 0). Each task contains two
sub-tasks:

1) An ‘attach’ sub-task where the electromagnet attaches
the box. An ‘attach’ sub-task is considered completed
if the head of the electromagnet touches the box and
current flowing through the electromagnet is above zero.

2) A ‘put’ sub-task where the robotic arm moves the box
to the goal position. A ‘put’ sub-task is considered
completed if the robotic arm puts the box in a position
within 30mm of the goal position.

TABLE VII
NUMBER OF EPISODES TO ACHIEVE GOAL

TRPO [1] DDPG DDPG F-DDPG F-DDPG
Attach Attach Put Attach Put

A × 600 × 800 ×
B Yes 800 800* 800 1000*
C × 600 1200 600 600
D × 800 1200 600 1000
E × 600 1000 600 1000
F Yes 800 800* 600 1000*

* The robotic arm reaches the goal position without lifting the box

Table VII shows the results of policy learning with the
number of training episodes. Smaller numbers correspond
to faster convergence of policy search. The standard DDPG
method (DDPG), the FPGA-based DDPG method (F-DDPG),
and the TRPO in [1] are compared. A boldface number shows
a result to be significantly superior than those produced by the
other two methods for the same sub-task. As we are unable to
replicate the exact configuration in [1], we provide the most
optimistic estimation. In other words, we assume that the end
effector of the TRPO-based robotic arm can approach any
position on the straight line on which the centre of the robotic
arm projects. The TRPO-based robotic arm does not put the
object back on the ground. Therefore, we only show the results
for the ‘attach’ tasks for TRPO. Also, the number of episodes
to achieve the goal for TRPO is incomparable with DDPG.
Therefore, we only show whether TRPO is able to finish each
task.

The FPGA-based DDPG achieves comparable quality of
learning with the original DDPG method. Also, the learning
environments based on the FPGA-based DDPG and the orig-
inal DDPG can produce policies to finish task C, D and E
which the TRPO based robotic arm in [1] cannot finish. A
curious observation is that the FPGA-based DDPG is able to

reach the peak of its success rate more quickly compared to the
standard DDPG. This is probably because the loss in numeric
precision counteracts overfitting, which improves the quality
of exploration, and enhances the robustness of optimisation.

VI. CONCLUSIONS AND FUTURE WORK

This paper presents a reinforcement learning platform based
on a customised hardware architecture for the Deep Deter-
ministic Policy Gradient (DDPG) algorithm on FPGAs. The
platform includes a physical robotic arm and its simulator in
the virtual space. The FPGA based DDPG implementation
learns policies using the simulated robotic arm. Even with
an IO-bottleneck between the CPU host and FPGA, we are
still able to achieve substantial acceleration over a CPU host
without compromising policy quality. The policies encoded in
fixed-point numbers successfully controls the physical arm to
move objects in a three-dimensional space.

One direction of future work is to explore policy learning
strategies with data sampled from low-precision simulation.
Another direction is to investigate how the proposed learning
framework performs as the degrees of freedom increase.

VII. ACKNOWLEDGEMENTS

The support of the United Kingdom EPSRC (grant
numbers EP/L016796/1, EP/N031768/1, EP/P010040/1 and
EP/L00058X/1), Corerain, Maxeler and Intel is gratefully
acknowledged.

REFERENCES

[1] S. Shao, J. Tsai, M. Mysior, W. Luk, T. Chau, A. Warren, and B. Jeppesen,
“Towards hardware accelerated reinforcement learning for application-
specific robotic control,” in International Conference on Application-
specific Systems, Architectures and Processors, pp. 1–8, IEEE, 2018.

[2] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver,
and D. Wierstra, “Continuous control with deep reinforcement learning,”
arXiv preprint arXiv:1509.02971, 2015.

[3] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wier-
stra, and M. Riedmiller, “Playing Atari with deep reinforcement learning,”
arXiv preprint arXiv:1312.5602, 2013.

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al.,
“Human-level control through deep reinforcement learning,” Nature,
vol. 518, no. 7540, p. 529, 2015.

[5] J. Su, J. Liu, D. B. Thomas, and P. Y. Cheung, “Neural network based
reinforcement learning acceleration on FPGA platforms,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 4, pp. 68–73, 2017.

[6] S. Shao and W. Luk, “Customised pearlmutter propagation: A hardware
architecture for trust region policy optimisation,” in International Con-
ference on Field Programmable Logic and Applications, pp. 1–6, IEEE,
2017.

[7] Zortrax Inc, “Robotic arm assembly manual.” https://zortrax.com/
downloads/ROBOTIC MANUAL.pdf, 2019. [Online; accessed 2-Apr-
2019].

[8] A. Y. Ng, D. Harada, and S. Russell, “Policy invariance under reward
transformations: Theory and application to reward shaping,” in ICML,
vol. 99, pp. 278–287, 1999.

[9] I. Popov, N. Heess, T. Lillicrap, R. Hafner, G. Barth-Maron, M. Ve-
cerik, T. Lampe, Y. Tassa, T. Erez, and M. Riedmiller, “Data-efficient
deep reinforcement learning for dexterous manipulation,” arXiv preprint
arXiv:1704.03073, 2017.


