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Abstract—Three-dimensional convolutional neural networks
(3D CNNs) have demonstrated their outstanding classification
accuracy for human action recognition (HAR). However, the
large number of computations and parameters in 3D CNNs
limits their deployability in real-life applications. To address this
challenge, this paper adopts an algorithm-hardware co-design
method by proposing an efficient 3D CNN building unit called
3D-1 bottleneck residual block (3D-1 BRB) at the algorithm level,
and a corresponding FPGA-based hardware architecture called
F-E3D at hardware level. Based on 3D-1 BRB, a novel 3D CNN
model called E3DNet is developed, which achieves nearly 37
times reduction in model size and 5% improvement in accuracy
compared to standard 3D CNNs on the UCF101 dataset. Together
with several hardware optimizations, including 3D fused BRB,
online blocking and kernel reuse, the proposed F-E3D is nearly
13 times faster than a previous FPGA design for 3D CNNs, with
performance and accuracy comparable to other state-of-the-art
3D CNN models on GPU platforms while requiring only 7% of
their energy consumption.

I. INTRODUCTION

Over the past few years, human action recognition (HAR)
for autonomous driving and intelligent video surveillance
has become a popular research topic in computer vision
and pattern recognition. Among various algorithms proposed
for HAR, three-dimensional convolutional neural networks
(3D CNNs) have demonstrated their outstanding classification
accuracy [1], [2]. The success of 3D CNNs lies in the
spatio-temporal 3D convolutional layers which incorporate the
third-dimension information into the analysis. However, the
algorithmic and space complexity of 3D convolution imposes
a large overhead on the speed of 3D CNNs, which limits their
deployment on real-life applications [3].

Different hardware devices such as FPGAs, ASICs and
GPUs have been utilized to accelerate 3D CNNs. Among these
hardware platforms, FPGAs are gaining popularity because of
their better flexibility than ASICs and higher energy efficiency
than GPUs [4]-[7]. However, it is challenging to design
high-performance accelerators for 3D CNNs on FPGAs as
the limited on-chip resources often cannot meet the heavy
computational and memory demand [8]. Model compression

is one kind of algorithm-level optimizations for improving
the performance. Various compression techniques such as
quantization and 3D Winograd algorithm have been proposed
to reduce the algorithmic complexity of 3D CNNs [9], [10].
However, the limited compression rate still does not lead
to significant speedup on FPGA platforms. To effectively
compress 3D CNN models and improve their performance on
FPGAs, we address this problem from another perspective:
designing efficient 3D building units to replace the standard
3D convolutional layers in 3D CNNs.

Several efficient 2D CNN building units have been proposed
to replace the standard 2D convolutional layers [11], [12].
Among these 2D CNN building units, the bottleneck residual
block has demonstrated the best performance in both com-
pression and accuracy [13]. Adopting an algorithm-hardware
co-design method, this paper explores generalizing the bottle-
neck residual block to 3D CNNs at the algorithm level, and
devising an associate FPGA-based architecture to accelerate
the proposed 3D CNN building units at the hardware level.

However, there are several design challenges:

o The bottleneck residual block is originally designed for
2D computer vision tasks such as image classification and
segmentation. To enable the capability of 3D data analy-
sis, the bottleneck residual block needs to be extended
to three dimensions. However, such 3D extension has
different possibilities, and their accuracy is unexplored.

o The computation of the bottleneck residual block involves
a large amount of intermediate data, which imposes a
heavy overhead on memory usage. The situation may
become worse when it is extended to three dimensions
since 3D CNNs need to process more data than 2D CNNSs.

To address the above challenges, we systematically analyse
the different possibilities of 3D BRB, and propose the most
efficient building layer called 3D-1 bottleneck residual block
(3D-1 BRB) which has the capability of 3D data analysis.
Due to the use of 3D depth-wise and point-wise convolution
layers, 3D-1 BRB requires fewer number of computations



and parameters than thoes in the standard 3D convolutional
layer. Based on 3D-1 BRB, an efficient 3D CNN model called
E3DNet is developed, which achieves a high compression rate
compared with the state-of-the-art 3D CNN models while
maintaining the same level of accuracy. At the hardware
level, a novel FPGA-based architecture, F-E3D, is proposed to
accelerate E3DNet. Several innovative optimizations including
3D fused BRB, online blocking and kernel reuse are proposed
to address the design issues introduced by limited memory
and computational resources on FPGA platforms. The main
contributions of this work are the following:

o An efficient 3D building block called 3D-1 bottleneck
residual block (3D-1 BRB). Based on 3D-1 BRB, the
proposed 3D CNN model, E3DNet, requires far fewer
parameters than the state-of-the-art 3D CNN models
while achieving the same level of accuracy (Section III).

¢ A novel hardware architecture called F-E3D, which ac-
celerates different types of convolutional layers in 3D-
1 BRB. Together with several optimizations including
3D fused BRB, online blocking and kernel reuse, the
proposed FPGA-based accelerator can achieve real-time
performance with high accuracy for the HAR task. (Sec-
tion IV).

o Compared to the state-of-the-art 3D CNN models on
GPU platforms, the proposed FPGA-based accelerator
of E3DNet can achieve comparable performance and
accuracy for human action recognition with higher energy
efficiency (Section V).

II. BACKGROUND

This section introduces the basic operation of 3D convo-
lution. A brief description is then presented for depth-wise
convolution and 2D bottleneck residual block (2D BRB).
Table I summarizes the notation used in this paper.

TABLE I: Parameters used in 3D convolution and 2D BRB.

Parameter Description
H The height of input feature map
w The width of input feature map

K The spatial kernel size
Ki The temporal kernel size
N The number of channels
Ny The number of filters

N The length of frames
The kernel size of depth-wise convolution
t The expansion factor

A. 3D Convolution

To incorporate the information from different frames, 3D
convolution computes features in both spatial and temporal
dimensions. Figure 1 presents the basic operation of 3D
convolution where the temporal kernel size K; is 3. At the
beginning, different 2D convolutional kernels are applied to
different consecutive frames, which generates K; frames of

TABLE II: The input and output tensors within 2D BRB.

Input Shape Operation Output Shape

H x W x N. Expansion Convolution H X W X N, X t
H x W x N¢ xt Depth-wise Convolution H X W X N, X t
H x W x N, xt Projection Convolution H xW X Ny

intermediate data. Then these intermediate results are accu-
mulated together to produce one final output frame. Since the
output frame contains the information from different input
frames, 3D CNNs have the capability of integrating three
dimensional information into the analysis.
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Fig. 1: The operation of 3D convolution.

B. Depth-wise Convolution and Bottleneck Residual Block

Depth-wise convolution is an efficient 2D convolutional
layer in modern 2D CNNs. Figure 2 presents standard convolu-
tion versus depth-wise convolution. Compared to the standard
convolution, depth-wise convolution only applies one single
filter on each input feature map to generate output feature maps
without channel accumulation, which significantly decreases
the number of computations and parameters.

Input Output Input Output
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Channel — Channel

Channel S Channel —
3rd 3rd
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(a) Depth-wise Convolution (b) Standard 2D Convolution

Fig. 2: The depth-wise and standard convolutions.

Based on the depth-wise convolution, the structure of 2D
BRB is presented in Figure 3, where the expansion convolu-
tion and projection convolution are the standard convolutions
with the kernel size being 1 x 1 (point-wise convolution).
The batch normalization [14] (BN) layer is used after each
convolution layer in 2D BRB, while the rectified linear unit
with the threshold being 6 (ReLUO6) is applied only after the
expansion convolution and the depth-wise convolution. The
shortcut addition is only active when the stride of depth-wise
convolution is 1, which is utilized for residual learning [15].
Table II summarizes the input and output tensors of each
convolution in 2D BRB. The 2D BRB has an expansion factor
t, which is used to increase the internal dimension for better
accuracy.
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Fig. 3: The structure of 2D bottleneck residual block.

C. Related Work

The use of 3D convolution for extracting spatio-temporal
features from videos is first proposed by Ji et al. [16]. Based
on this work, C3D is then introduced by Tran et al. [17]
for human action recognition, which has been adopted as
a de facto standard for 3D CNNs. To demonstrate that 3D
convolution has a better performance than 2D convolution in
video understanding, Hara et al. [1] apply 3D convolution
to the ResNetl01 [15] backbone, and propose the state-of-
the-art 3D CNN model called ResNeXt-101. However, the
algorithmic complexity of 3D convolution imposes a large
overhead on these networks, which limits their deployment
for real-life applications [3]. Although Qiu et al. [2] propose
a new network architecture called Pseudo-3D Residual Net
(P3D ResNet) to decrease the number of computations and
parameters, it does not achieve significant improvement on
processing speed because of limited compression rate.

Various implementations have been proposed to acceler-
ate 3D CNNs for inference on FPGAs. Shen et al. [10]
developed an FPGA design to accelerate C3D based on a
uniform template, where the 3D Winograd algorithm is used
to decrease the arithmetic complexity of 3D convolution.
Despite the high performance with 430.7 Gops on VC709, the
accuracy of the 16-bit fixed-point accelerator is unexplored,
and its applicability to real-life situations is unclear. A novel
customizable architecture based on block floating-point (BFP)
arithmetic is proposed by Fan et al. [9], which significantly
reduces resource utilization on FPGA devices. However, it
still cannot compete with GPU implementations in terms of
processing speed.

III. E3DNET
A. 3D CNNs Building Block

Inspired by the 2D bottleneck residual block (2D BRB), a
similar three-layer bottleneck structure can be developed as a
building block of 3D CNNs. We first extend the second layer,
2D depth-wise convolution, to three dimensions. Figure 4
presents the basic operation of 3D depth-wise convolution
where N.=2 and K,=3. At the beginning, the input volume is
separated by the channel dimension, which generates V. sets
of data with size K; x H x W. Then different 2D depth-wise

convolutions (2D-DW Convs) are applied to N, groups of data
separately, where each group generates K; numbers of output
feature maps. The results within one group are accumulated
in a final output frame.
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Fig. 4: 3D depth-wise convolution with N.=2 and K;=3.

For the first and third layers, we use the same spatial kernel
settings as those for 2D BRB. In temporal dimension, to enable
the capability of 3D data analysis, a temporal kernel with
K, size is applied to one of these two layers. Therefore we
propose two variants of building block for 3D CNNs, 3D-1
BRB and 3D-3 BRB, where the number indicates the position
of the 3D convolution. Figure 5 shows the structure of these
two variants. Note that the batch normalization (BN) layer is
used after all convolutional layers, while the rectified linear
unit (ReLU) is only activated after the first two layers.
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Fig. 5: Two 3D bottleneck residual blocks, with different
position of the 3D (3x1x1) convolution.

To find the building block which is more efficient, we first
compare the computational cost of these two variants. Accord-
ing to the parameters in Table I, the number of multiply-add
(MAdd) operations required by these two variants is shown in
Table III.

TABLE III: The number of multiply-add (MAdd) operations
in two variants of 3D BRB.

| Operations

M—Adds;;D,l ‘ HXWXNCXtX(KtXNC-l—KtXde+Nf)

M-Addssp_3 ‘ H X W X Ne Xtx (Nc-‘th X Kgw + Kt XNf)




Comparing the computational load of 3D-1 and 3D-3 BRBs,
we subtract M-Addssp_3 from M-Addssp_1 to obtain:

Hx W x Nextx (K;—1)x (Ny—N,). (1)

As Ny is greater than N. and K; is bigger than one,
Equation (1) is larger than zero, which means M Addssp_3
is greater than M Addssp_1. Therefore the 3D-3 BRB re-
quires more computations than 3D-1 BRB. Because our target
platform has limited computational resources, 3D-1 BRB is
selected as the 3D CNN building block in this paper.

Another benefit of 3D-1 BRB is that it requires fewer
amount of on-chip memory than 3D-3 BRB. For simplicity,
we only compare the memory cost introduced by the first
and third layers because both 3D-1 and 3D-3 BRBs have
the same 3D depth-wise convolution in the middle. Table IV
summarizes the memory usage of the first and third layers in
3D-1 and 3D-3 BRBs. As 3D convolution needs to process K
consecutive frames simultaneously, K; number of input frames
are required to cache in the on-chip memory. Therefore, K; is
applied to the memory cost of the first layer in 3D-1 BRB, and
the third layer in 3D-3 BRB. Since K;=3 and the expansion
factor t=6, we observe that the memory usage of 3D-1 BRB
is less than that of 3D-3 BRB. Therefore the selection of 3D-1
BRB can also reduce the amount of on-chip memory.

TABLE IV: The memory cost of the first and third layers.

Memory Cost | 3D-1 BRB | 3D-3 BRB

Ist Layer | HXW x Nex Ky | HxW x N x 1
3rd Layer | HXW x (Ne xt)x1 | HxW x (Next)x K
H x W x N¢X H x W X N¢gx
Total (K¢ +1) (tx K¢ +1)

B. Network structure of E3DNet

The detailed structure of the 3D-1 BRB is shown in Table V.
From the top to the bottom, we call these three layers 3 x 1 x
1 temporal convolution (TMP Conv), 3 x 3 x 3 3D depth-
wise convolution (3D DW Conv), and 1 x 1 X 1 point-wise
convolution (PW Conv). There is a shortcut when the stride of
temporal convolution is 1 x 1 x 1, which keeps the consistency
with 2D BRB for residual learning.

TABLE V: The detailed structure of 3D-1 BRB.

Input Tensor Convolution Output Tensor
H X W x Neo X N; TMP Conv, ReLU H X W X N X Ny x t
H X W x Ne. x Ny xt 3D DW Conv, ReLU H x W X N X Ny x t
HXW X Ne X Np xt PW Conv H X W x Ny X Ny

Based on the 3D-1 BRB, an efficient 3D CNN model called
E3DNet is proposed. The network starts from one 1 x 3 X
3 convolution with 45 filters and 1 x 2 x 2 stride, followed
by a 3 x 1 x 1 temporal convolution. E3DNet uses 19 3D-1
BRBs with the global average pooling (GAP) and point-wise
convolution at the bottom. Table VI shows the architecture
of E3DNet, where each line describes a sequence of identical
building blocks with expansion factor ¢ and repeated number

n. The stride of the first block in each sequence is s, and
all others are 1 x 1 x 1. k is the number of classes for the
classification tasks, which can vary for different datasets.

TABLE VI: The network architecture of E3DNet.

Input | Operation |t | Ny | n | s
16 x 1122 x 3 | Conv 1 x 3 x 3 - 45 1 1x2x2
16 x 562 x45 | Conv3x1x1 | - | 64 | 1 | 1x1x1
16 x 562 x 64 3D-1 BRB 1] 24 | 1] 1x1x1
16 x 562 x 24 3D-1 BRB 6| 24 | 2| 1x1x1
16 x 562 x 24 3D-1 BRB 6| 48 | 4 | 2x2x2
8 x 282 x 48 3D-1 BRB 6| 64 | 6| 2x2x2
4 x 142 x 64 3D-1 BRB 6| 9 | 3| 2x2x2
2 x 72 x 96 3D-1 BRB 6 5121 |1x1x1
2 x 72 x 512 GAP - - 1 | 1x1x1
1x12x512 | Convlx1x1 | - k 1 | 1x1x1

IV. FPGA ACCELERATOR DESIGN
A. Design Methodology

To improve the scalability of the design, our approach
adopts a single processing engine architecture [18] devised
to process one layer or one block at a time, and the whole
network is computed by repeatedly configuring different layers
of the same design.

1) Fused 3D BRB: We adopt the roofline model [19] to
estimate the performance limitation of the proposed 3D-1
BRB. The model contains one roofline curve characterizing
the theoretical peak performance provided by the target device,
and several vertical lines representing the algorithm intensity
of different operations. The interaction between the roofline
curve and each algorithm-intensity line presents the theoretical
peak performance of each operation, which is either bounded
by computational resources or by memory bandwidth.
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Fig. 6: Roofline model of E3D.

Figure 6 shows our roofline model targeting the Intel Arria
10 SX660 FPGA board, with 200 MHz clock frequency
and 4.8 GB/s of DRAM bandwidth.! It is clear that all
the temporal, 3D depth-wise and point-wise convolutions are
memory-bound operations, and hence the overall performance
will also be bounded by the memory bandwidth. To solve

'Assuming that the operation refers to single-precision floating-point
multiply-add (Mul-Add), only DSP resource is utilized to perform the com-
putation and each Mul-Add costs 1 DSPs.



this problem, we propose the fused 3D BRB: instead of
accelerating these three convolutional layers separately, the
fused 3D BRB takes the 3D-1 BRB as the basic acceleration
module, where all the intermediate data within the 3D-1 BRB
are cached in on-chip memory for data reuse. After the fused
3D BRB optimization, the overall performance of 3D-1 BRB
becomes compute-bound, which is given by the dotted red line
in Figure 6.

2) Online Blocking: An issue which comes with the 3D
fused BRB is that it requires a large amount of on-chip
memory to cache all the intermediate results within the 3D-1
BRB. To solve this problem, we propose a novel blocking
strategy called online blocking to reduce on-chip memory
usage by changing the computational sequence of 3D-1 BRB.

Y/ Slog,
anp‘lt Iy %
ta °ck iy
s’%
|
3D-DW

Fig. 7: The process of online blocking.

Figure 7 illustrates the process of our proposed online
blocking strategy. Thanks to the structure of the bottleneck
residual block, the channel number of temporal convolution is
far smaller than the standard 3D Convolution. Therefore, all
the input data of the temporal convolution can be cached in
on-chip memory for data reuse. Then instead of calculating
all the results required by the 3D depth-wise convolution (3D
DW CONYV), the temporal convolution (TMP CONYV) only
computes % x Ny x Ky elements of the results, where
B,um 1s the number of blocks. These intermediate data will
be immediately processed by the 3D depth-wise and point-
wise convolutions (PW CONYV), and then transferred to off-
chip memory. The whole computation of 3D-1 BRB consists
of repeating this computational pattern. Since the on-chip
memory only needs to cache g,XW x Ny x K; elements
of intermediate data, the memorymﬁgage can be significantly
reduced. Algorithm 1 illustrates the pseudocode of 3D-1 BRB
with the online blocking strategy.

Algorithm 1 3D-1 BRB with Online Blocking.

1: for frm =0 to N; do

for blk = 0 to Bnym do
for f_st = frm to frm + K; do
| for flitr =0to Ny do

for ¢ = 0 to N, do
| | | | forh= %ﬁ:f to (bl}g:B:H d
for w =0to W do
outpt[ frm][blk][ fltr][h][w]+=
tmp_conv(inpt[ f_st][blk][c][h][w]);
dw_outpt[ frm][blk] = 3d_dw_conv(outpt[ frm][blk])
pw_outpt[ frm][blk] = pw_conv(dw_outpt[ frm][blk])

()

TOYRI D LR

—_—

3) Kernel Reuse: To improve hardware efficiency, the com-
putational resources allocated for these three convolutional

layers should be proportional to their number of computations.
However, since the computation and corresponding propor-
tions of the three convolutional layers vary in different 3D-1
BRBs, deploying computational kernels for each convolution
may cause hardware inefficiency. To solve this problem, we
propose a kernel reuse strategy to improve hardware efficiency
by reusing the computational kernel of 3D depth-wise convo-
lution with the temporal and point-wise convolutions.

The computational kernel deployed on hardware for
3D depth-wise convolution (computational engine in Sec-
tion IV-B1) consists of K; x K2, multipliers followed by a
[log, (K; x K2,)]|-level adder tree, where both K; and K,
equal to 3. As the kernel size of 3D depth-wise is different
from those of the temporal and point-wise convolutions, the
computational kernel cannot directly be used by other con-
volutions. To address this challenge, this paper applies loop
unrolling and loop interchanging to map the computation of
temporal and point-wise convolutions into the computational
kernel of 3D depth-wise convolution.

Algorithm 2 Kernel Reuse with Temporal Convolution.

1: for frm =0to N; do

2: —th— > Loop Interchange
3: for fltr = 0to Ny do

4: for-c—-06-to-N-de > Loop Unrolling
5: forc:Oto%do

6: for h =0 to H do

7: for w =0 to W do

8: | [for c unrol=cx K2 _to (c+1) x K2 _dd
9: | | | [[_for fth= frmto frm + K, do

10: outpt[ frm][ fltr][h][w]+=

11: coef[ f_th][ fltr][c_unrol] X

12: inpt[ f_th][c_unrol][h][w];

Algorithm 2 illustrates how the temporal convolution is
mapped into the computational kernel of 3D depth-wise con-
volution. First, the loop with variable f_th is interchanged
into the innermost loop (red box). Second, loop unrolling is
applied to the loop with variable c to separate the channel
accumulation into several groups, where each group contains
K3, multiplication-additions (blue box). After these two loop
changes, the innermost two loops (blue and red boxes) con-
taining K; x K2, multiplication-additions has the same kernel
size as that in 3D depth-wise convolution. Therefore, the cal-
culation of temporal convolution can be mapped and computed
in the computational kernel of 3D depth-wise convolution.

Similar optimizations can be applied to the point-wise
convolution, which separates the channel accumulation into
several sets of K; x K3 multiplication-additions to fit the
calculation into the computational kernel of 3D depth-wise
convolution.

B. Hardware Design

1) Hardware Architecture: Based on the design methodol-
ogy introduced above, the hardware architecture F-E3D is pre-
sented in Figure 8, which mainly consists of a computational
engine, sliding window, ReL U, pooling modules and several
buffers. The matrix buffer is used to cache the input pixels



required by the computational engine. The sliding window
receives the data one by one and outputs K; X Ky X Kguw
pixel matrix into the computation engine for the calculation
of 3D depth-wise convolution.

Coefficient
Data

Coefficient

Output
Results

Input
Data

Fig. 8: Hardware architecture of F-E3D.

Computational Engine — The basic element in computational
engine is the computational unit (CU), which is shown in
Figure 9. Each CU consists of K; processing elements (PEs)
followed by a [log2 (Ktﬂ -level adder tree. The basic compo-
nent of PE is the processing unit (PU), which is composed of
Kq,y multipliers and a adder tree with [logy (Kau)| levels.
Both K; and K, equal to 3.

Coefﬁcien11 Matrix

Short-cut

Intermediate

x
g Data

Fig. 9: Design of computational unit.

When the computational engine is used for 3D depth-wise
convolution, the adder tree in each CU is enabled and the
outputs come from the CU through the last two-level adder
tree. As for other convolutions, the results are output from the
PE directly.

Output Buffer — Figure 10 presents the design of the output
buffer. Three buffers are utilized to cache the intermediate
data of point-wise, 3D depth-wise and temporal convolutions
respectively. There is an accumulator module designed for
channel accumulation, which is disabled for depth-wise con-
volution.

Short-cut Intermediate
Buffer Output
; Results
Intermediate > DZV ?f:nv —
Data Ci=e _, Accumulated

TMP Conv Data
Buffer

Fig. 10: Implementation of output buffer.

2) Computational Flow: The computation starts from the
temporal convolution. All the input data are cached in the input
buffer module for data reuse. Then the inputs are streamed into
the computational engine through the matrix buffer, where
intermediate results are accumulated in the output buffer.
Because of the online blocking strategy, the computation of

temporal convolution stops when one block of results is ready.
That block of data is then fed into the ReL.U, sliding window
and computational engine for 3D depth-wise convolution. The
process of point-wise convolution starts when 3D depth-wise
convolution finishes the computation of one block. After that,
the outputs of point-wise convolution are transferred back to
the off-chip memory.

V. EXPERIMENTAL RESULTS AND DISCUSSION

The whole design is implemented on an Intel Arria 10
SX660 platform using Verilog. The hardware F-E3D is clocked
at 150 MHz. 1GB DDR4 SDRAM is installed on the platform
as off-chip memory. Quartus 17 Prime Pro is used for synthesis
and implementation. The UCF101 dataset [20] which includes
13320 videos of 101 human action categories is used in the
following experiments for HAR.

A. Implementation Detail

Figure 11 shows the implementation detail of the proposed
design. The avalon memory mapped interface (Avalon-MM)
is used for the interaction between different components.
The input data are transferred onto the FPGA through the
peripheral component interconnect express 3.0 (PCle3). DMA
is used to access the coefficient data and intermediate results
on DDR4. The CNN engine contains 176 CUs for parallel
processing. Since the design is based on the single processing
engine architecture, multiple 3D-1 BRBs are executed on the
same FPGA design, where the configuration parameters are
specified through the APB bus before the computation.

A valon Avalon

PCle3
ﬁ DDR Avalon
Controler <’L:V.\ DDR4 APB
’ APB
AXl4

AXl4 AXl4
Fig. 11: Implementation detail of the design.
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B. Model Size, Computatinal Cost and Accuracy

To demonstrate the efficiency and accuracy of 3D-1 BRB,
the proposed 3D CNN model, E3DNet, is trained and tested
on UCF101 dataset for HAR.? Video frames are scaled to
the size of 128 x 171 and then each frame is generated by
randomly cropping windows of size 112 x 112. The E3DNet
takes one video clip as input, where each video clip contains
L consecutive frames randomly sampled from the video with
temporal jittering. Although large L may increase the accuracy,
it also imposes a heavier computational load on the network.
Therefore, L is set to be 16 in this paper as a trade-off
between speed and accuracy. The E3DNet is first pretrained on

2The evaluation codes and model of our E3DNet are publicly available at:
https://github.com/os-hxfan/E3DNet.git



the Kinetics [21] dataset, and then finetuned on the UCF101
dataset [20]. The accuracy reported in this paper is the Clip@1
accuracy where the prediction uses only one clip per video.

TABLE VIII: Performance comparison of our final FPGA
design versus CPU, GPU and other FPGA designs.

| cpu | GPU | FPGA [9] | Our Work
TABLE VII: The model size, computatinal cost and accuracy Platform ‘ el Xeon TITAN X ‘ Xiline  |Inel Aria 10
. . . - v ascal
of different 3D CNN models published on top computer vision
Frequency | 2.8GHz | 1.53 GHz | 200MHz | 150MHz
conferences.
Technology |  22nm | 16 nm | 28nm | 20nm
Model E3DNet E3DNet C3D+ SVM E3DNet
E3DNet | RENeXU | papy 121 | c3p 1) | | | |
101 No. of ‘ 1 ‘ 1 ‘ 64 ‘ 1 ‘ 1
Clip@1 Accuracy | 85.17% | 87.7% | 842% | 79.87% batches
Acceleration MKLDNN TensorRT and
Model Size 8.6MB ‘ 365MB ‘ 261MB ‘ 321MB Library CuDNN 7.41 libraries
Compression . Power (W) | 135 | 144 | 240 | 9.9 \ 36
Rate of Model Precision | 32bit-float | 32bit-float ‘ 32bit-float | block-float | 32bit-float
MAdds ‘ 6.1G ‘ 9.8G ‘ 19.2G ‘ 38.2G Accuracy | 8517% | 85.17% 85.17% | <81.99% | 85.17%
N Latency per . . .
Compression 1 clip (ms) 6921.3 ‘ 121.5 ‘ ‘ 476.8 ‘ 35.3
Rate of MAdds -
Clips per <1 2.1 29.3
second (cps)
Table VII compares the proposed E3DNet with other state- E“gfyu‘;” 931.5 ‘ 17.49 ‘ ‘ 4.72 ‘ 1.27

of-the-art 3D-CNN models in terms of model size, compu-
tational cost and accuracy on the UCF101 dataset, which is
shown in . All these models use 16 frames in one input video
clip. Note that, although some models can achieve higher
accuracy with support vector machine (SVM), we do not use
SVM in this experiment for a fair comparison. Our E3DNet is
nearly 37 times smaller and 5% more accurate than the classic
3D CNN model C3D. Compared with P3D, the proposed
E3DNet improves the accuracy by 0.97% with approximately
30 times fewer parameters. Although the accuracy of ResNeXt-
101 is 2.53% higher than that of E3DNet, it also contains
nearly 42 times more parameters. Therefore, when targeting
platforms with limited resources, E3DNet is the most suitable
3D CNN model for human action recognition due to its high
efficiency on parameters and computations.

C. Performance Comparison

To compare the performance of the proposed design on
Intel Arria 10 SX660 with other platforms, we implement
the E3DNet on Intel Xeon E5-2680 v2 CPU (20 cores) and
NVIDIA TITAN X Pascal GPU (3584 cores) based on the
MXNet framework [22]. The MKLDNN library is used for
optimizing the CPU implementation. The GPU solution is
optimized with the TensorRT and CuDNN 7.41 libraries. We
also compare our final implementation to the previous FPGA-
based accelerators [9] for C3D.

Table VIII shows the performance and power consumption
of different platforms. The GPU implementations are evaluated
in both 1 and 64 batches. Although the 64-batch implemen-
tation can increase the number of processed clips per second,
it also introduces larger overhead on latency, which is not
suitable for human action recognition with the requirement of
real-time processing. Therefore, all the implementations are
compared based on one batch. Among one-batch designs, our
FPGA design is 196 and 3.4 times faster, and consumes 733
and 51 times less power than the E3DNet on the Xeon E5-
2680 v2 CPU and the TITAN X Pascal GPU respectively. Note

that, even with the acceleration libraries including MKLDNN,
TensorRT and CuDNN, the speed of E3DNet on GPU and
CPU is still far less than the theoretical performance of CPU
and GPU platforms. The potential reason may be that the 3D
depth-wise convolution cannot achieve high performance on
GPU and CPU, where the 2D depth-wise convolution has the
similar performance issue [23]. Compared to the state-of-the-
art FPGA-design [9] for C3D with SVM on Xilinx ZC706,
our implementation is nearly 13 times faster with nearly 3%
improvement in accuracy. Finally, the area cost of the final
design based on Arria 10 SX660 is shown in Table IX.

TABLE IX: Area cost of the final hardware on Intel Arria 10
SX660.

| ALMs DSPs M20K
Available | 251680 1687 2133
Utilization | 113828 1584 1578
Percentage Used \ 45.2% 93.3% 74%

Figure 12 compares the proposed FPGA-based accelerator
of E3DNet with other state-of-the-art 3D CNN models on
GPU platforms, where the size of each dot is proportional
to their power consumption. Since the input comes from a
camera clip by clip in real-life human action recognition,
all these implementations are evaluated in one batch. Note
that the settings of GPU and FPGA are consistent with the
configuration shown in Table VIII, and cudnn and TensorRT
libraries are used to optimize all the GPU implementations. It
is clear that the proposed FPGA implementation of E3DNet
is slightly faster than the P3D and ResNetXt-101 on GPU
with nearly the same level of accuracy. Although C3D has
the better performance in latency, it is nearly 5% less accurate
than E3DNet. With regards to energy efficiency, the power



consumption of E3DNet on FPGA (36 W) is at least three
times less than that of C3D, P3D and ResNetXt-101 on GPU
(170W, 120W and 125W).

® E3DNet on FPGA C3D on GPU
@ ResNetXt-101 on GPU @ r3DonGPU

0,
0.88 1 PY (35.5, 87.7%, 125W)

0.86 -

E3DNet on GPU

(125.1, 85.17%, 144W)

> @
[}
® 1(35.3, 85.17%, 36W)
§ 084 ‘ (47.1, 84.2%, 120W)
< 0.82 1

0.80

(18.3, 79.87%, 170W)
0.78 T T r r r r
0 20 40 60 80 100 120

Latency(ms)

Fig. 12: Comparison of E3DNet on FPGA versus the state-of-
the-art 3D CNNs on GPU. The size of the dot is proportional
to the power consumption.

VI. CONCLUSION AND FUTURE WORK

This paper adopts an algorithm-hardware co-design method
for the acceleration of human action recognition. At the
algorithm level, a novel 3D CNNs building unit called 3D-1
bottleneck residual block (3D-1 BRB) is first proposed. Based
on 3D-1 BRB, an efficient 3D CNN model called E3DNet
is developed, which is nearly 5% more accurate and 37
times smaller than the de facto standard 3D CNN. At the
hardware level, an FPGA-based hardware architecture, F-E3D,
is designed for E3DNet. Together with several optimizations
includings 3D fused BRB, online blocking and kernel reuse,
the proposed FPGA-based accelerator for E3DNet can achieve
nearly 13 times speedup than a previous FPGA-based 3D
CNNSs accelerator. Future work includes improving the accu-
racy of E3DNet for human action recognition, exploring the
3D-1 BRB for other 3D computer vision tasks, optimizing the
performance of 3D-1 BRB on GPU and CPU platforms.
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