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ABSTRACT
FPGAs provide a promising implementation option for many ma-
chine learning applications. Although simulations or software mod-
els can be used to explore the design space of these applications,
often the final behaviour can not be evaluated until the design is
mapped to the FPGA and integrated into the target system. This
may be because long run-times are required, or because the envi-
ronment can not be adequately described using a software model.
Once unexpected behaviour is observed, on-chip debug is notori-
ously difficult; typically a design is instrumented with on-chip trace
buffers that record the run-time behaviour for later interrogation.

In this paper, we describe instrumentation that can accelerate
the process of debugging machine learning applications imple-
mented on an FPGA. Unlike previous work, our instrumentation is
optimized to take advantage of characteristics of this application do-
main. Our instruments gather useful domain-specific information
about the observed variables instead of recording the raw values of
those elements. Results show that the proposed instruments pro-
vide at least 17.8x longer visibility in the most conservative of our
experiments at a low area and latency cost.

CCS CONCEPTS
• Hardware→ VLSI; EDA; Design for debug.
ACM Reference Format:
Daniel Holanda Noronha, Ruizhe Zhao, Jeff Goeders, Wayne Luk and Steven
J.E. Wilton. 2019. On-chip FPGA Debug Instrumentation for Machine Learn-
ing Applications. In The 2019 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays (FPGA ’19), February 24–26, 2019, Seaside, CA,
USA. ACM, New York, NY, USA, 6 pages. https://doi.org/10.1145/3289602.
3293922

1 INTRODUCTION
Recent years have seen tremendous interest in machine learning
algorithms and techniques. Although CPUs and GPUs are often
sufficient for training and inference tasks, Field-Programmable
Gate Arrays (FPGAs) may lead to implementations that are faster
and/or lower power. These advantages have led many researchers
to propose novel FPGA-oriented architectures and techniques, and
have spurred significant commercial activity.
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Designing an FPGA-based machine learning application can
be done using RTL-based design, high-level synthesis (HLS), or
domain-specific translation flows (eg. [7, 12]). Regardless of how
these applications are implemented, debugging these designs can
be extremely difficult, for at least three reasons. First, unlike many
application domains, inference and training tasks normally require
very long run-times (many training or inference samples) before
their overall behaviour can be understood. As an example, consider
an error in a training application that causes many weights to be
incorrectly clamped to zero; this could not be observed or under-
stood without running many training samples. This means that
hardware-oriented simulation techniques may not be sufficient to
understand the operation of the design. Second, the “correctness”
of machine learning applications can often not be determined by
looking at individual signals/variables in isolation. As an example,
during training, there is no “correct” value for a weight; the cor-
rectness depends on the ensemble of weights acting together. This
means existing debug tools, which are optimized for examining the
behaviour or specific signals are variables, are less useful. Third,
machine learning applications are often designed at a high level (eg.
C in HLS-based flows or Python in flows such as [7]) and automated
tools are used to translate these high level designs into a circuit.
This means that hardware-oriented debug flows, which provide
visibility in the context of the hardware design, may not provide
information in a form that is useful for the designer (this is similar
to the observation in [5]).

In this paper, we present a flow to accelerate the debug of ma-
chine learning applications on FPGAs. Like existing hardware debug
flows, we allow the user to add instrumentation that records the
behaviour of the design as it runs at speed. Unlike existing flows,
our instrumentation is optimized specifically for machine learn-
ing applications. Specifically, this work provides novel histogram,
spatial sparsity, and summary generating instrumentation. These
instruments are designed to summarize data on-chip in a way that
maximizes the utilization of trace buffer space, while providing
information that is meaningful to an engineer trying to understand
the behaviour of the chip.

Figure 1: Domain-Specific Debug Instrumentation
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Although the flow in this paper could be applied to any hardware
implementation of machine learning algorithms, it is especially
relevant for FPGAs for two reasons. First, FPGAs are often the first
hardware implementation method for a new product (either as a
prototype or before cost reduction), so this type of debugging is
most likely to be performed in an FPGA. Second, this technique
enables rapid debug and design, which is essential as FPGAs start to
appear in cloud-based systems. We anticipate that FPGA companies
are especially well-positioned to take advantage of our techniques.

This paper is organized as follows. Section 2 provides context
for our work by describing recent efforts in on-chip debug instru-
mentation. Section 3 then describes our overall approach and in-
strumentation architecture. Section 4 shows how the data obtained
from the instruments can be displayed to the user in a meaningful
way. Section 5 evaluates our proposal in terms of trace length, area
overhead, and circuit speed.

2 PREVIOUS WORK AND CONTEXT
Although software simulators are an important part of any debug
ecosystem, simulation alone many not be sufficient to find the root
cause of many types of bugs. Bugs that require long run-times to
manifest, or those that occur due to specific input patterns may be
missed by simulation. The only method to find the cause of these
types of bugs is to execute the hardware in a real system, running
at speed, driven by real input traffic.

Understanding the behaviour of a design running at speed is
difficult due to limited I/O pins; FPGA vendors provide tools such
as Intel’s SignalTap II and Vivado’s ILA [1, 14] to instrument a user
design, at compile time, such that the behaviour of important sig-
nals can be stored on-chip during execution for later interrogation.
Examining the traces of these signals can allow an engineer to un-
derstand the behavior of the design and try to track down the root
cause of unexpected behaviour. Academic work has also considered
adding such instrumentation at run-time [3, 11], decreasing the
time between debug iterations.

Recent academic work has extended this instrumentation, opti-
mizing it specifically for designs that are generated by high-level
synthesis compilers [2, 4–6]. These works show that significant
compression is possible by understanding the schedule of the design
(which is available from the HLS tool) and using this information
to only record signal values when they are scheduled to change.
This compression allows a longer trace history to be stored on-chip,
meaning fewer debug iterations are typically required to identify
the root cause of a bug.

Debugging for machine learning applications is often done using
software tools such as Tensorboard. Our approach is different in
that Tensorboard is aimed at debugging a software model, while
our approach is for debugging an application running on an FPGA.

3 DOMAIN-SPECIFIC INSTRUMENTATION
3.1 Overall Approach
Similar to previous flows, we instrument the user design at compile
time to enable runtime recording of circuit behaviour (Figure 1).
However, while previous work stores the raw values of variables

Figure 2: Distribution Instrument Overview

or signals into the on-chip trace buffers, we use on-chip domain-
specific compression to store aggregated information about im-
portant variables or signals, making much more efficient use of
memory. After the chip has been run, this information can be re-
trieved and used with our off-line analysis tool to allow the user to
relate specific values to quantities in the original design, allowing
them to better understand the behaviour of the circuit.

3.2 Debug Instruments
The domain-specific compression is done using one or more in-
struments, each of which monitors the behaviour of signals and
summarizes the behaviour in the associated trace buffer(s). Each
instrument summarizes the behaviour in a different way. The in-
struments we have selected are inspired by Tensorboard, which is
used for debugging software implementations of machine learning
applications. Below, we describe three of these instruments.

3.2.1 Distribution Instrument. Many machine learning applica-
tions consist of large arrays (eg. activations or weights). Often,
during debugging, it is useful to understand the overall distribution
of values in an array. This may help, for example, to determine if

Figure 3: Distribution Instrument Architecture



Figure 4: Spatial Sparsity Instrument Overview

an error is causing activations to “clamp” at a minimum or maxi-
mum value, or whether, during training, weights are spanning the
entire space provided by their representation’s bit-width. Using
techniques such as [5], that capture raw variable values, it would
be possible to record all values in an array, and then perform the
distribution analysis off-line. However, for large arrays, this may
result in very inefficient use of trace buffer memory; every change
to every element in the array would consume an entry in the trace
buffer.

Instead, we provide an instrument that monitors all words in a
specified array (memory) and aggregates the values into a histogram.
This is shown conceptually in Figure 2, and an architecture is shown
in Figure 3. The trace buffer contains one word per bin in each
histogram. Each time an element of an identified array is updated,
comparators are used to select the appropriate bin, and increment
the associated word in the trace buffer. After the run is complete,
the histogram can be read, and the user can use this information to
understand the nature of the run-time values of the activations or
weights stored in the array.

Rather than storing a single histogram, our trace buffer is divided
into frames, each large enough to store one histogram. In a CNN,
a frame may represent all calculations corresponding to a single
input image; in other types of deep learning networks, a frame
may represent a single training or inference sample. At the start of
each frame (sample or image), a new histogram is initiated. Since
we implement our trace buffers using embedded memories with
limited ports, we cannot reset all entries in a histogram to zero in
one cycle. Instead, we use a second memory containing dirty bits
to track which bins have valid or invalid values. Each word in the
dirty bits memory contains the dirty bits for all the bins of one
entire histogram. Every time a new histogram is initiated (start of
a new frame), all the bits in the word corresponding to this new
histogram are marked as dirty. If a bin needs to be incremented and
its value is marked as dirty, the value stored to this bin will be one,
and the associated dirty bit will be deasserted.

The user can choose multiple variables (arrays) to observe us-
ing our proposed distribution instruments. For each of the arrays
selected, a copy of the architecture shown in Figure 3 is inserted.

This association of a histogram to a frame is unique in this work.
In [5], events to signals and variables are stored in order, however,
there is no explicit association between those events and the context
(in our case a frame) for which they occur. This association provides
debug information in a manner which may be more natural for the
user, possibly leading to more insight and faster debug cycles. An
envisaged user interface will be described in Section 4.

Figure 5: Spatial Sparsity Instrument Architecture

3.2.2 Spatial Sparsity Instrument. Many errors in machine learning
applications can manifest as arrays of weights and/or activations
that are zero (or close to zero). The Spatial Sparsity instrument
monitors specified activation or weight arrays, and, rather than
storing all updates to these arrays, stores an indication whether
the array is zero (within a predetermined threshold) or non-zero.
This provides information about the sparsity of a given array. This
is shown conceptually in Figure 4 and an architecture for this in-
strument is shown in Figure 5. The same logic could also be used
to track elements close to 1, another upper bound or not a number
(NaN).

Again, the trace buffer is treated as a set of frames, where each
frame corresponds to a single input sample or image. Since only
one bit is required to represent each element of the observed array
a very long trace length can be achieved when compared to simply
tracking all the changes as in [5].

3.2.3 Summary Statistics Instrument. Multiple summary statistics
can also be used to represent the data we are trying to observe.
Some examples of summary statistics include measure of tendency,
such as arithmetic mean; measure of statistical dispersion, such as
standard deviation; and measure of shape of the distribution, such
as skewness. Although many of those statistics can be explored for
most of applications, there are some summary statistics that can be
especially useful for debugging machine learning applications.

In our instrumentation we focused on calculating the sparsity of
the observed matrix to illustrate the example of gathering summary
statistics to assist debugging machine learning circuits. Differently
from the spatial sparsity instrument, the sparsity summary statistic
instrument will not retain information regarding the location of
elements that are equal to zero. Instead, a simple counter is used to
track how many of the elements written into the observed matrix
are zero valued.



Figure 6: User interface for distribution instrument

4 USER INTERFACE
After the chip has been run, the data is obtained from the trace
buffers and displayed to the user. Differently than hardware-oriented
debug flows [1, 13] which display trace data using waveforms, or
HLS-based debug flows [2, 5, 6] which display trace data in terms
of user-visible C variables, we display data in the context of higher-
level machine learning constructs. In the instrumentation architec-
tures described in Section 3, data is associated with frames, each
frame typically representing an input image in a CNN or input data
item in other machine learning applications. In our user interface,
we display the data in the context of frames in a form that we
believe is useful for the user.

Our user interface consists of a set of tabs, as shown in Figures 6
and 7. Each tab corresponds to one type of debug instrument. Each
debug instrument can be used multiple times to track different
variables (arrays). For the distribution instrument, the associated
tab shows a histogram. For the spatial sparsity instrument, the tab
shows a graphical representation of sparsity. In both cases, the user
can step through frames (rather than single-stepping lines of code)
providing insight into how the traced matrix corresponds to the
input image or dataset. Although it would be possible to obtain the
same insight using a code-oriented debugger [5], the relationship
between frame and variable value may not be clear, especially in
the presence of hardware optimizations, possibly complicating the
debugging process.

5 RESULTS AND DISCUSSION
In this section, we first compare our technique to the general-
purpose debug instrumentation from [5]. We then present two
architecture studies.

5.1 Comparison to General-Purpose Debug
Instrumentation

To compare to previous work, we use kernels that are part of Con-
volutional Neural Networks (CNNs) generated using a tool that
constructs CNNs of varying sizes and capabilities [15]. We use
three kernels, one consisting of a single 28x28 convolution, one
consisting of eight 28x28 convolutions and one consisting of 32
28x28 convolutions.

Figure 7: User interface for spatial sparsity instrument

We compare seven different debugging configurations for each
kernel. The first two configurations are from the general-purpose
debug techniques in [5]. Unlike this work, these are not tailored
to machine learning applications, and the debug logic is designed
to simply capture raw variable values. The first configuration (1)
tracks all user-visible variables, while the second (2) only tracks
the elements in the array corresponding to the output of the con-
volutions. The remaining five configurations correspond to using
the domain-specific debug instruments presented in this work to
also observe the output of the convolutions. This includes config-
urations for the (3) distribution instrument with 32 bins, (4) the
distribution instrument with 128 bins, (5) the spatial sparsity in-
strument, (6) the summary statistics instrument, and (7) a final
configuration combining the distribution (32 bins) and spatial spar-
sity instruments (summary statistics sparsity is calculated off-line).
As in [5, 9], 100Kb of trace memory was assumed in all configura-
tions; in the configuration in which all instruments are included,
the trace memory is partitioned among the those instruments.

For each kernel and configuration, the instrumentation is added,
and the design synthesized, placed, and routed using Quartus II
16.1 (an average of 10 runs with different seeds is used). Table 1
shows the results. The fifth column shows the number of times that
information about the frames can be stored in the trace memory.
In the general-purpose approaches, where raw signal values are
recorded, not even a single frame of convolution results can be
stored in the trace buffer. However, using the data aggregation
approaches presented in this paper, data for many frames can be
stored in the same trace buffer space. The eighth column in the
table shows the normalized trace size compared to configuration (2),
which corresponds to the best general-purpose approach. When all
proposed instruments are included, information about the frames
can be stored for 21.8–24.1x longer.

Table 1 also shows area and Fmax results (post place-and-route).
As can be seen, the instrumentation is small, even when all three
instruments are included. The impact of the instrumentation on
Fmax is similar to the previous work for large kernels; we anticipate
we could reduce this impact by pipelining the instrumentation.

Although the proposed instruments significantly increase the
trace size of large signals, it is not appropriate for tracing small
signals. We believe that integrating those instruments with general
purpose debug is an interesting venue for research.



Table 1: Resources and trace length when compared to general purpose debug

Configuration Kernel FMax LEs Trace Normalized Normalized Normalized
(MHz) Size§ FMax LEs Trace size

Uninstrumented User Circuit
32x28x28 214.06 2483 - 1.00x 0.73x -
8x28x28 264.38 2439 - 1.01x 0.73x -
1x28x28 281.94 2308 - 0.97x 0.72x -

(1) General Purpose [5] - Trace all signals
32x28x28 212.19 3575 0.003 0.99x 1.05x 0.024x
8x28x28 255.02 3534 0.015 0.98x 1.06x 0.030x
1x28x28 266.79 3397 0.132 0.92x 1.07x 0.033x

(2) General Purpose [5] - Single Matrix Trace
32x28x28 213.79 3391 0.124† 1x 1x 1x
8x28x28 260.05 3324 0.498† 1x 1x 1x
1x28x28 287.89 3167 3.985† 1x 1x 1x

(3) Distribution Instrument - 32 bins
32x28x28 200.48 2867 195 0.93x 0.84x 1,572.5x
8x28x28 227.65 2834 223 0.87x 0.85x 447.7x
1x28x28 229.87 2676 284 0.79x 0.84x 71.2x

(4) Distribution Instrument - 128 bins
32x28x28 189.62 3670 48 0.88x 1.08x 387.0x
8x28x28 225.17 3600 55 0.86x 1.08x 110.4x
1x28x28 228.98 3488 71 0.79x 1.10x 17.8x

(5) Spatial Sparsity Instrument
32x28x28 200.46 2547 3 0.93x 0.75x 24.1x
8x28x28 211.13 2531 15 0.81x 0.76x 30.1x
1x28x28 214.70 2393 127 0.74x 0.75x 31.8x

(6) Summary Statistics Instrument - Sparsity
32x28x28 213.17 2557 6666 0.99x 0.75x 53,758.0x
8x28x28 258.75 2531 7692 0.99x 0.76x 15,445.7x
1x28x28 285.30 2390 10000 0.99x 0.75x 2,509.4x

(7) Proposed instruments combined♯
32x28x28 189.23 2930 3 0.88x 0.86x 24.1x
8x28x28 206.69 2927 14 0.79x 0.88x 28.1x
1x28x28 220.51 2786 87 0.76x 0.87x 21.8x

§ Number of times information about the entire 32-bit frame could be tracked.
† All memory bits are used for dataflow trace buffer and only the values of the observed matrix are traced.
♯ Distribution (32bins) and spatial sparsity instruments; Sparsity summary statistic is calculated off-line.

5.2 Architecture Study 1: Distribution
Instrument

In this experiment, we vary the number of bins used in the distri-
bution instrument while keeping the number of histograms in the
trace buffer constant, and measure the impact on the total memory
bits, area, and speed. In all cases, the output of a 32-bit 32x28x28
convolution is tracked.

The results are shown in Figure 8. The horizontal axis corre-
sponds to the number of bins used in each histogram, while dif-
ferent lines represent the size of the trace buffer in terms of the
number of histograms that this trace buffer is able to store. The
left-most point in each graph corresponds to an uninstrumented
circuit (0 bins).

As shown, the frequency drops as the number of bins increases,
however, the impact is less than 5% when using 64 bins and 64
frames. In terms of area, the relationship between the number of
LEs and the number of bins is linear; this is because most of the
area is due to the comparators required to build the histogram
circuit. The number of memory bits needed by the distribution
instrument also increases with the number of bins; this quantity
can be calculated using:

mBits = nHist ∗ nBin ∗ (binW idth + 1), (1)

Figure 8: Maximum frequency, logic elements and mem-
ory bits used by distribution instrument when tracking
32x28x28 matrix



Figure 9: Maximum frequency, logic elements and memory
bits used by spatial sparsity instrument

where mBits is the number of memory bits, nHist is the number of
histograms tracked in the trace buffer, nBins is the number of bins
of each histogram and binWidth the bit-width of each bin in the
histogram. The binWidth is given by

binW idth = ⌈loд2(siдLen + 1)⌉ (2)
in which sigLen corresponds to the number of elements in the
matrix being traced.

5.3 Architecture Study 2: Spatial Sparsity
Instrument

In this experiment, we focus on the spatial sparsity instrument.
We vary the number of frames traced while keeping the size of
each frame constant, for several kernels. The results are shown in
Figure 9. Each line in the graph corresponds to a different kernel.
The left-most point is the uninstrumented circuit (trace size = 0).

As shown in the central plot of Figure 9, the spatial sparsity
instrument has an initial area overhead that does not increase with
the trace size and is approximately the same for all circuits. This is
different from the distribution instrument, which presents almost
no initial area cost, but a growing number of logic elements when
the number of bins increases.

The latency of the circuit has not shown to be sensitive to the
spatial sparsity instrument for most cases. The only exception is
a slight decrease in the maximum frequency when tracking 2048
elements.

Figure 9 also shows the number of memory bits required to
implement this instrument. This quantity can be calculated using

mBits = tSize ∗mEle, (3)
where tSize corresponds to the trace size and mEle corresponds to
the number of elements of the matrix being tracked.

6 CONCLUSIONS
In this paper, we have presented a debug infrastructure that can be
used either as a stand-alone tool or in concert with existing debug
infrastructure to enhance visibility of machine learning circuits.
The proposed infrastructure allows the user to run the design at
speed and record information for later interrogation. Unlike pre-
viously published debug tools, our instrumentation leverages the
specific characteristics inherent in machine learning algorithms
to provide an insight of the behaviour of the observed variables
without tracking all changes to a variable. We show that our sys-
tem is able to trace signals for a fraction of the area cost, enabling
the designer to achieve a longer trace-lengths when compare to
state-of-the-art debug infrastructures.

Current and future work includes evaluating and adapting the
proposed approach to various deep learning networks, combining
it with high-level debugging aids such as assertions [8] for edge
computing and for cloud applications, exploring the possibility of
extensions to cover the debugging of application-specific devices
such as the TPU [10] and integrating this work with Tensorboard
for a unified software/hardware debug framework.
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