
Towards an Efficient Accelerator for DNN-based
Remote Sensing Image Segmentation on FPGAs

Shuanglong Liu and Wayne Luk
Dept. of Computing, Imperial College London, London, United Kingdom

{s.liu13, w.luk}@imperial.ac.uk

Abstract—Among popular techniques in remote sensing image
(RSI) segmentation, Deep Neural Networks (DNNs) have gained
increasing interest but often require high computation complex-
ity, which largely limits their applicability in on-board space plat-
forms. Therefore, various dedicated hardware designs on FPGAs
have been developed to accelerate DNNs. However, it imposes
difficulty on the design of efficient accelerators for DNN-based
segmentation algorithms, since they need to perform both convo-
lution and deconvolution which are two fundamentally different
types of operations. This paper proposes a uniform architecture
to efficiently implement both convolution and deconvolution in
one vector multiplication module. This architecture is further
optimized through exploiting different levels of parallelism and
layer fusion to achieve low latency for RSI segmentation tasks.
Moreover, an optimized DNN model is developed for real-time
RSI segmentation, which shows preferable accuracy compared
to other methods. The proposed hardware accelerator efficiently
implements the DNN model on Intel’s Arria 10 device, demon-
strating 1578 GOPS of throughput and 17.4 ms of latency, i.e.,
57 images per second.

I. INTRODUCTION

The high-resolution remote sensing images (RSIs) acquired

from space satellites contain rich and large-scale information

of the earth’s surface and enable both short-term and long-term

environmental change detection, which is critical for protect-

ing natural and human environments [1]. In remote sensing,

semantic segmentation is often viewed as an important tool for

landscape change detection and land use/cover classification,

which is widely used in applications such as environmental

monitoring [2], disaster assessment [3], surveying and map-

ping [4]. Methods of image segmentation become more and

more difficult to classify the detailed information accurately

in the field of RSI analysis, due to the increasing spatial

resolution of imagery [5].

Recently, Deep Neural Networks (DNNs) have become

widely adopted in image segmentation problems and shown

great accuracy improvement [6]. However, these DNN-based

methods depend on very large computational complexity, in

particular when processing RSIs with high spatial resolution.

It severely limits their deployment in resource-limited space

platforms, since real-time RSI segmentation is needed to re-

duce download bandwidth and storage requirements in satellite

on-board processing [7].

The support of the United Kingdom EPSRC (grant numbers EP/L016796/1,
EP/N031768/1, EP/P010040/1 and EP/L00058X/1), Corerain, Maxeler, Intel,
Xilinx and SGIIT is gratefully acknowledged.

GPGPUs with highly parallel architectures can achieve high

throughput on DNN models by batch processing to offer a

high degree of parallelism. The efficiency of GPGPUs largely

relies on the batch size, which works well for off-line training

but not practical for real-time inference [8]. For streaming

applications, images often arrive one at a time and using batch

processing can greatly increase latency, which is critical to

the system’s performance especially for satellite applications

[9]. Besides, GPGPUs are not realistic to be mounted on a

satellite or a drone because of their high power consumption,

and therefore their usability is very limited in space platforms

[10].

FPGAs have shown very good performance for DNN-based

segmentation acceleration [6], [11], and thus are considered

promising to accelerate RSI segmentation methods in space

platforms. The main challenges and limitations of previous

designs of segmentation on FPGA are that: 1) unlike classi-

fication or detection networks such as VGG-16 or AlexNet,

segmentation networks consist of both convolutional (Conv)

and deconvolutional (Deconv) layers which require different

mathematical operations, making it difficult to design efficient

architectures for them; 2) Deconv must insert zeros into

the input image when implemented as Conv, leading to the

sparsity of input as well as computational inefficiency due to

multiplications with zeros [11].

In this paper, we propose a novel and uniform architec-

ture to efficiently implement both Conv and Deconv layers

with arbitrary kernel size in one computation module. We

exploit the sparseness of deconvolution by only computing

the overlapping weights and non-zero input pixels to improve

the computation efficiency. The performance of the proposed

accelerator is further optimized through input reshaping, layer

fusion, exploiting different levels of parallelism and fully

leveraging the DSPs on the target FPGA device. The main

contributions of this work are:

1) A uniform architecture based on vector multiplication to

implement both Conv and Deconv with arbitrary kernel size

efficiently. With this architecture, we propose an accelerator

by caching all intermediate feature maps in on-chip buffers to

achieve low latency for real-time RSI segmentation;

2) An optimized DNN model which is developed with

reduced computational complexity and improves the trade-off

between accuracy and latency, and it is implemented on our

accelerator achieving high throughput and low latency;

3) Evaluation of the hardware accelerator running the pro-

187

2019 29th International Conference on Field Programmable Logic and Applications (FPL)

1946-1488/19/$31.00 ©2019 IEEE
DOI 10.1109/FPL.2019.00037

posed model on Intel’s Arria 10 FPGA device, demonstrating

1578 GOPS of throughput and 17.4 ms of latency, i.e., 57

frames per second (fps).

II. BACKGROUND AND RELATED WORK

A. DNN-based RSI Segmentation

Semantic segmentation is used for partitioning a remote

sensing image (RSI) into many regions with homogeneous

properties that faithfully correspond to the objects [12]. The

characteristics of the pixels in the same region are similar, and

the characteristics of pixels in different regions are different.

Image segmentation has been playing a particularly important

role in image processing and computer vision. However, it is

difficult to classify the detail information accurately in RSIs

since they contain a large amount of information. In this

context, Deep Neural Network (DNN) appears as an appealing

alternative to traditional shallow classification approaches to

deal with such a massive amount of data [13]. The popular

DNN models for semantic segmentation include SegNet, U-

Net, DeepLab, FCN, etc. These models are much more com-

putationally intensive than the classification network models

such as LeNet, AlexNet and GoogleNet [6].

DNN-based segmentation algorithms often consist of two

major computational layers: 1) Conv layer, which aims to

interpolate the most relevant information from the input image

by convolving the input feature maps with the convolution

kernel and producing one output feature map; 2) Deconv
layer, also known as up-sampling or transposed convolution,

which transforms the input in the opposite direction of a

Conv layer but extrapolates new information from the input

feature map. These two layers perform fundamentally differ-

ent mathematical operations and have different data access

patterns. In addition to Conv and Deconv layers, Concat
layers are performed to concatenate the outputs from the

corresponding part of Conv and Deconv layers. Concat layers

are not computationally intensive as Conv and Deconv, but

impose communication overhead on the implementation.

B. Related Work

Most of existing FPGA-based DNN accelerators target at

the performance of convolution using computation reduction

techniques such as using fast Fourier transform (FFT) [14] and

winograd algorithm [15]. Layer fusion methods are also used

to accelerate CNNs in previous work [16], [17] by caching all

intermediate feature maps in on-chip memories to reduce the

external bandwidth requirements. These accelerators are only

focused on Conv layers and may not lead to high performance

for Deconv layers as well as networks for segmentation.

Few works have focused on accelerating DeConv layers

and generative adversarial networks (GANs) [11], [18], [19].

Yazdanbakhsh et al. [18] proposed an end-to-end FPGA ac-

celerator for GANs that combined MIMD and SIMD models

while separating data retrieval and data processing units at

the finest granularity. Yan et al. [19] proposed a dual con-

volution mapping method to make full use of the available

computational resources. Liu et al. [11] proposed a novel layer

fusion method for GANs with a memory-efficient architecture

to reduce off-chip data transfers. However, these researchers

addressed the acceleration of deconvolution in generative

networks and didn’t aim at segmentation problems.

The most relevant work to this paper is presented in [6],

which optimized the computation of both Conv and Deconv

layers for image segmentation. [6] proposed an efficient

method to deal with the computational inefficiency occurred by

deconvolution and used the design space exploration method-

ology to achieve the optimal resource allocation between Conv

and Deconv modules. However, their design utilized separate

modules for Conv and Deconv, which didn’t share the DSPs

for multipliers and thus led to the problem of resource under-

utilization.

Our approach differs from [6] in three aspects: 1) we

implement both Conv and Deconv in one vector multiplication

module by proposing a uniform architecture, in order to make

full utilization of the available DSP resources (Section III-A);

2) we use layer fusion method by caching all feature maps

in on-chip buffers to reduce off-chip communication (Section

III-D). Therefore, our architecture is compute-bound, such that

we can efficiently use all the DSP resources, and ensure that

they are occupied in the majority of the time; 3) we exploit

channel parallelism instead of data parallelsim in [6] to boost

the performance of our accelerator, since channel parallelism

is much more flexible and efficient for FPGA implementation

compared to data parallelism1.

III. ACCELERATOR ARCHITECTURE

This section starts from the uniform architecture that im-

plements Conv and Deconv layers, then presents the overall

accelerator design for the segmentation DNN model. Finally

we describe the optimization techniques we proposed to im-

prove the performance.

A. The Uniform Architecture

In DNNs, as shown in Code 1, both Conv and Deconv layers

take the feature maps of size C ×Hi ×Wi as the inputs, and

have the Conv/Deconv kernels (F ×C×K×K). Each kernel

(K ×K) is to be convolved or deconvolved with one channel

of input (Hi × Wi) by a sliding stride of S to generate an

output map of size H × W ; then the results of C channels

are accumulated to produce one filter of output (channel loop

in line 2). This process is repeated for F times to produce all

filters of the output feature maps (F ×H ×W) (filter loop in

line 1). The 2-D convolution is described in line 5 of Code 1.

Deconvolution is also called transposed convolution or

fractionally strided convolution [20]. However, transposed

convolution needs to insert zero paddings into the original

input feature maps before implementing convolution, and thus

it leads to computation inefficiency. In this work, we use

the 2-D Deconvolution method proposed in [6] for hardware

implementation, which is illustrated in Figure 1. This method

exploits the sparseness of deconvolution by multiplying the

1Details are explained in Section III-B.

188

Code 1 Convolution and Deconvolution Algorithms

Input: Input feature map I of shape C ×Hi ×Wi;

Weight matrix W of shape F × C ×K ×K;

Output: Output feature map O of shape F ×H ×W ;

1: for (f = 0; f < F ; f ++) // filter loop
2: for (c = 0; c < C; c++) // channel loop
3: for (h = 0;h < H;h++) // row loop
4: for (w = 0;w < W ;w ++) // column loop
5: // convolution:

O[f][h][w] + =
K−1∑

i=1

K−1∑

j=1

W[f][c][i][j] ∗ I[c][h ∗ S + i][w ∗ S + j]

6: // deconvolution:

O[f] + = deconv(I[c],W[f][c]) // see Figure 1.

Input Feature map

C Kernel

pixel × kernel addition crop

Output Map (one filter)
S = 2 Padding = 1

K = 3

Fig. 1. Visualization of a Deconv layer for K = 3, S = 3, Padding = 1.

weight kernel with each input pixel and summing the over-

lapping area in output maps. This method reduces the total

multiplications of Deconv from K2 · F · C · H · W to

r ·F ·C ·H ·W , where r ∈ [1, 2). More details of this method

can be found in [6].

Previous hardware accelerators such as [6], [21] utilized

K × K multipliers to implement the 2-D convolution, i.e.,

unroll the dot-product loop in line 5. However, this type of

architecture cannot be reused for Deconv operation because

of the different data pattern for multiplication. Besides, it is

difficult to be reconfigured for Conv with different kernel size

(such as 3× 3, 5× 5 and 7× 7).

In this work, we propose a uniform architecture to im-

plement both Conv and Deconv with arbitrary kernel size,

by the way that each multiplier is responsible for generating

a single pixel of an output image. That is to say, the 2-D

convolution or deconvolution for one output pixel is performed

in a single multiply and accumulate (MAC) unit in the compu-

tation engine, as shown in Figure 2. The uniform architecture

shown in Figure 2 contains a vector multiplication module

which processes multiple channels of data in parallel, and a

quantization module (computing the sum of the input pixels)

in support of the 8-bit linear quantization scheme proposed

in [22] for integer-only arithmetic inference without accuracy

loss. The details about how Conv and Deconv are implemented

in this uniform architecture are as follows:

Conv Layer: For each output pixel, the corresponding K×
K input pixels from the input maps and K×K weights from

kernel are multiplied in one multiplier in sequential manner.

MUL

MUL

MUL

MUL

ADD

ADD

ADD ADD ACC

ADD

ADD

ADD MUL

D1
W1

D2
W2

D3
W3

D4
W4

D1
D2

D3
D4 8-bit Z

8-bit Quantization

Vector Multiplication
with channel parallelism

Output

Channel 1

Channel 3

Channel 4

Channel 2

Fig. 2. The uniform architecture to implement Conv and Deconv with 8-bit
quantization scheme [22] and multiple channel processing in parallel.

The results of the multiplier are then accumulated to generate

one output of one channel and one filter. Therefore, it takes

K ×K cycles in total to produce one convolution result. The

architecture can implement convolutions with any kernel size

and stride values by fetching the right data from input data

buffers and feeding them into the vector multiplication module.

Deconv Layer: 2-D Deconv is more complex than Conv.

The multiplications and accumulations required for generating

one output pixel depend on the position of the output, i.e., how

many overlapping rows and columns in the output maps, as

we can see from Figure 1. There are three cases in total: 1) for

output with non-overlapping, only one input pixel is multiplied

by the corresponding weight from kernel; 2) for output with

only overlapping row or column, two adjacent input pixels in

row or column dimension are multiplied by the corresponding

weights in sequence, and the results are accumulated. 3) for

output with both overlapping row and column, four adjacent

input pixels in row and column dimensions are multiplied by

the corresponding weights in sequence, and the results are

accumulated. Therefore, it can take 1, 2 or 4 clock cycles

to produce one deconvolution result. The deconvolution is

implemented in the architecture by fetching the right input data

and weights from buffers to be processed by the multipliers.

The proposed uniform architecture can actually support

most computation functions in DNN models such as dilated

convolution and 1-D convolution, by providing the right

sequence of data and weights, and feeding them into the

multipliers from data and weight buffers.

B. Parallelism Exploration

To boost the performance of the accelerator, we explore

different levels of parallelism in our architecture. There are

three levels of parallelism which can be utilized for parallel

processing: filter parallelism, channel parallelism and data

parallelism. They correspond to unrolling the loop in line

1, 2 and 3 of Code 1. Previous design in [6] used the data

parallelism. However, in practical hardware design, we found

189

Bank 1

��
��

��
��
��

Vector
Multiplication Pooling ReLu

data

weight
output

Datapath #1

Vector
Multiplication Pooling ReLu

data

weight
output

Datapath #PF

Bank 2

Bank PC

Data Buffer

Bank 1

��
��

Bank 2

Bank PF

Weight Buffer

#PC

#PC

#PC

Read/Write Control

Bank 1

��
��

Bank 2

Bank PC

Data Buffer

Computation Engine

Fig. 3. The over architecture of our accelerator with double buffers for layer fusion, which supports parallelism in channel (PC) and filter (PF) dimensions.

Host
Processor

DDR
Memory

Interconnect

DMA Computation
Engine

Interconnect

DMA Computation
Engine

Fig. 4. Our accelerating system consisting of the computation engine, off-chip
DDR memories and the host processor.

that data parallelism has a few disadvantages and limitations

which lead to computation inefficiency:

1) Workload imbalance for Deconv implementation. When

doing data parallelism, it needs to process multiple output

data of one row in parallel. As we have mentioned, Deconv

requires different cycles to produce the outputs in one row.

That means, every multiplier’s workload is imbalanced and

some multipliers need to stay idle to wait for others finish

processing, so the multiplier utilization will be very low.

2) Inefficiency for layers with width which cannot be

divided by the degree of parallelism. In hardware design,

the degree of parallelism must be a fixed number, e.g. 32.

However, in DNNs, the Conv and Deconv layers often have

different heights and widths of input maps, and it is impossible

to have a degree of parallelism which all the widths of layers

in the network can be divided by. Besides, there are layers

with small width. For example, for W = 36, the computation

efficiency is only
36/32

�36/32� = 56%.

In this work, we utilize channel parallelism (which was not

used in [6]) instead of data parallelism, as shown in Figure 2.

Multiple channels (PC) of input feature maps are processed in

parallel and the results of multiplications are added together

using an adder tree before the accumulation unit. The benefit is

that every multiplier’s workload is balanced, since the outputs

of different channels have the same position in output maps.

Actually they are producing the same output by addition.

Second, the channel (C) of layers (except the first layer) in

DNNs are often a power of two, or can be tuned to be a

power of two, so they can be divided by the degree of channel

parallelism (PC) which is normally a power of two in hardware

design. Therefore, it doesn’t lead to any loss in the utilization

of multipliers and it is very flexible for algorithm development

in software and memory system design in hardware. On the

contrary, once the size of the first layer’s input is determined,

the size of all other layers are decided, while the channel

values are independent among different layers.

C. Overall Accelerator

Furthermore, our computation engine supports parallelism

in filter dimension (PF). The overall accelerator is shown in

Figure 3. Each data path contains one vector multiplication

module, i.e., the uniform architecture shown in Figure 2, Pool-

ing and ReLu modules. The Pooling and ReLu modules can

be bypassed in each data path for flexible layer configuration.

To enable parallel filter processing, PF data paths have been

instantiated, with each to generate the outputs of F/PF filters.

Input data buffers are divided into PC memory banks, and each

bank has a memory width of one data pixel with the depth of

H ·W · � C

PC
�. Input data are the same for each of all the data

paths. Weight buffers are divided into PF memory banks and

each bank has a memory width of PC data with the depth of

K ·K. Weights of multiple filters are fed into different rows of

the data paths. The PF datapaths share the same quantization

module since they have the same input data pixels, and the

read/write control logic, in order to save resources.

Our accelerating system is shown in Figure 4. It consists

of the computation engine, on-/off-chip interconnect (DMA),

off-chip DDR memories and a host processor. All the weights

and input map of the first layer, and the final segmentation

results are stored in external DDR memory.

190

D. Layer Fusion

The proposed accelerator utilizes the layer fusion method to

reduce the external memory bandwidth requirement by caching

all intermediate results in on-chip buffers. Two data buffers

shown in Figure 3 are implemented in on-chip RAMs in

order to store the input feature data and the output feature

data during one layer’s execution. These two data buffers

have the same data structure and memory size. Before the

first convolution layer starts, the images are loaded from the

DDR and stored in one buffer. During the convolution layer

execution, while the feature data is being streamed into the

data paths, the outputs of this layer are simultaneously stored

into the second data buffer. When executing the second layer,

the second data buffer performs as the input and is being fed

into the data paths, while the output feature maps will be

stored in the other buffer. The final results are loaded back

to DDR from data buffers. The double buffer design also

reduces the communication overhead when implementing the

concat layers, since both input of concat are in on-chip buffers

and they are “virtually” concatenated by a proper address

generator. It should be noted that double weight buffers are

also implemented in our accelerator to overlap the weight load

time with the computation time, although this is not shown in

Figure 3 for simplicity.

E. Other Optimizations

In order to further boost the performance of our accelerator,

we propose a few optimization tricks which are considered in

the practical design.

Input Reshaping: The channel of input map of the first

layer in DNNs is 3 because of the RGB input image. As

we have mentioned, when the channel is smaller than PC or

cannot be divided by PC, it leads to computation inefficiency

in hardware. This causes performance loss when only 3 of

PC multipliers of each data path are working when running

the first layer. To address this problem, we reshaped the input

maps into multiple blocks, and these blocks are concatenated

along the channel dimension. Correspondingly, the multipliers

of the vector multiplication module shown in Figure 2 are

grouped by 4 multipliers, and each group takes three channels

of data as input and generates one output; the outputs of each

data path are PC/4 data in total. In such a way, the computation

efficiency of the first layer are improved from 3/PC to 3/4, i.e.,

75%.

DSP Configuration: The number of multipliers in FPGA-

based accelerators determines the theoretical performance of

the system. In FPGA device, multipliers are often implemented

using DSPs, making DSP the most limiting resource. The

DSP blocks in Intel Arria 10 FPGAs can be fractured into

two 18*19 integer multipliers. Our accelerator uses the 8-

bit quantization scheme. Even we implement two fixed-point

multipliers in one DSP block, it is still a waste of resource

when the 18*19 multiplier is used for 8*8 multiplication. We

fully leverage the DSPs and logic elements (ALMs) by further

implementing one 18*19 multiplier together with some ALM

resource as two 8*8 multiplications and one 16-bit addition. To

Fig. 5. Result on the urban surface image from satellites based on our DNN
model: input image (left) and segmentation result (right).

prevent ALMs exceeding the limit on device, the DSP blocks

are implemented with both two configurations: 1) one DSP

for two 8*8 multipliers; 2) one DSP plus ALMs for four 8*8

multipliers and two 16-bit additions. We provide the optimal

configuration for DSPs of the system to fully leverage the

resource utilization under the constraints of the device.

IV. EVALUATION AND EXPERIMENTS

We first propose the DNN model for RSI segmentation and

show the results compared to other models, then we evaluate

the performance of our accelerator on Intel’s Arria 10 FPGA

device, with comparison to previous FPGA designs.

A. Proposed DNN Model and Accuracy

In this work, we propose and train DNN models for the

segmentation task of remote sensing images obtained from

satellites, which is to provide semantic understanding of the

urban surface. We propose to optimize the U-Net model origi-

nally introduced by Olaf Ronneberger et al. in [23], in order to

improve the trade-off between accuracy and on-device latency.

The proposed model is optimized from three aspects: 1) Width

reduction: the number of filter of each layer is reduced by

half for thinner models. 2) Resolution multiplier: the input

image is adjusted from 572*572 to 256*256 and the internal

representation of every layer is subsequently reduced. 3) The

unpadded convolutions are replaced by padded convolutions in

order to remove the crop operation, and thus the segmentation

result has the same resolution as the input image.

The segmentation result for the urban surface images from

satellites is shown in Figure 5. The overall accuracy (OA) of

the proposed model compared to other models are shown in

Table I. Our model provides the overall accuracy of 80.1%

which is preferable over most of the other evaluated methods.

Under such accuracy, most of the semantics in the image

can be understood. Although SegNet and FCN-8s have higher

191

accuracy than our model, these two models have larger compu-

tation complexity which will increase the on-board processing

latency for RSI segmentation.

TABLE I
CLASSIFICATION ACCURACY (%) COMPARISON OF THE PROPOSED MODEL

AND OTHER METHODS

SegNet DeepLab v3 FCN-32s FCN-16s FCN-8s
Proposed

(U-Net)

OA (%) 81.7 74.4 76.1 79.1 81.0 80.1

B. Hardware Implementation

We evaluate our accelerator by implementing the proposed

model on Intel’s Arria 10 SOC FPGAs which contains an

A10-SX 660 device (20nm), 1.5 GHz dual-core ARM-based

CPU and 2GB DDR4 memory. The whole system is developed

using Verilog HDL and implemented with Quartus Prime

Pro 18.1 which performs synthesis and implementation. Our

accelerator is configured at 64*64 (PC*PF) and running at 200

MHz clock frequency.

C. Resource Utilization

Table II shows the resource utilization of our proposed

accelerator at 64*64 (PC*PF) running on the Arria 10 SX 660

device at 200 MHz. Owning to the proposed DSP configura-

tions, we can leverage the DSP blocks fully, and the resource

allocation is balanced between ALMs and DSPs.

TABLE II
RESOURCE UTILIZATION OF THE ACCELERATOR ON ARRIA 10 SX 660.

Resources ALMs Reg DSPs M20K

Used 170,906 377,142 1,665 1,894

Total 251,680 727,160 1,687 2,131

Utilization 68% 52% 99% 89%

D. Performance Comparison
We execute the proposed DNN model in our accelerator,

with the input images of size 256*256*3. The total compu-

tational complexity of the DNN model is 27.4 GOP (giga

operations). Our accelerator achieves the latency of 17.4 ms,

which is 57 images per second and 1578 GOPS of throughput.
Table III shows the comparison of our accelerator against

prior FPGA accelerators. It should be noted that only [6] im-

plemented the segmentation model containing both Conv and

Deconv, and other accelerators were designed for Conv layers

only. Nevertheless, our accelerator outperforms all the other

accelerators in terms of both resource efficiency (GOPS/DSP)

and energy efficiency (GOPS/W), as shown in Table III. These

improvements are mainly due to the full utilization of DSP

blocks in our design, where they are occupied over most of the

execution time. Our accelerator gains very large improvement

in the performance and resource efficiency by the factor of

14.7× and 7.8× respectively compared to [6] which run the

same task as ours. That is due to the proposed uniform

architecture which implements both Conv and Deconv, and

thus the introduction of Deconv layers doesn’t lead to any

performance loss in our design.
The high compute and energy efficiency of our accelerator is

obtained from taking the advantages of high parallelism [25]

and on-chip memory bandwidth [26] of FPGA architecture,

and reducing the off-chip memory bandwidth requirement.

V. CONCLUSION

This paper proposes an accelerating system for real-time

on-board processing for RSI segmentation in space platforms.

We propose a uniform architecture that can efficiently imple-

ment both Conv and Deconv layers in DNN models. This

architecture is further optimized by exploiting different levels

of parallelism, layer fusion method and fully leveraging the

DSPs. Our accelerator running the proposed model shows

higher performance and energy efficiency than others. Future

work will extend the proposed accelerator to cover other DNN

benchmark models and automate their development process.

TABLE III
COMPARISON WITH PREVIOUS FPGA ACCELERATORS.

Ma et al. [24]
in FPGA 2017

Aydonat et al. [17]
in FPGA 2017

Guo et al. [9]
in TCAD 2018

Liu et al. [6]
in TRETS 2018 Ours

DNN Model VGG-16 AlexNet VGG-16 U-Net Optimized U-Net

Platform Intel A10 1150 Intel A10 1150 Xilinx XC7Z020 Xilinx XC7Z045 Intel A10 660

Frequency (MHz) 150 303 214 200 200

Precision 8-16 bit fixed 16-bit float 8-bit fixed 16-bit fixed 8-bit fixed

#DSP 1518 1518 220 900 1688

Logic (ALMs/LUTs) 427K 427K 53K 218K 250K

Power (W) 45 45 3.5 9.6 32*

Latency (ms) 47.97 not reported 364 58.0 17.4

Performance (GOPS) 645.25 1382 84.3 107 1578

Resource Efficiency
(GOPS/DSP) 0.425 0.91 0.38 0.12 0.93

Energy Efficiency
(GOPS/W) 14.3 30.7 24.1 11.2 49.3

* The power consumption is measured from the board using a power meter.

192

REFERENCES

[1] R. L. Dodge and R. G. Congalton, “Meeting environmental challenges
with remote sensing imagery.” AGI, 2013.

[2] E. C. Barrett, Introduction to environmental remote sensing. Routledge,
2013.

[3] Y. Fan, Q. Wen, W. Wang, P. Wang, L. Li, and P. Zhang, “Quantifying
disaster physical damage using remote sensing data—a technical work
flow and case study of the 2014 ludian earthquake in china,” Interna-
tional Journal of Disaster Risk Science, vol. 8, no. 4, pp. 471–488,
2017.

[4] J. Iliffe, Datums and map projections for remote sensing, GIS, and
surveying. CRC Press, 2000.

[5] S. Yin, Y. Zhang, and S. Karim, “Large scale remote sensing image
segmentation based on fuzzy region competition and gaussian mixture
model,” IEEE Access, vol. 6, pp. 26 069–26 080, 2018.

[6] S. Liu, H. Fan, X. Niu, H.-C. Ng, Y. Chu, and W. Luk, “Optimizing
cnn-based segmentation with deeply customized convolutional and
deconvolutional architectures on fpga,” ACM Trans. Reconfigurable
Technol. Syst., vol. 11, no. 3, pp. 19:1–19:22, Dec. 2018. [Online].
Available: http://doi.acm.org/10.1145/3242900

[7] S. Wang, X. Niu, N. Ma, W. Luk, P. Leong, and Y. Peng, “A scalable
dataflow accelerator for real time onboard hyperspectral image clas-
sification,” in Applied Reconfigurable Computing. Cham: Springer
International Publishing, 2016, pp. 105–116.

[8] J. Fowers, K. Ovtcharov, M. Papamichael, T. Massengill, M. Liu,
D. Lo, S. Alkalay, M. Haselman, L. Adams, M. Ghandi, S. Heil,
P. Patel, A. Sapek, G. Weisz, L. Woods, S. Lanka, S. K. Reinhardt,
A. M. Caulfield, E. S. Chung, and D. Burger, “A configurable cloud-
scale dnn processor for real-time ai,” in 2018 ACM/IEEE 45th Annual
International Symposium on Computer Architecture (ISCA), June 2018,
pp. 1–14.

[9] K. Guo, L. Sui, J. Qiu, J. Yu, J. Wang, S. Yao, S. Han, Y. Wang,
and H. Yang, “Angel-eye: A complete design flow for mapping cnn
onto embedded fpga,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 37, no. 1, pp. 35–47, Jan 2018.

[10] S. Liu, R. S. Chu, X. Wang, and W. Luk, “Optimizing cnn-based
hyperspectral imageclassification on fpgas,” in ARC, 2019.

[11] S. Liu, C. Zeng, H. Fan, H.-C. Ng, J. Meng, and W. Luk, “Memory-
Efficient Architecture for Accelerating Generative Networks on FPGAs,”
in IEEE International Conference on Field Programmable Technology
(FPT), 2018.

[12] L. He, Z. Peng, B. Everding, X. Wang, C. Y. Han, K. L.
Weiss, and W. G. Wee, “A comparative study of deformable
contour methods on medical image segmentation,” Image and Vision
Computing, vol. 26, no. 2, pp. 141 – 163, 2008. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0262885607001230

[13] A. Ben Hamida, A. Benoit, P. Lambert, L. Klein, C. Ben Amar,
N. Audebert, and S. Lefvre, “Deep learning for semantic segmentation
of remote sensing images with rich spectral content,” in 2017 IEEE
International Geoscience and Remote Sensing Symposium (IGARSS),
July 2017, pp. 2569–2572.

[14] C. Zhang and V. Prasanna, “Frequency domain acceleration of con-
volutional neural networks on CPU-FPGA shared memory system,” in
FPGA, 2017, pp. 35–44.

[15] L. Lu et al., “Evaluating fast algorithms for convolutional neural
networks on fpgas,” in FCCM, 2017, pp. 101–108.

[16] M. Alwani, H. Chen, M. Ferdman, and P. Milder, “Fused-layer cnn
accelerators,” in 2016 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), Oct 2016, pp. 1–12.

[17] U. Aydonat et al., “An OpenCLTMDeep Learning Accelerator on Arria
10,” in FPGA, 2017, pp. 55–64.

[18] A. Yazdanbakhsh et al., “FlexiGAN: An End-to-End Solution for FPGA
Acceleration of Generative Adversarial Networks,” in FCCM, 2018.

[19] J. Yan, S. Yin, F. Tu, L. Liu, and S. Wei, “Gna: Reconfigurable
and efficient architecture for generative network acceleration,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 37, no. 11, pp. 2519–2529, Nov 2018.

[20] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint arXiv:1603.07285, 2016.

[21] R. Zhao, X. Niu, Y. Wu, W. Luk, and Q. Liu, “Optimizing CNN-Based
Object Detection Algorithms on Embedded FPGA Platforms,” in ARC.
Springer, 2017, pp. 255–267.

[22] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam,
and D. Kalenichenko, “Quantization and training of neural networks
for efficient integer-arithmetic-only inference,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 2704–2713.

[23] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in In Medical Image Computing
and Computer-Assisted Intervention. Springer, 2015, pp. 234–241.

[24] Y. Ma, Y. Cao, S. Vrudhula, and J.-S. Seo, “Optimizing loop operation
and dataflow in fpga acceleration of deep convolutional neural
networks,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, ser. FPGA ’17.
New York, NY, USA: ACM, 2017, pp. 45–54. [Online]. Available:
http://doi.acm.org/10.1145/3020078.3021736

[25] S. Liu, G. Mingas, and C.-S. Bouganis, “An unbiased MCMC FPGA-
based accelerator in the land of custom precision arithmetic,” IEEE
Transactions on Computers, vol. 66, no. 5, pp. 745–758, 2017.

[26] S. Liu and C.-S. Bouganis, “Communication-Aware MCMC method
for big data applications on FPGAs,” in 2017 IEEE 25th Annual
International Symposium on Field-Programmable Custom Computing
Machines (FCCM). IEEE, 2017, pp. 9–16.

193

