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Abstract—FPGAs show promise as machine learning acceler-
ators for both training and inference. Designing these circuits
on reconfigurable technology is challenging, especially due to
bugs that only manifest on-chip when the circuit is running at
speed. In this paper, we propose a flexible debug overlay family
that provides software-like debug times for machine learning
applications. At compile time, the overlay is added to the design
and compiled. At debug time, the overlay can be configured
to record statistical information about identified weight and
activation matrices; this configuration can be changed between
debug iterations allowing the user to record a different set of
matrices, or record different information about the observed
matrices. Importantly, no recompilation is required between
debug iterations. Although the flexibility of our overlay suffers
some overhead compared to fixed instrumentation, we argue that
the ability to change the debugging scenario without requiring a
recompilation may be compelling and outweigh the disadvantage
of higher overhead for many applications.

I. INTRODUCTION

Field-Programmable Gate Arrays (FPGAs) have emerged as
an important implementation option for many machine learn-
ing applications. Compared to CPUs and GPUs, FPGAs may
lead to training and inference implementations with higher
throughput and lower power consumption. These potential
advantages have led to numerous proposals for FPGA-based
machine learning applications [1]–[4].

Creating a correctly working FPGA-based machine learning
application is challenging. Although high-level models (such
as those written on top of TensorFlow) can be used to
investigate the correctness, accuracy, and convergence of some
applications, this often requires long run times, due to the
need to train on a large data set or evaluate the response
to many input samples. In addition, many applications can
only be evaluated by understanding their response to real input
traffic. In these cases, accurate characterization can often only
be done by running the hardware implementation at speed in
a real system.

Frameworks that ease the debug of running FPGA systems
have been proposed [5]–[13]. These frameworks provide a
mechanism to store the behaviour of key signals in a design
as the chip runs for later interrogation, with the goal of
providing visibility into the run-time operation of the chip.
By understanding the behaviour of key signals, the user may
be able to glean information that may help them uncover the
root cause of any observed unexpected behaviour.

Although most of this work has targeted general-purpose
applications, the framework described in [13] is optimized to

debug machine learning applications. Machine learning appli-
cations are unique in that they typically contain large matrices
(such as weights or activations), and storing the behaviour of
all entries in these matrices will quickly exhaust the capacity
of on-chip trace buffers. In addition, tracing the raw values
of individual entries of large matrices may not be useful
during debug. Rather, the “correctness” of machine learning
applications depends on the ensemble of a large number of
weights and activations acting together. The framework in [13]
addresses this by storing the history of statistical measures or
approximate weight or activation values in the trace buffers,
allowing much better trace buffer utilization than previous
techniques.

During the search for an elusive bug, as the user’s under-
standing of the operation of the circuit evolves, he or she may
wish to observe a different set of matrices, or record different
statistical information about the matrices already being ob-
served. An important limitation of the framework in [13] is
that every time a new set of matrices is to be recorded, the
user circuit needs to be recompiled. Recompilation is slow,
and limiting debug productivity.

In this paper, we address this limitation by presenting a
new framework which allows the user to change the matrices
recorded or change the information recorded about each matrix
without requiring a recompilation. Different from overlays
that target general-purpose debug, our overlay has capabil-
ities that are specifically tailored for the lossy compression
techniques proposed in [13]. The overall approach is shown
in Figure 1. At compile time, the user circuit is instrumented

Fig. 1. Debug Framework
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with a flexible overlay. At debug time, the overlay can be
configured to store statistical information about identified
matrices; the overlay’s configuration can be changed between
debug iterations allowing the user to record a different set of
matrices, or record different information about each matrix.
Although the overlay instrumentation is somewhat larger than
that in [13], we argue that the ability to change the debugging
scenario without requiring a recompilation may be compelling
and outweigh the disadvantage of higher overhead for many
applications.

This paper is organized as follows. Section II describes
the baseline architecture in [13] upon which we build our
work. Section III describes our debug framework in detail.
The overlay architecture is then described in Section IV, and
a graphical user interface is presented in Section V. Our
technique is evaluated in Section VI. Section VII describes
related work and Section VIII concludes the paper.

II. BASELINE

In this section, we describe the flow in [13] upon which we
build our work. As described in the introduction, the key to
enabling effective debugging is to provide information to the
user about the internal operation of the chip. Understanding
the behaviour of the running design is essential for a user as he
or she tries to uncover the root cause of unexpected behaviour
(bugs). Due to bandwidth limitations, this information needs
to be stored on-chip while the circuit is running and then read
out for later interrogation.

In this framework, the user first describes a machine learn-
ing circuit using a high-level framework (such as Tensor-
Flow) to evaluate convergence and accuracy, and select meta-
parameters such as the size, type, and number of layers and
their interconnection. Once the user settles on an architecture
and a particular set of meta-parameters, the design is translated
to RTL, either manually, or using an automated tool (such
as [14]).

To increase visibility into the design, instrumentation is
added that monitors selected signals in the design, and records
them on-chip. Unlike earlier work [12], [15] or commercial

Fig. 2. Instruments

tools [16], [17], in which individual source code variables or
signals are monitored, the instrumentation described in [13] is
optimized to monitor large matrices, such as those that might
be found in a machine-learning application to store weights
and activations. Since it is not possible to monitor all matrices
in a large design, the user must be judicious in selecting which
matrices would provide the maximum value during debug, and
adjust the instrumentation to monitor only those matrices.

The user design, along with the instrumentation is then
compiled using the normal back-end FPGA CAD flow (the
work in [13] uses Quartus Pro). The circuit then runs on
an FPGA, and the instrumentation records information about
the run-time behaviour of the selected matrix(ces). After the
run is complete, or when the circuit reaches a pre-determined
breakpoint, the trace buffer information can be read out, and
used, along with a graphical user interface to help the user
understand the behaviour of their design.

Since a full history of these large matrices will quickly
overwhelm the size of the on-chip trace buffers, the instrumen-
tation in [13] contains compression circuitry which records
information about the values in the selected matrices, rather
than the raw values of the elements. In [13], three types
of compression circuitry are described, shown graphically in
Figure 2 and are described briefly below:

Distribution instrument: The distribution instrument bins
the frequency count of values within the selected matrix in
a histogram-like fashion. This is shown on the left side of
Figure 2. The size of each bin and the number of bits for each
histogram value can be optimized based on the user circuit and
available memory. A separate histogram is created for each
“frame” of the input stream; a frame is a user-defined period
and may correspond, for example, to a single input image in
a CNN. Such an instrument may be useful if the user wishes
to determine whether a given matrix contains values that span
an expected range, or whether values are biased high or low.

Spatial Sparsity Instrument: Often, a user may wish to
determine the distribution of zeros within a matrix. Such
information might be useful in a neural network for example,
where the distribution of non-zero values may be related to
the attention region of a particular layer. The spatial sparsity
instrument shown in the centre of Figure 2 provides the ability
to record which elements in the selected matrix are zero
(within some tolerance). Again a separate map is created for
each frame in the input stream.

Summary Statistics Instrument: Sometimes, it may be suf-
ficient for the user to understand overall statistics regarding
the run-time behaviour of the design. The Summary Statistics
instrument stores the sparsity of the observed matrix(ces)
without storing the location of the individual zeros.

The data is stored in the available trace buffers in a round-
robin fashion as the circuit runs (with newer data replacing
the oldest data in the buffer). Since the trace buffer is typically
larger than the size of a single frame, at the end of the run,
data regarding multiple frames would be stored in the trace
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buffer; the more frames for which we have data, the more
useful it will be to help the user deduce the cause of a bug.

In [13], a GUI is also described. The user can use the GUI
to step through the operation of the design, using recorded
data. After each run, as the user refines his or her view of the
operation of the design, the user can change the matrix(ces)
or instrumentation type, recompile the design, and repeat until
the root cause of the bug is found. Each of these iterations is
often termed a “debug turn”.

After debugging is complete, the user may choose to remove
the overlay for production or leave the overlay in place but
disable it.

III. ENHANCED DEBUG FLOW

A limitation of the baseline flow is that every time a new
set of matrices are to be recorded, or every time a new
compression instrument is to be used, the user circuit (and
instrumentation) needs to be run through the entire FPGA
vendor CAD flow, including synthesis, place and route. This
might take hours, and significantly limits debug productivity.
In this section, we describe our flow which allows the user
to change the matrix(ces) to be observed, the compression
scheme used for each observed matrix, and the allocation of
trace buffer memory to each instrument, without requiring a
recompilation.

As in the baseline flow, the user inserts debug instrumenta-
tion into the user circuit, compiles using a back-end tool flow,
and runs the circuit on an FPGA. Unlike the baseline, however,
this instrumentation circuitry is flexible at run-time, without
requiring a recompilation. After the circuit has been compiled,
but before it is run, the instrumentation can be configured in
the following three ways:

Selective Matrix Tracing: Selective Matrix Tracing refers
to the capability to configure the overlay, at debug time, to
specify which matrices in the user circuit should be traced.
In our implementation, we focus on weight and activation
matrices, since these are common in many machine learning
applications, however, any large array could be monitored
using our infrastructure.

Selective Compression: Storing the run-time behaviour of
the raw values of all entries in large matrices will quickly
overwhelm any reasonably-sized trace buffer. As in [13], our
instrument contains three types of compression circuitry: spa-
tial sparsity, histogram, and summary statistics. Unlike [13],
the compression circuit used can be configured at debug time.

Flexible Trace Buffer: In the baseline flow, each instrument
feeds one trace buffer. The size of each trace buffer must be
statically determined at compile time. In our flow, the allo-
cation of trace buffer space to instruments can be configured
dynamically at run-time. Different instruments may use trace
buffer space at different rates, meaning if the trace buffer
space is not allocated properly, some trace buffers may fill
before others, leading to uneven recording lengths for different
matrices in the design. This flexibility allows the user to

customize the amount of space devoted to each monitored
matrix, and change this allocation as debugging proceeds.
It also allows degenerate configurations, such as allocating
all trace buffer space to a single instrument, maximizing the
history for a selected matrix.

After the instrumentation has been configured (by writing
the configuration through the JTAG port), the circuit is then
run, and the instrumentation records information regarding
each identified matrix into the trace buffers (as in the baseline
flow, the trace buffers are configured as circular buffers). Each
buffer continues to record data until either a breakpoint is
reached or a predetermined condition indicates that recording
should stop. At that point, the user can start a debug GUI (to
be described in Section V) to analyze the recorded data.

As in the baseline flow, since the on-chip trace buffer is of a
limited size, we can not store the entire run-time history of all
matrices in the trace buffer. This means that, when debugging,
the user can only view the behaviour of the identified matrices.
As users refine their view of the operation of the circuit,
they may wish to modify the debug scenario, and repeat the
process until the root cause of bug is determined. Importantly,
the design does not need to be recompiled when the debug
scenario is changed.

IV. ARCHITECTURE

Key to our technique is instrumentation that is flexible, yet
adds as little overhead as possible to the user design. In this
section, we describe our instrumentation architecture.

A. Overall Architecture

Figure 3 shows the overall architecture. The instrumentation
consists of a number of Processing Elements (PEs) (three PEs
are shown in the figure, however, this can be selected as the
instrumentation is inserted, depending on the amount of chip
area available). The instrumentation also contains a number
of composable memory blocks (CM), each of which will be
mapped to some number of embedded memory arrays in the
target FPGA. The number of CMs can be selected depending
on the size of the FPGA. The inputs of the instrumentation are
hardwired to the address and data lines of the circuitry used
to write data to selected matrices in the user circuit. A flexible

Fig. 3. Overall Instrumentation Architecture
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(a) Distribution (b) Spatial Sparsity (c) Summary Statistics

Fig. 4. Instrumentation Logic Block Diagrams

Fig. 5. Instrumentation Logic Block of Super Instrument

Fig. 6. PE Architecture

crossbar connects the inputs to the PEs; two additional flexible
crossbars connect the PEs to the CMs. Each interconnect point
within each crossbar is controlled by a register which can be
written through the JTAG port at run-time. The crossbars are
flexible enough that any input can be connected to any PE,
and any PE can be connected to one or more CMs. Multiple
CMs can be connected to a single instrument, allowing larger
storage regions to be associated with a single matrix in the
user circuit. The “return path” between the CMs and PEs
is included for the histogram and spatial sparsity instruments
since they require both reading and writing to the trace buffer.

We consider two variants of the architecture. In the first
variant, each PE is statically fixed as either a histogram, spatial
sparsity, or summary statistics instrument. In this variant,
although the user can change which instrument is connected
to which user matrix, the mix of instruments is static. In the
second variant, each PE can be configured to be any of the
three (we call such an instrument a super instrument), meaning
the mix of instruments is flexible at run-time. The second
variant is more flexible, but as we will show in the next section,
has a higher overhead.

B. Processing Element
A block diagram of each PE is shown in Figure 6. The

heart of each PE is the Instrumentation Logic sub-block
which contains the compression circuitry described earlier. The
contents of this block depends on the instrumentation being
used for this PE; Figure 4 shows the structure of the sub-block
for the distribution instrument, the spatial sparsity instrument
and the summary statistics instrument, and Figure 5 shows
combined architecture used to create the super instrument.
Among all the sub-blocks that make up the PE, this is the
only sub-block that differs for different compression methods.

Each PE also contains matrix selectors, which implement
the crossbars described earlier, a Reconfiguration Block which
allows the user to change the configuration of the crossbars and
internal instrument operation at run-time using the JTAG port,
and a memory management block which will be described in
the next subsection.

C. Flexible Trace Buffer Memory Organization
In [13] each trace buffer memory can have a width tailored

according to the instrument being used and the size of the
matrix being traced. This allowed for a very high memory
utilization. However, it is not adequate for a scenario in which
the instrumentation can change at debug time. When used to
store data from the distribution instrument, each data element
must be wide enough to store the number of elements in
each bin; this is a function of the matrix size, and changes
as the matrix being recorded change. For the spatial sparsity
instrument, each element is a single bit and the number of
bits depends on the size of the matrix. The summary statistics
instrument only stores one value per frame. Therefore, an
adaptive packing mechanism is required to pack data elements
into a fixed-size memory width. This is shown graphically in
Figure 8.
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Fig. 7. Example showing Progression of Trace Buffer Memory

Fig. 8. Memory content organization according to instrument

The memory organization is further complicated by the
fact that the instrumentation must be fast enough to write
new information to the trace buffer every cycle. This has
two implications. First, the spatial sparsity and distribution
instruments construct their results in an incremental way; each
sample requires updating either a bin or an entry in the sparsity
map. Therefore, both reading and writing the trace buffer is
required in each cycle. This can be satisfied by using dual-
port embedded memories to implement trace buffers; dual-port
SRAM blocks are common on FPGAs.

Second, it is necessary to “zero out” a region of memory be-
tween frames to avoid incrementally computing new statistics
on top of old values (recall the trace buffers are implemented
as circular buffers, so each frame replaces an older frame).
Critically, since we are tracing data in real-time, we do not
wish to stop the circuit between frames.

The instruments presented in [13] solved this issue by
keeping track of dirty bits in a second memory. The width

of this dirty bit memory was given by the number of elements
that need to be stored for each frame. This solution is not
preferred in our case, since the dirty bit memory rarely has
the same width as the memory being used to store the values
traced. In our case, all memories should ideally have the same
width to be efficiently used by different instruments.

We solve this by associating a minimum of two composable
memory blocks with each distribution or spatial sparsity in-
strument. One of the memories is actively being used to store
the new information from the user circuit (active state), while
the other memory is used to “clean” the words that have not
been written to during the previous frame (cleaning state).
Each word is marked as clean or dirty using a frame encoding
bit which changes every time that a new frame is written into
the same memory. This encoding bit is used to guarantee that
we can differentiate between values that we can use during
the current frame (e.g. a bin of a histogram that we have to
increment) and values from an unrelated frame that has been
previously stored in this memory location.

An example of our technique is shown in Figure 7. In this
example, we use two memories to store the distribution his-
togram with three bins. Since there are three bins, each frame
requires three words in the trace buffer plus one encoding
bit. Bin values in the diagram are labeled “???” if they are
uninitialized, or contain data from a previous frame.

In Figure 7(a), the memory on the left is in the active state.
At the end of the first frame (Frame 0), the three words contain
the count of data elements for each bin (1, 2, and 7). The
encoding bit (final bit in each word) is set to 1 for all words
corresponding to this frame.

At the end of the next frame (Frame 1), the memory on
the right contains the count of data elements for Frame 1 as
shown in Figure 7(b). Again, a 1 is used in each encoding bit.
In this case, there were no elements mapped to the first bin,
so this entry contains old data, and the encoding bit for this
entry was not properly set to 1 (this will be “cleaned” later).
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In Figure 7(c), at the end of the third frame (Frame 2),
the memory on the left contains information about Frame
2. In this case, the encoding bit for each entry is set to 0
to differentiate these words from those corresponding to the
previous frame. The memory on the right has been “cleaned”
in that the missing value in the histogram (the first word) is
set to 0 and the encoding bit is updated properly.

Figure 7(d) shows both memories a few frames later. In this
figure, the memory on the left is cleaning Frame 6, while the
memory on the right is active and storing information from
Frame 7.

Since this is a circular trace buffer, the next frame (Frame
8) will overwrite the information written into the three first
words of the matrix on the left. The encoding bits allow us
to differentiate previous information from information that is
being processed at the current frame.

An alternative architecture would “zero out” frames before
they are written rather than fixing missing entries after the
frame is written. Such an architecture would not require
encoding bits, but would be able to store one fewer frame in
the steady state. Since matrices can be large, we have elected
to implement the first architecture.

V. GRAPHICAL USER INTERFACE

We provide a graphical user interface (Figure 9) that serves
three purposes. First, at compile time, the designer can select
the number and type of PEs and composable memory blocks,
and can identify all the matrices in the user circuit that may
be potentially traced (perhaps all of them). Second, at run-
time, the user can select which of the matrices should be
traced in a given run, which PEs should be connected to each
matrix, the configuration of any super-instrument, and how
the composable memories should be allocated to the PEs (the
latter can optionally be done automatically based on the data
production rate of each instrument). Third, at debug-time, after
the circuit has been run and the trace history is read out, the
user can visualize the compressed data that has been stored
in the trace-buffer of those instruments in a way that makes
sense for a machine learning domain expert.

Fig. 9. Graphical user interface

VI. EVALUATION

The overlay architecture is characterized by several parame-
ters that allow the user to trade-off the amount of information
that can be traced and area overhead. In this section, we will
evaluate different architectures to show how those different
parameters impact memory and area utilization.

A. Overhead of overlay when compared to baseline

To compare with previous work, we create circuits made to
observe kernels that are part of Convolutional Neural Networks
(CNNs). This is very similar to the approach taken in [13].
The generated circuits contain kernels that consist of 28x28
convolutions with 1, 8 and 16 channels.

We compare twenty different debugging configurations by
varying the instrumentation being used and the matrices being
observed. Similar to [12], [13], [15], 100Kb of total trace
memory is assumed for all scenarios. For all experiments, each
data point corresponds to an average of 20 circuits placed and
routed using different seeds.

Table I shows the overhead in terms of area and speed
of our architecture when compared to the baseline. In this
experiment, all matrices were instrumented by our overlay.
Which of those instrumented matrices is actually observed
by each overlay instrument can be changed at debug time,
while the observed matrix in the baseline is only configurable
at compile-time. For all scenarios in this experiment, our
instrumentation uses two composable memory blocks, while
the baseline has a single trace buffer with the same total size.

As shown in Table I, when only a single instrument is used,
the area increase of our instrumentation when compared to the
baseline is very low for almost all instrument types. The only
exception is the spatial sparsity instrument, which uses packing
logic to store the data in multi-bit words instead of using
single-bit words as is done in the baseline. The critical path
delay of the distribution instrument remains approximately the
same, while the delay of the summary statistics instrument
slightly decreases due to the trace-buffer being split into two
smaller memories. The delay of the spatial sparsity increases
due to the packing logic used to compress the data. We an-
ticipate that we could reduce this impact by further pipelining
the instrumentation.

The impact in terms of how many frames we are able to
store information about the matrix we are observing (trace
size) is also shown in Table I. The trace sizes of the distribution
instrument and spatial sparsity in our overlay for all matrices
are the same as in the baseline for the largest matrix. This
happens because each word of the trace buffer needs to be wide
enough to store information in the worst-case scenario (which
is given by the largest instrumented matrix). Nevertheless, the
trace size of the spatial sparsity varies according to the size of
the matrix being traced. This is possible due to the flexible bit
compression scheme developed for this instrument, making its
trace size very similar to the baseline.

Table II shows results from the same experiment when the
super instrument is used instead of other instruments with
fixed compression types. In this scenario, the super instrument
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TABLE I
OVERHEAD OF ADDING CAPABILITY TO OBSERVE DIFFERENT MATRICES COMPARED TO BASELINE

Configuration
Baseline [13]

(Compile-time Configurable)
Ours

(Debug-time Configurable)
Observing
Matrix A

Observing
Matrix B

Observing
Matrix C

Observing
Matrices A, B or C

Instrument FMax
(MHz) LEs Trace

Size§
FMax
(MHz) LEs Trace

Size§
FMax
(MHz) LEs Trace

Size§
FMax
(MHz) LEs Trace

Size§

Distribution Instrument
(32 Bins) 196.5 830 284 197.4 823 223 199.7 828 208 201.6 976

A: 208
B: 208
C: 208

Distribution Instrument
(128 Bins) 185.1 1557 71 187.1 1552 55 187.5 1558 52 181.1 1508

A: 52
B: 52
C: 52

Spatial Sparsity
Instrument 188.0 471? 127 184.6 466? 15 191.0 463? 7 162.2 867

A: 120
B: 14
C: 6

Summary Statistics
Instrument 203.2 473 10000 208.9 476 7692 204.5 478 7142 212.7 584

A: 7142
B: 7142
C: 7142

§ Number of times information about the entire 32-bit frame could be tracked.
† Matrix A is 1x28x28, matrix B is 8x28x28 and matrix C is 16x28x28 (circuit being instrumented has all 3 matrices).
? Baseline implementation uses single-bit words, while ours uses a packing logic to compress the data into multi-bit words.

TABLE II
OVERHEAD OF ADDING CAPABILITY TO OBSERVE DIFFERENT MATRICES COMPARED TO BASELINE

Configuration
Ours

(Debug-time Configurable)
Observing
Matrix A

Observing
Matrix B

Observing
Matrix C

Observing
Matrices A, B or C

Instrument FMax
(MHz) LEs Trace

Size§
FMax
(MHz) LEs Trace

Size§
FMax
(MHz) LEs Trace

Size§
FMax
(MHz) LEs Trace

Size§

Super
Instrument? 165.18 1098

Dist.:182
Spat.:120

Summ.:5882
164.4 1107

Dist.:182
Spat.:14

Summ.:5882
164.8 1115

Dist.:182
Spat.:6

Summ.:5882
164.3 1143

Dist.:182
Spat.:6-120

Summ.:5882
§ Number of times information about the entire 32-bit frame could be tracked.
† Matrix A is 1x28x28, matrix B is 8x28x28 and matrix C is 16x28x28 (circuit being instrumented has all 3 matrices).
? Either distribution (32 bins), spatial sparsity or summary statistics instrument.

can be configured at debug-time to work either as the spatial
sparsity, summary statistics or distribution instrument with 32
bins. Since there is significant component reuse, the total area
utilization of this instrument is similar to the area of the largest
instrument that it is composed of. The critical path delay of
this instrument was given by the spatial sparsity component.

As shown in Table II, the configurability of the super
instrument can also cause the reduction of the trace size in
some cases. Note that all instruments of the super instrument
need to be able to share the same trace buffer. This means that
the trace buffer memory width must be given by the worst-case
scenario for all of those instruments, reducing the trace size of
instruments that could otherwise utilize a narrower memory.

B. Impact of number of instruments and memories

Figure 10 shows a different experiment in which a circuit
with eight instrumented kernel matrices can be observed by
either 1, 2, 4 or 8 instruments, while the number of composable
memories in the design is also varied. Note that the number of
memories and instruments do not need to be a power of two
in order for the instrumentation to be efficient. Each data point
corresponds to an average of twenty placed and routed circuits

and the total memory for the trace buffer of those circuits is
kept at 100Kb.

As shown in Figure 10, the area grows according to the
number of instruments and memories added to the circuit.
However, this number is never larger than 5,000 LEs when
using up to 4 instruments and 8 memories. This corresponds
to approximately 0.5% of a Stratix V FPGA or less than 0.2%
of a modern Stratix 10 device.

As expected, the area overhead of the distribution and
spatial sparsity instruments, which need to both read and
write to the composable memories, are larger than the area
for the summary statistics instrument. The area of the super
instrument is comparable with the area of the distribution and
spatial sparsity instruments, which indicates that using this
flexible instrument might very often be a better alternative
than using instruments with a fixed compression scheme.

We anticipate that both area and delay could be further
decreased by limiting the number of simultaneous connections
supported between instruments and memories by using a
concentrator and time-multiplexing the memory accesses.
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Fig. 10. Impact of number of memories and instruments: (a) Summary Statistics Instrument; (b) Distribution Instrument (32 bins); (c) Spatial Sparsity
Instrument; (d) Super instrument.

VII. RELATED WORK

Early work on enhancing the visibility of FPGA circuits
focused on using scan-chains and similar techniques to capture
a snapshot of the circuit at a certain point in time [18], [19].
This allows a very high visibility at a low area cost, but does
not provide a history of how values change over time if it is
not possible to resume execution after the circuit stopped.

There has been much effort developing techniques for
storing data at run-time into circular buffers including building
instruments that contain run-time compression [20]–[23]. This
has led to commercial products that insert trace buffers and
associated circuitry into FPGA designs [5], [6]. Compared
to the work in this paper, the previous techniques focus on
general-purpose designs and are not optimized for the large
matrices that are common in machine learning designs.

Improving the turn-around time between debug turns, in-
cluding limiting recompiling the part of instrumentation that
changes, partial reconfiguration, and post-place and route de-
bug insertion have also been proposed by various authors [7],
[24]–[27]. Overlays have also emerged as an interesting option
to achieve even lower debug turn-around times at a higher area
cost [15], [28], [29]. Again, unlike the work in this paper, these
previous studies were not optimized for machine learning.

Work in optimizing the instrumentation for circuits devel-
oped using high-level synthesis (HLS) techniques have been
presented [9], [10], [12], [30]. In these frameworks, since a
schedule of the HLS-generated circuit is available, the debug
instrumentation can be optimized on a circuit-by-circuit basis.
This approach also attempts to imitate software debugging
as closely as possible. Since many machine learning imple-
mentations are created using high-level synthesis tools, these
techniques may be useful for debugging machine learning
circuits, however, they do not contain the custom compression
for large matrices that are used in this work. It is possible to
create instrumentation that is optimized for both HLS and large
matrices and use both at the same time; this is an interesting
area for future work.

In terms of debug for machine learning circuits on FPGAs,
the only other work we are aware of is [13]. Compared to that
work, our approach allows for debug-time overlay customiza-
tion leading to faster turn-around times. As described earlier,
we have built our framework using some ideas from [13].

The most similar work to that presented here is that of [15],
which described a debug overlay that allows the user to
rapidly reconfigure the general-purpose HLS-oriented debug
infrastructure proposed in [12]. Our overlay is quite different
from that in [15]. First, our technique is optimized for tracing
large matrices rather than individual variables. Second, the
lossy compression techniques used in our instrumentation are
not present in [15]. Again, it may be possible to combine
features from the overlay in [15] with ideas from this paper,
and this is an interesting area for future work.

VIII. CONCLUSIONS

In this paper, we presented a flexible overlay for on-chip de-
bug instrumentation of machine learning applications, provid-
ing software-like debug turn around time. Similar to previous
work, domain-specific debug instrumentation is added to the
RTL at compile-time. This instrumentation records informa-
tion about the design as it runs at speed for later interrogation.
Different from previous work, the instrumentation being used
can be reconfigured at debug-time, instead of requiring a full
new synthesis. We explored overlay variants with architectural
support for selective matrix tracing, selective compression, and
flexible trace buffer allocation. Instrumentation with different
sizes and capabilities were compared to previous work, show-
ing that only a small area overhead is added to allow this
flexibility. Together, the overlay capabilities proposed in this
work have the potential to significantly accelerate the process
of debugging machine learning circuits on FPGAs.
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